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Abstract 
Under some local superquadratic conditions on ( ),W t u  with respect to u, the 
existence of infinitely many solutions is obtained for the nonperiodic fractional 
Hamiltonian systems ( )( ) ( ) ( ) ( )( ), ,α α

∞ −∞ + = ∇ ∀ ∈t tD D u t L t u t W t u t t , 

where ( )L t  is unnecessarily coercive. 
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1. Introduction 

In this paper, we consider the fractional Hamiltonian system  

 ( )( ) ( ) ( ) ( )( ) ( ), , , ,α α α
∞ −∞ + = ∇ ∈  N

t tD D u t L t u t W t u t u H       (1) 

where ( )1 2,1α ∈ , ∈t , ( )2
,∈  NL C  is a symmetric and positive definite 

matrix for all ∈t , ( )1 ,∈ ×  NW C  and ( ),∇W t u  is the gradient of 
( ),W t u  at u. In the following, ( ), :⋅ ⋅ ×   N N  denotes the standard inner 

product in N  and ⋅  is the induced norm. 
Fractional calculus has received increased popularity and importance in the 

past decade, which is mainly due to its extensive applications in many engineer-
ing and scientific disciplines such as physics, chemistry, biology, economics, 
control theory, signal and image processing, biophysics, blood flow phenomena, 
aerodynamics, etc. (see [1]-[6]). Models containing left and right fractional dif-
ferential operators have been recognized as best tools to describe long-memory 
processes and hereditary properties. However, compared with classical theories 
for integer-order differential equations, researches on fractional differential equ-
ations are only on their initial stage of development. 

Recently, the critical point theory and variational methods have become effec-
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tive tools in studying the existence of solutions to fractional differential equa-
tions with variational structures. In [7], for the first time, Jiao and Zhou used the 
critical point theory to tackle the existence of solutions to the following fraction-
al boundary value problem  

( )( ) ( )( ) [ ] ( ) ( )0 , , a.e. 0, , 0 0.α α = ∇ ∈ = =t T tD D u t F t u t t T u u T  

Jiao and Zhou studied the problem by establishing corresponding variational 
structure in some suitable fractional space and applying the least action principle 
and Mountain Pass theorem. Then in [8], Torres proved the existence of solu-
tions for the fractional Hamiltonian system (1) by using the Mountain Pass 
theorem. The author showed that (1) possesses at least one nontrivial solution by 
assuming that W satisfies the (AR) condition and L satisfies the following coer-
cive condition:  

(L) ( )L t  is a positive definite symmetric matrix for all ∈t , and there ex-
ists an ( )( ), 0,∈ ∞l C  such that ( ) → ∞l t  as →∞t  and  

( )( ) ( ) 2, , , .≥ ∀ ∈ ∀ ∈ NL t x x l t x t x  

Subsequently, the existence and multiplicity of solutions for the fractional Ha-
miltonian system (1) have been extensively investigated in many papers; see 
[9]-[15] and the references therein. However, it is worth noting that in most of 
these papers, L is required to satisfy the coercivity condition (L). Recently, the 
authors in [16] proved the existence of one nontrivial solution for (1), where L 
does not necessarily satisfy the condition (L) and W satisfies some kind of local 
superquadratic condition:  

(W) There exist ( )1 2 1 2, ∈ <b b b b  such that ( ) 2lim ,→∞ = ∞x W t x x  un-
iformly with respect to ( )1 2,∈t b b .  

Here W is only required to be superquadratic at infinitely with respect to x 
when the first variable t belongs to some finite interval. 

Motivated by the above papers, in this note, we will consider the multiplicity 
of solutions for the fractional Hamiltonian system (1), where L is not necessarily 
coercive and W satisfies some local growth condition. The exact assumptions on 
L and W are as follows: 

Theorem 1. Assume the following conditions hold:  
(L1) There exists 1 0>l  such that  

( ) 1, ,≥ ∀ ∈l t l t  

and  

( )( ) 1
d ,

−
< ∞∫ l t t  

where ( ) ( )( ), 1
inf ,

∈ =
=

Nx x
l t L t x x  is the smallest eigenvalue of ( )L t ;  

(W1) ( )( )1 0 ,δ∈ × W C B  is even in x and ( ),0 0=W t , where ( )0δB  
denotes the ball in N  centered at 0 with radius 0δ > ;  

(W2) There are constants 1 0>c  and 0 1θ< <  such that  

( ) ( ) ( )1, , , 0 ;θ
δ∇ ≤ ∀ ∈ ×W t x c x t x B  
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(W3) There exists a constant 2>p  such that  

( )
0

,
lim 0 uniformly for ;
→

= ∈px

W t x
t

x
 

(W4) ( ) ( )( )2 , , , 0− ∇ <W t x W t x x  for all ∈t  and { }\ 0∈Nx ;  
(W5) There exists a constant 2µ >  such that  

( )
0

,
lim uniformly for .µ→

= ∞ ∈
x

W t x
t

x
 

Then problem (1) has a sequence of solutions { }ku  such that  
( )max 0∈ →t ku t  as →∞k .  

Remark 1. There exist L and W that satisfy all assumptions in Theorem 1. For 
example, let  

( )

( ) ( )

( )

( ) ( )

22
2

222
2 2

222
2

11 , ,
1

11 , ,
1 1

1 1 , 1,
1

N

N

N

n t n c I n t n
n

nL t n c I n t n
n n

nn n t c I n t n
n

 + − + ≤ < +   +
 = + + + ≤ < +   + +
 + + − + + ≤ < +   +

 

and  

( ) 4, for 1= <W t x x x  

with , ,1 2 3 5θ µ= = =p . Note that W is superquadratic near the origin and 
there are no conditions assumed on W for x  large. As far as the authors know, 
there is little research concerning the multiplicity of solutions for problem (1) 
simultaneously under local conditions and non-coercivity conditions, so our re-
sult is different from the previous results in the literature.  

The proof is motivated by the argument in [17]. We will modify and extend 
W to an appropriate W  and show for the associated modified functional I the 
existence of a sequence of solutions converging to zero in ∞L  norm, therefore 
to obtain infinitely many solutions for the original problem. 

2. Preliminary Results 

In this section, for the reader’s convenience, we introduce some basic definitions 
of fractional calculus. The left and right Liouville-Weyl fractional integrals of 
order 0 1α< <  on the whole axis   are defined as  

( ) ( ) ( ) ( )11 d ,αα ξ ξ ξ
α

−
−∞ −∞

= −
Γ ∫

x
xI u x x u  

( ) ( ) ( ) ( )11 d .αα ξ ξ ξ
α

∞ −
∞ = −

Γ ∫x x
I u x x u  

The left and right Liouville-Weyl fractional derivatives of order 0 1α< <  on 
the whole axis   are defined as  

 ( ) ( )1d ,
d

α α−
−∞ −∞

= ∫x xD u x I u x
x

                    (2) 
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 ( ) ( )1d .
d

α α−
∞ ∞= − ∫x x

D u x I u x
x

                    (3) 

The definitions of (2) and (3) may be written in an alternative form as follows:  

( ) ( )
( ) ( )

10
d ,

1
α

α

ξα ξ
α ξ

∞

−∞ +

− −
=
Γ − ∫x

u x u x
D u x  

( ) ( )
( ) ( )

10
d .

1
α

α

ξα ξ
α ξ

∞

∞ +

− +
=
Γ − ∫x

u x u x
D u x  

Moreover, recall that the Fourier transform ( )û w  of ( )u x  is defined by  

( ) ( )ˆ e d .
∞ −

−∞
= ∫ iwxu w u x x  

To establish the variational structure which enables us to reduce the existence 
of solutions of (1), it is necessary to construct appropriate function spaces. In 
what follows, we introduce some fractional spaces, for more details see [8] and 
[18]. Denote by ( ),≡  p p NL L  (1≤ < ∞p ) the Banach spaces of functions 
on   with values in N  under the norms  

( )( )1d ,= ∫p

pp

Lu u t t  

and ( ),∞  NL  is the Banach space of essentially bounded functions from   
into N  equipped with the norm  

( ){ }esssup : .
∞
= ∈u u t t  

For 0α > , define the semi-norm  

2 ,α
α

−∞ −∞= xI L
u D u  

and the norm  

( )2

1 22 2 .α α
−∞ −∞
= +I L Iu u u  

Let  

( )0 , ,
α

α −∞
⋅

∞
−∞ =   INI C  

where ( )0 ,∞  NC  denotes the space of infinitely differentiable functions from 
  into N  with vanishing property at infinity. 

Now we can define the fractional Sobolev space ( ),α  NH  in terms of the 
Fourier transform. Choose 0 1α< < , define the semi-norm  

2
ˆ ,α

α
=

L
u w u  

and the norm  

( )2

1 22 2 .
α α
= +Lu u u  

Set  

( )0 , .
αα

⋅
∞=  

NH C  
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Moreover, we note that a function ( )2 ,∈  Nu L  belongs to α
−∞I  if and only if  

( )2ˆ , .α ∈  Nw u L  

Especially, we have  

2
ˆ .α

α

−∞
=I L

u w u  

Therefore, α
−∞I  and αH  are equivalent with equivalent semi-norm and norm. 

Analogous to α
−∞I , we introduce α

∞I . Define the semi-norm  

2 ,α
α

∞ ∞= xI L
u D u  

and the norm  

( )2

1 22 2 .α α
∞ ∞
= +I L Iu u u  

Let  

( )0 , .
α

α ∞
⋅

∞
∞ =   INI C  

Then α
−∞I  and α

∞I  are equivalent with equivalent semi-norm and norm (see 
[18]). 

Let ( ), NC  denote the space of continuous functions from   into N . 
Then we obtain the following lemma. 

Lemma 1. ([8], Theorem 2.1) If 1 2α > , then ( ),α ⊂  NH C  and there is 
a constant α=C C  such that  

( )sup .
α∞

∈
= ≤

x
u u x C u  

Remark 2. From Lemma 1, we know that if α∈u H  with 1 2 1α< < , then 
∈ pu L  for all [ )2,∈ ∞p , since  

( ) 2
2 2d .−

∞
≤∫

p p
Lu x x u u  

In what follows, we introduce the fractional space in which we will construct 
the variational framework of (1). Let  

( ) ( ) ( ) ( )( )( ){ }2
: , d ,α α α

−∞= ∈ + < ∞∫ tX u H D u t L t u t u t t  

then αX  is a Hilbert space with the inner product  

( ) ( )( ) ( ) ( ) ( )( )( ), , , d ,α
α α

−∞ −∞= +∫ t tXu v D u t D v t L t u t v t t  

and the corresponding norm is  
2 , .α α=X Xu u u  

Lemma 2. If ( )L t  satisfies (L1), then αX  is continuously embedded in 
αH .  
Proof. By (L1) we have  

( )( ) ( ) 2 2
1, , .≥ ≥ ∀ ∈L t u u l t u l u t  

Then  
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( ) ( )( )( )
( ) ( )( )

2 22
1 1

2

1

d

d , d .

α
α

α

−∞

−∞

= +

≤ +

∫

∫ ∫



 

t

t

l u l D u t u t t

l D u t t L t u u t
 

It implies that  
2 2 ,αα
≤ Xu K u  

where { }1max 1,1=K l .                                            □ 
Lemma 3. If ( )L t  satisfies (L1), then αX  is compactly embedded in qL  

for 1≤ < ∞q .  
Proof. First, by (L1) and the Hölder inequality, one has  

( )( ) ( )( )

( )( ) ( )( )

( )( )( ) ( )( )( )
( )( )( )

1 2 1 2

1 2 1 2

1 2 1 21

1 21

d d

d

, d

d , .α

−

−

−

−

=

≤

≤

≤ ∀ ∈

∫ ∫

∫

∫ ∫

∫

 



 

 X

u t L t L t u t

l t L t u t

l t L t u u t

l t t u u E

 

This implies that αX  is continuously embedded into 1L . 
Next, we prove that αX  is compactly embedded into 1L . Let { }nu  be a 

bounded sequence such that nu u  in αX . We will show that →nu u  in 
1L . Obviously, there exists a constant 1 0>d  such that  

 1, .α ≤ ∀ ∈n Xu d n N                         (4) 

By (L1), for any 0ε >  there exists εT  such that  

 ( )( )( ) ( )
1 21

>
1

d < .
2ε

α

ε−

+∫t T
X

l t t
d u

                 (5) 

Since by Lemma 2 αX  is continuously embedded into αH , the Sobolev em-
bedding theorem implies →nu u  in ( )2

loc , NL . Then for the εT  above, 
there exists ε ∈N N  such that  

 ( )1 22 d , .
4

ε

ε
ε

ε

ε
−

− < ∀ ≥∫
T

nT
u u t n N

T
                 (6) 

Combining (4)-(6) and the Hölder inequality, for each ε≥n N , we have  

( ) ( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

( )( )( ) ( )( )( )( )
( )

1 2 1 2 1 22

1 2 1 2

1 2 1 21

1

d d d

2 d d

d
2

d , d
2

.
2 2

ε

ε ε

ε

ε ε

ε

ε ε

α

α

ε

ε

ε

ε ε ε

− >

−

− >

−

>

−

> >

− = − + −

≤ − + −

≤ + −

≤ + − −

≤ + − ≤
+

∫ ∫ ∫

∫ ∫

∫

∫ ∫



T
n n nT t T

T
n nT t T

nt T

n nt T t T

n X
X

u u t u u t u u t

T u u t L t L t u u t

l t L t u u t

l t t L t u u u u t

u u
d u

 

This means that →nu u  in 1L  and hence αX  is compactly embedded into 
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1L . 
Last, since for 1< < ∞q  one has  

1
1d ,−

∞
≤∫

q q
Lu t u u  

it is easy to verify that the embedding of αX  in qL  is also continuous and 
compact for ( )1,∈ ∞q . The proof is completed.                        □ 

Remark 3. By Lemma 1 - 3 we see that there exists a constant 0γ >q  such 
that  

 [ ], , 1, .α
αγ≤ ∀ ∈ ∀ ∈ ∞q qL Xu u u X q                (7) 

Lemma 4. Assume that (W1)-(W4) are satisfied. There is 0
2
δ

< <r  and 

( )1 ,∈  NW C  such that 

i) 

 ( ) ( ) ( )1
2, , , ,θ −∇ ≤ + ∀ ∈ ×  p NW t x c x x t x             (8) 

where 2c  is a constant;  
ii) 

 ( ) ( ) ( )( ) ( )ˆ , : 2 , , , 0, ,= − ∇ ≤ ∀ ∈ ×   NW t x W t x W t x x t x        (9) 

and  

 ( )ˆ , 0 iff 0.= =W t x x                     (10) 

Proof. By (W1) and (W2) one has  

 ( ) ( ) ( )1
1, , , 0 .θ

δ
+≤ ∀ ∈ ×W t x c x t x B               (11) 

Next we modify ( ),W t x  for x outside a neighborhood of the origin 0. 
Choose  

10 ,
4

β
γ

< < p
p

 

where γ p  is the constant given in (7). By (W3), there is a constant 0,
2
δ ∈ 

 
r  

such that  

 ( ), , and 2 .β≤ ∀ ∈ ≤pW t x x t x r              (12) 

Define a cut-off function ( )1 ,ρ ∈  C  satisfying  

( )
1, 0 ,
0, 2 ,

ρ
≤ ≤

=  ≥

t r
t

t r
 

and ( )2 0ρ′− ≤ <t
r

 for 2< <r t r . Using ρ , we define  

 ( ) ( ) ( ) ( )( ) ( ) ( ), : , 1 , , ,ρ ρ ∞= + − ∀ ∈ × 



NW t x x W t x x W x t x     (13) 

where ( ) ,β∞ = ∀ ∈p NW x x x . Then by direct computation we get  
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( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )
, , ,

1 ,

ρ ρ

ρ ρ∞ ∞

′∇ = ∇ +

′ ′+ − −

W t x x W t x x W t x

x W x x W x
         (14) 

( ) ( ) ( ) ( )( )( ) ( ) ( )( ) ( )
( ) ( ) ( )( )

ˆ , 2 , , , 2 1

,

ρ ρ

ρ

∞

∞

= − ∇ + − −

′− −

W t x x W t x W t x x p x W x

x W t x W x x
 (15) 

for ( ), ∈ × Nt x . It follows from (W1) and (W2) that  

 ( ) ( )ˆ,0 ,0 0, .∇ = = ∀ ∈W t W t t                 (16) 

Then by (11), (14), (W2) and the choice of the cut-off function ρ , we have  

( ) 1, , , 2 ,β −∇ ≤ ∀ ∈ ≥ pW t x p x t x r  

and  

( ) ( ) ( ) ( ) ( )

( )

1 1
1 1

1
1

2 2, , ,

4 4

5 4 , , 2 .

θ θ

θ

β β

β

∞ ∞

− −

−

′∇ ≤ ∇ + + +

≤ + + +

= + + ∀ ∈ <





p p

p

W t x W t x W t x W x W x
r r

c x c x p x x

c x p x t x r

 

Therefore, (8) is satisfied if ( ){ }2 1max 5 , 4 β= +c c p . 
Finally, we prove (9) and (10). On one hand, using (16) we know that 
( )ˆ , 0=W t x  whenever 0=x . On the other hand, assume that 2< <r x r . By 

(12), (15), (W4) and the choice of the cut-off function ρ , we obtain  

( ) ( ) ( )( )( )2 , , , 0,ρ − ∇ <x W t x W t x x  

( ) ( )( ) ( )2 1 0,ρ ∞− − ≤p x W x  

and  

( ) ( ) ( )( ), 0.ρ ∞′− − ≤x W t x W x x  

The above estimates imply that ( )ˆ , 0<W t x  if 2< <r x r . Besides, when 
2≥x r , by (15) we have  

( ) ( ) ( )ˆ , 2 0.∞= − <W t x p W x  

when 0 < ≤x r , by (W4) we get  

( ) ( ) ( )( )ˆ , 2 , , , 0.= − ∇ <W t x W t x W t x x  

Thus (9) and (10) are verified. The proof is completed.                   □ 
We now consider the modified problem  

 ( )( ) ( ) ( ) ( )( ), ,α α
∞ −∞ + = ∇ 

t tD D u t L t u t W t u t               (17) 

whose solutions correspond to critical points of the functional  

( ) ( ) ( )( )( ) ( )

( )

2

2

1 , d , d
2
1 , d
2

α

α
−∞= + −

= −

∫ ∫

∫





 



t

X

I u D u t L t u u t W t u t

u W t u t
 

for all α∈u X . By (11) and (13) we have  
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 ( ) ( )1
1, , , .θ β+≤ + ∀ ∈ ×  p NW t u c u u t u             (18) 

Thus, I is well defined. 
Rewrite I as follows:  

1 2 ,= −I I I  

where  

( ) ( )( )( ) ( )
2

1 2
1 , d and , d .
2

α
−∞= + =∫ ∫ 

 tI D u t L t u u t I W t u t  

In the following, c will be used to denote various positive constants where the 
exact values are different. 

Lemma 5. Let (L1), (W1) and (W2) be satisfied. Then ( )1 ,α∈ I C X  and 2′I  
is compact with  

( ) ( )( )2 , , , d′ = ∇∫ 


I u v W t u v t  

( ) ( ) ( )( ) ( )( ) ( )( )( ), , , , , dα α
−∞ −∞′ = + − ∇∫ 

 t tI u v D u t D v t L t u v W t u v t  

for , α∈u v X . Moreover, nontrivial critical points of I in αX  are solutions of 
problem (17).  

Proof. It is easy to check that ( )1
1 ,α∈ I C X  and  

( ) ( ) ( )( ) ( )( )( )1 , , , d .α α
−∞ −∞′ = +∫ t tI u v D u t D v t L t u v t  

For any [ ]0,1 , , αη ∈ ∈u h X , by (8) we have  

( )( ) ( )1 1, , ,θ θη + −∇ + ≤ + + +

p pW t u h h c u h h u h h  

where c is independent of η . Hence, for any , α∈u h X , by the mean value 
theorem and Lebesgue’s dominated convergence theorem, we get  

( ) ( ) ( )( )( )
( )( ) ( )

2 2

0 0

0

lim lim , , d

, , d : , ,

τ
→ →

+ −
= ∇ +

= ∇ =

∫

∫









s s

I u sh I h
W t u t sh h t

s
W t u h t W u h

 

where ( ) [ ]0,1τ ∈t  depends on , ,u h s . Moreover, it follows from (8) and (9) 
that  

( ) ( )( )
( )
( )

1 1

0

1

1

, , , d

.

θ θ

α α α

θ

θ

+ +
−

−

≤ ∇

≤ +

≤ +

∫




p p
p

L L L L

p
X X X

W u h W t u h t

c u h u h

c u u h

 

Therefore, ( )0 , ⋅W u  is linear and bounded in h, and ( ) ( )2 0 ,′ = ⋅I u W u  is the 
Gateaux derivative of 2I  at u. 

Next we prove that 2′I  is weakly continuous. Set ( ): ,= ∇ Bu W t u . There ex-
ist 1 2,B B  such that 1 2= +B B B , where 1B  is bounded and continuous from  

1θ +L  to 
1θ

θ
+

L  and 2B  is bounded and continuous from pL  to 1−
p

pL . For any 

, α∈v h X ,  
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( ) ( ) ( )

( )
2 2

1 2 1 2

1 1 2 2

1
11 1 2 2

, , d

, d

d d

,θ
α αθ

+
−

′ ′− = −

= + − −

≤ − + −

≤ − + −

∫

∫
∫ ∫





 
p

pL X L X

I u I v h Bu Bv h t

B u B u B v B v h t

B u B v h t B u B v h t

c B u B v h c B u B v h

 

which implies that  

( ) ( ) 1
12 2 1 1 2 2

1
sup .

α

θ
θ
+

−
=

′ ′− ≤ − + −
X

p
pL L

h
I u I v c B u B v c B u B v  

Now suppose u v  in αX , then by Lemma 3, →u v  in 1θ +L  and pL . 
Combining the above arguments, we have that 2′I  is weakly continuous. 
Therefore, 2′I  is compact and ( )1 ,α∈ I C X . 

Finally, by a standard argument, it is easy to show that the critical points of I 
in αX  are solutions of problem (18) with ( ) 0±∞ =u . The proof is completed. □ 

Lemma 6. Assume that (L1), (W1)-(W4) are satisfied. Then 0 is the only criti-
cal point of I such that ( ) 0=I u .  

Proof. By (W1), (W2) and Lemma 5, we know that 0 is a critical point of I with 

( )0 0=I . Now let α∈u X  be a critical point of I with ( ) 0=I u . Then we have  

( ) ( ) ( )ˆ0 2 , , d ,′= − = −∫I u I u u W t u t  

where Ŵ  is defined in (9). This together with (ii) of Lemma 4 implies that 
( ) 0=u t  for all ∈t . The proof is completed.                        □ 

3. Proof of Theorem 1 

The following lemma is due to Bartsch and Willem [19].  
Lemma 7. Let E be a Banach space with the norm ⋅  and ( )∈= ⊕ j NE E j , 

where ( )E j  are all finite dimensional subspaces of E. Let ( )1 ,∈ I C E  be an 
even functional and satisfy  

(F1) For every 0≥k k , there exists 0>kR  such that ( ) 0≥I u  for every 
( ): ∞

=∈ ⊕k j ku E E j  with = ku R , and ( ): inf 0∈= →
kk u Bb I u  as →∞k . Here 

{ }: |= ∈ ≤k k kB u E u R ;  
(F2) For every ∈k N , there exist ( )0,∈k kr R  and 0<kd  such that 

( ) ≤ kI u d  for every ( )1: =∈ = ⊕k k
ju E E j  with = ku r ;  

(F3) I satisfies ( )*PS  condition with respect to { }| ∈mE m N , i.e. every se-
quence ∈ m

mu E  with ( ) 0<mI u  bounded and ( ) ( ) 0′ →m mEI u  as →∞m  
has a subsequence which converges to a critical point of I.  

Then for each 0≥k k , I has a critical value [ ],ξ ∈k k kb d , hence 0ξ <k  and 
0ξ →k  as →∞k .  

Let { } 1

∞

=j j
e  be the standard orthogonal basis of αX  and define ( ) =  jE j e  

for each ∈j N . Now we show that the functional I has the geometric property 
of Lemma 7 under the conditions of Theorem 1. 

Lemma 8. Assume that (L1), (W1) and (W2) hold. Then there exist a positive 
integer 0k  and a sequence 0+→kR  as →∞k  such that  
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( ) 0,
inf 0,

k kXu E u R
I u k k

α∈ =
≥ ∀ ≥  

and  

( ): inf 0 as ,
k

k u B
b I u k

∈
= → →∞  

where ( ):k j kE E j∞
== ⊕  and { }: |k k kXB u E u Rα= ∈ ≤  for all ∈k N .  

Proof. By (18) we obtain  

 
( ) ( )

1

2

2 1
1

1 , d
2
1 , .
2

p

X R

p
kX L L

I u u W t u t

u c u u u E

α

α θ
θ β+
+

= −

≥ − − ∀ ∈

∫ 

           (19) 

Set  

 1
, 1

sup , .
k X

k L
u E u

l u k Nθ
α

+
∈ =

= ∀ ∈                  (20) 

Since X α  is compactly embedded into 1Lθ + , there holds (see [20])  

 0 as .kl k+→ →∞                       (21) 

For each k N∈ , it follows from (7), (19), (20) and the choice of β  that  

 
( ) 2 11

1

2 11
1

1
2
1 1 , .
2 4

pp
k pX X X

p
k kX X X

I u u c l u u

u c l u u u E

α α α

α α α

θθ

θθ

βγ++

++

≥ − −

≥ − − ∀ ∈
          (22) 

For each k N∈ , choose  

 1
14 ,k kR c lθ +=                           (23) 

then by (20) one has  

 0 as ,kR k+→ →∞                       (24) 

and hence there exists a positive integer 0k  such that  

 01, .kR k k< ∀ ≥                         (25) 

Now by (22), (23) and (25), we have  

( ) 2 2
0,

1 1 1inf 0, .
2 4 4k kX

p
k k ku E u R

I u R R R k k
α

θ +

∈ =
≥ − − ≥ ∀ ≥  

Noting that ( )0 0I =  and  

( ) 11
1

1 , , ,
4

p
k kX XI u c l u u k N u Eα α

θθ ++≥ − − ∀ ∈ ∈  

we have  

( ) 1 1
1

10 inf , ,
4k

p
k k ku B

I u c l R R k Nθ θ+ +

∈
≥ ≥ − − ∀ ∈  

which combined with (21) and (24) implies that  

( ): inf 0 as .
k

k u B
b I u k

∈
= → →∞  

The proof is completed.                                            □ 
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Lemma 9. Assume that (L1), (W1) and (W5) hold. Then for every k N∈ , 
there exist ( )0,k kr R∈  and 0kd <  such that ( ) kI u d≤  for every  

( )1:k k
ju E E j=∈ = ⊕  with kXu rα = .  

Proof. For a fixed k N∈ , since kE  is finitely-dimensional, there is a con-
stant 0kC >  such that  

 , .k
k X LC u u u Eα µ

µ µ≤ ∀ ∈                     (26) 

Set min , k
k k

w
p R

γ∞

 
=  

 
. Then by (W5), there exists a constant 0 kw r< <  such 

that  

 ( ) ( ), , , and ,k kW t u W t u m u t u wµ= ≥ ∀ ∈ ≤

          (27) 

where 2

1
k

k k

m
p Cµ−= . Now by (7), (26), (27) and Lemma 3, for ku E∈  with 

k
X

w
u α

γ∞
≤ , we get  

( ) ( )2

2

2

2 2
2

1 , d
2
1
2
1
2
1 21 .
2

X

kX L

k kX X

X X
k

I u u W t u t

u m u

u m C u

u u
p

α

α µ

α α

α α

µ

µ

µ
µ

−

−

= −

≤ −

≤ −

 
= − 

 

∫




 

Choose  
1

220 ,
3k k kr p p

µ− < = < 
 

 

and let  
2

0.
6
k

k
r

d = − <  

If ku E∈  with kXu rα = , we have  

( ) .kI u d≤  

The proof is completed.                                            □ 
Lemma 10. Assume that (L1), (W1), (W2) and (W4) hold. Then I satisfies 

( )*PS  condition with respect to { }|mE m N∈ .  
Proof. Let m

mu E∈  be a ( )*PS  sequence, that is,  

 ( ) ( ) ( )is bounded and 0 as .mm mEI u I u m′ → →∞           (28) 

Then we claim that { }mu  is bounded. If not, passing to a subsequence if neces-
sary, we may assume that  

 as .m Xu mα → ∞ →∞                      (29) 
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From (13), (14), (15), we have  

 

( ) ( ) ( )

( )( ) ( )

( ) ( ){ }| 2

2 ,

, , 2 , d

2 d

m

m

m m mE

m m m

p
mt u t r

I u I u u

W t u u W t u t

p u tβ
∈ ≥

′−

 = ∇ − 

≥ −

∫
∫





                 (30) 

for all m N∈ . From (28), (29) and (30), it follows that  

 ( ){ }| 2
d

0m

p
mt u t r

m X

u t

u α

∈ ≥
→

∫


                    (31) 

as m →∞ . By (8) we get  

( ) ( ) ( )1, 1 , , ,p NW t x c x t x−∇ ≤ + ∀ ∈ × 

  

which combined with (7) implies that  

( ) ( )

( )

( ){ }

( ) ( ){ }

2

2

2 1

| 2

1
1| 2

,

, d

d d

d

2 d

m

m

m

m mE

m m mX

p
m m mX

p
m m mX t u t r

p
m m Lt u t r

I u u

u W t u u t

u c u t c u t

u c u u t

c r u t c u

α

α

α
−

∞ ∈ ≥

−

∈ <

′

≥ − ∇

≥ − −

≥ −

− −

∫
∫ ∫

∫

∫



 







 

      

( ) ( ){ }

( )
( ) ( ){ }

( )

2 1

| 2

1
1 1

2 1

| 2

1
1 1

2 d

2

2 d

2 .

m

m

p
m m mX t u t r

p
m mL L

p
m m mX X t u t r

p
m mX X

u c u r u t

c r u c u

u c u r u t

c r u c u

α

α α

α α

γ

γ γ

−

∞ ∈ ≥

−

−
∞ ∈ ≥

−

≥ −

− −

≥ −

− −

∫

∫





 

From this and (31) it follows that  

1 0 as ,m X

m X

u
m

u
α

α

= → →∞  

which is a contradiction. Hence { }mu  is bounded. Noting that by Lemma 5 
{ }mu  has a subsequence converging to a critical point of I (see [21]). Hence, I 
satisfies the ( )*PS  condition. The proof is completed.                   □ 

Proof of Theorem 1. It follows from Lemma 8 - 10 that the functional I satis-
fies the conditions (F1)-(F3) of Lemma 7. Therefore, by Lemma 7, there exists a 
sequence of critical values 0kξ <  with 0kξ →  as k →∞ . Let { }ku  be a 
sequence of critical points of I corresponding to these critical values, i.e. 
( )k kI u ξ=  and ( ) 0kI u′ =  for all k. Then by Lemma 5, { }ku  is a sequence of 

solutions of problem (17). By Lemma 10 and Remark 3.19 in [20], I satisfies 
( )*PS  condition and hence we may assume without loss of generality that 

ku u→  in X α  as k →∞ . Evidently, u is a critical point of I with ( ) 0I u = . 
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Then by Lemma 6, u must be 0. Thus 0ku →  in X α  as k →∞ . By (7), we 
further have 0ku →  in ( ), NL∞    as k →∞ . Therefore, for k large enough, 
they are solutions of problem (1). The proof is completed.                  

4. Conclusions and Remarks 

Let us conclude this paper with some open questions whose answers might 
largely improve the applicability of the results in this present paper. 

Question. Whether or not can we improve the non-coercivity condition (L1): 
There is 1 0l >  such that ( ) 1,l t l t≥ ∀ ∈  and ( )( ) 1

dl t t
−

< ∞∫


, in order to 
obtain similar results? 
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