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Abstract 
As we know that the power series method is a very effective method for solv-
ing the Ordinary differential equations (ODEs) which have variable coeffi-
cient, so in this paper we have studied how to solve second-order ordinary 
differential equation with variable coefficient at a singular point 0t =  and 
determined the form of second linearly independent solution. Based on the 
roots of initial equation there are real and complex cases. When the roots of 
initial equation are real then there are three kinds of second linearly inde-
pendent solutions. If the roots of the initial equation are distinct complex 
numbers, then the solution is complex-valued. 
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1. Introduction 

We know the linear ODEs with constant coefficients can be solved by functions 
known from calculus.  

If a linear ordinary differential equation has variable coefficients, like Legen-
dre’s and Bessel’s ODEs, it must be solved by other methods. 

The power series method is a very effective method for solving the ODEs 
which have coefficient variable. It gives solution in the form of power series. 

A power series is an infinite series of the form 

( ) ( ) ( )2
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r
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=
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in which t is a variable. 0 1 2, , ,a a a   are constants, which are the coefficients of 
the series. 0t  is the center of the series. In particular, if 0 0t = , we get a power 
series in power of t 
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If a differential equation is given in the form 

( ) ( )2 0t y tb t y c t y′′ ′+ + =                     (3) 

Here ( )b t  and ( )b t  are analytic functions at 0t = . 
This equation can be written in standard form below 

( ) ( )
2 0

b t c t
y y y

t t
′′ ′+ + =                      (4) 

If 
( )b t
t

 and 
( )
2

c t
t

 are analytic at 0t = , then the solution of the equation 

will be analytic at 0t = , which can be represented in the form  
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= ∑                          (5) 

However if either 
( )b t
t

 or 
( )
2

c t
t

 are not analytic at 0t = , in other words 

we have a singular point at 0t = . Then solution cannot be represented in the 
series, so we must go to power series expanded method which is called 
Frobenius method. 

The Frobenius method enables us to solve such types of differential equations 
for example, Bessel’s equation 

( )
2 2

2

1 0, is parametert vy y y v
t t

 −′′ ′+ + = 
 

 

of the form of “Equation (4)”. Here ( ) 1b t =  and ( ) 2 2c t t v= −  are analytic at 
0t = . This ODE could not be solved by power series method, and it requires the 

Frobenius method.  
P. Haarsa and S. Pothat have considered such types of ODEs, but they ac-

quired exclusively the first solution besides general solution. Similarly, Anil Ha-
kim Syofra, Rika Permatasari and Lily Adriani Nazara attained the form of the 
second solution in real case of the mentioned equations in their research paper. 

1) We will study how we can solve second order ODEs at a singular point. 
2) Discuss the real and complex cases of the solution with examples.  

2. Regular and Singular Point 

A regular point of 

( ) ( ) 0y p t y q t y′′ ′+ + =  

is a point 0t  in which the coefficients ( )p t  and ( )p t  are analytic functions. 
Likewise, a regular point of the ordinary differential equation 

( ) ( ) ( ) 0h t y p t y q t y′′ ′+ + =

   

is 0t  in which ,h p   and q  are analytic and ( )0 0h t ≠  (divide by h  we get 
the standard form). So the power series method can be applied. If 0t  is not a 
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regular point, it is called a singular point [1] [2].  

3. Frobenius Method 

If 0t =  is a singular point of the ordinary differential “Equation (4)”, then it 
has at least one solution of the form 

( ) ( )2
0 1 2 0

0
, 0k r k

r
r

y t t a t t a a t a t a
∞

=

= = + + + ≠∑           (6) 

in which k may be any (real or complex) number [3]. 
The second-order differential “Equation (4)” also has a second solution which 

may be similar to solution one with a different k and different coefficients, or 
may have a logarithmic term. Solutions one and two are linearly independent [2] 
[4]. 

4. Indicial Equation 

Now we shall discuss the method of Frobenius for solving “Equation (4)” at a 
singular point 0t = . Multiply “Equation (4)” by 2t , we get  

( ) ( )2 0t y tb t y c t y′′ ′+ + =                    (7) 

Now ( )b t  and ( )c t  are expanding in power series,  

( ) 2
0 1 2b t b b t b t= + + +  and ( ) 2

0 1 2c t c c t c t= + +   

Differentiating “Equation (6)” term by term, finding 
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  (8) 

By putting the valves of ( )y t , ( )y t′′  and ( )y t′′  into “Equation (7)”, we 
readily obtain 

( ) ( ) ( )
( ) ( )

0 0 1 0

0 1 0 1

1

0

k k

k

t k k a b b t t ka

c c t t a a t

− + + + + +  
+ + + + + =

  

 

         (9) 

equating the sum of the coefficients of each power of 1 2, , ,k k kt t t+ +
  to zero. 

This gives a structure of equations with the unknown coefficients ra . 
The corresponding equation to the power kt  is 

( ) 0 0 01 0k k b k c a− + + =    

Since by assumption that 0 0a ≠  the above expression must be zero. This 
gives 

( ) 0 01 0k k b k c− + + =                      (10) 

This equation is important and is known as indicial equation of the ordinary 
differential “Equation (4)”. It plays the role as follows: 

Method of Frobenius gives a basis of solution. One solution of the given ODE 
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will be of the form of “Equation (6)”, where k is a root of “Equation (10)”. The 
second one will be of the form specified by the indicial equation [1] [2]. 

Let the roots of indicial equation be 1k  and 2k . Then we have：  
The Real Case: suppose 1k  and 2k  are real and 1 2k k> . There are three 

cases as follows: 
Case 1: Distinct roots not different by an integer 
If 1k  and 2k  are such that ( )1 2k k−  is not an integer. Then we have 

( ) ( )1 2
1 0 1 2

ky t t a a t a t= + + +               (11) 

and 

( ) ( )2 2
2 0 1 2

ky t t A A t A t= + + +              (12) 

with coefficients obtained successively from “Equation (9)” in which 1k k=  
and 2k k=  respectively [1] [2] [4]. 

Example 1: 
We solve the ODE  

2 1.5 0.5 0t y ty y′′ ′+ − =  

Its standard form is 

2

1 11.5 0.5 0y y y
t t

′′ ′+ + =  

Substitute ky t=  and its derivatives 1ky kt −′ =  and ( ) 21 ky k k t −′′ = −  into 
the above equation, we get 

( ) 2 1
2

1 11 1.5 0.5 0k kk k t kt y
t t

− −− + − =  

We have the axillary equation  

( ) 11 1.5 0.5 0k k k
t

− + − =  

or 
2 0.5 0.5 0k k+ − =  

0.5 and −1 are the roots. Hence tow solutions for all positive t is 
1
2

1y t=  and 

2
1y
t

=  [2] [5].  
Case 2: Double roots ( k k k1 2= = )  
A basis is 

( ) ( )2
1 0 1 2

ky t t a a t a t= + + +                   (13) 

In case tow we must have algorithm, where in case three we may or may not. 
Therefore the second solution is 

( ) ( ) ( )2
2 1 0 1 2ln , 0ky t y t t t A A t A t t= + + + + >            (14) 

Example 2: 
We solve the ODE  

( ) ( )1 3 1 0t t y t y y′′ ′− + − + =                    (15) 
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Writing “Equation (15)” in standard form of “Equation (4)” 

( ) ( )
3 1 1 0

1 1
ty y y

t t t t
−′′ ′+ + =
− −

 

We see that it satisfies the mentioned condition, by putting “Equation (6)” 
and its derivatives into “Equation (15)”, we get 

( )( ) ( )( )

( ) ( )

1

0 0

1

0 0 0

1 1

3 0

r k r k
r r

r r

r k r k r k
r r r

m m r

r k r k a t r k r k a t

r k a t r k a t a t

∞ ∞
+ + −

= =

∞ ∞ ∞
+ + − +

= = =

+ + − − + + −

+ + − + + =

∑ ∑

∑ ∑ ∑
       (16) 

The slightest power is 1kt − , occurring in the second and the fourth series; by 
associating the sum of its factors to zero, we have  

( ) 01 0k k k a− − − =    

Thus 2 0k = . 
Therefore this indicial equation has the paired roots 0k =  [2] [4]. 
First solution 
By addition the value of 0k =  in (16) and compare the sum of the power st  

to zero, we attain 

( ) ( ) ( )1 11 1 3 1 0s s s s ss s a s sa sa s a a+ +− − + + − + + =  

1s sa a+ = . Hence 0 1 2 0a a a= = = = . And by selecting 0 1a = , we get the an-
swer 

( ) ( )1
0

1 1
1

r

r
y t t t

t

∞

=

= = <
−∑  

Second solution 
For second independent solution, we apply the method of decrease of order, 

replacing 2 1y uy=  and its derivatives into equation. We have 
( )
3 1

1
tp

t t
−

=
−

, the 
factor of y′  in (15) in standard form. 

By partial fractions, 

( ) ( )3 1 2 1d d d 2ln 1 ln
1 1

tp t t t t t
t t t t

−  − = − = − + = − − − − − ∫ ∫ ∫  

Hence  

( )
( )

2
d2

1 2

1 1e , ln
1

p t t
u U y u t

tt t
−− ∫ −

′ = = = = =
−

 

2 1
ln
1

ty uy
t

= =
−

 

These functions are linearly independent and thus form a basis on the interval 
0 1x< <  (as well as on 1 x< < ∞ ) [2] [5] [6]. 

Case 3: k k1 2−  is a positive integer 
The tow solutions are 

( ) ( )1 2
1 0 1 2

ky t t a a t a t= + + +                  (17) 
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( ) ( ) ( )2 2
2 1 0 1 2ln ky t ky t t t A A t A t= + + + +            (18) 

Example 3: 
We solve the following ODE 

( )2 0t t y ty y′′ ′− − + =                      (19) 

Replacing “Equation (6)” and “Equation (8)”, in “Equation (19)”, we get 

( ) ( )( ) ( )2 2 1

0 0 0
1 0r k r k r k

r r r
r r r

t t r k r k a t t r k a t a t
∞ ∞ ∞

+ − + − +

= = =

− + + − − + + =∑ ∑ ∑  

By taking 2t , t and t exclusive the summations and bring together all terms 
with power r kt +  and simplify algebraically, 

( ) ( )( )2 1

0 0
1 1 0r k r k

r r
r r

r k a t r k r k a t
∞ ∞

+ + −

= =

+ − − + + − =∑ ∑  

We set r s=  in the first series and 1r s= +  in the second series, thus 
1s r= − . Then  

( ) ( )( )2
1

0 0
1 1 0s k s k

s s
s s

s k a t s k s k a t
∞ ∞

+ +
+

= =

+ − − + + + =∑ ∑          (20) 

Here the lowest power is 1kt −  and provides the indicial equation 

( )1 0k k − =  

1 1k =  and 2 0k =  are the roots, they are different by an integer. 
First solution 
From (20) with 1 1k k= = , we have 

( )( )2 1
1

0
2 1 0s

s s
s

s a s s a t
∞

+
+

=

 − + + = ∑  

From this we get the recurrence relation  

( )( ) ( )
2

1 0,1,
2 1s s
sa a s

s s+ = =
+ +

  

Therefore 1 20, 0,a a= =   consecutively. 
For 0 1a = , we get first solution as 1

1 0
ky t a t= = . 

Second solution 
Applying the method of reduction of order, we replace 2 1y y u tu= = , 

2y tu u′ ′= +  and 2 2y tu u′′ ′′ ′= +  into the ODE (19), we have 

( )( ) ( )2 2 0t t tu u t tu u tu′′ ′ ′− + − + + =  

Drops out tu. Division by t and simplification gives  

( ) ( )2 2 0t t u t u′′ ′− + − =  

From partial fractions and integrating, we obtain 

2 2

2 2 1 1, ln ln
1

u t tu
u t tt t t
′′ − −′= − = − + =
′ −−

 

By taking exponents and integrating again, we get 

2 2

2

1 1 1 1, ln

ln 1

tu u t
t tt t

y tu t t

−′ = = − = +

= = +
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These two solutions are linearly independent, and 2y  has logarithmic term 
[2] [6]. 

The Complex Case: If the roots of the indicial equation are distinct complex 
Numbers, k and k  say, then the solution is a complex-valued and is of the 

form 

( )
0

k r
r

r
y t t a t

∞

=

= ∑                         (21) 

in which the coefficients ra  may be complex. ( )1y t  and ( )2y t  are the real 

and imaginary parts of ( )y t , respectively and are linearly independent [1]. 

Example 4: 

( ) ( )32 1 1 0t t y ty t y′′ ′+ + + + =                   (22) 

Replacing “Equation (6)” and “Equation (8)”, in “Equation (22)”, we obtain 

( ) ( )( ) ( ) ( )32 2 1

0 0 0
1 1 1 0r k r k r k

r r r
r r r

t t r k r k a t t r k a t t a t
∞ ∞ ∞

+ − + − +

= = =

+ + + − + + + + =∑ ∑ ∑  

or 

( )( ) ( )( )

( )

1
1 0

3 2 1
0 3 2 1 0

1 2 1

3 3 0

r k r k
r r

r r

r k r k r k r k r k
r r r r r

r r r r r

r k r k a t r k r k a t

r k a t a t a t a t a t

∞ ∞
+ +

−
= =

∞ ∞ ∞ ∞ ∞
+ + + + +

− − −
= = = = =

+ − + − + + + −

+ + + + + + =

∑ ∑

∑ ∑ ∑ ∑ ∑
 (23) 

We know the initial equation is  

( )1 1 0k k k− + + =  

or 
2 1 0k + =  

Its roots .k i= ±  Thus, there is a complex-valued solution.  
Since the index of the sums has unlike starting points, we separate the cases 

0, 1, 2r r r= = =  and 3r ≥  for getting the following: 

( )2
00 1 0,r k a= + =  

( ) ( )2
1 01 1 1 1 3 0,r k a k k a = + + + − + =     

( ) ( )2
2 1 02 2 1 1 3 3 0,r k a k k a a = + + + + + + =     

( ) ( )( )2
1 2 33 1 1 2 3 3 0.r r r rr k r a k r k r a a a− − −

 ≥ + + + + − + − + + + =     

Then 0r =  case implies that k i= ± , as standard, 0a  is arbitrary but non-
zero.  

Substituting k i=  (the k i= −  case will give same result) and 0 1a =  into  

the cases 1r =  and 2r =  above, gives 1a i=  and 2
1
2

a = − . The general re-

currence relation is 

( ) ( )( )2
1 2 31 1 2 3 3 0r r r ri r a i r i r a a a− − −

 + + + + − + − + + + =        (24) 
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From which .
!

r

r
ia
r

=  

It follows that  

( )
0

e
!

r
i r i it

r

iy t t t t
r

∞

=

= =∑  

Suppose 0t > , Therefore, we can write lnei i tt =  and ( ) ( )lne .i t ty t +=  
By using Euler’s formula, the real and imaginary parts are  

( ) ( )
( ) ( )

1

2

cos ln

sin ln

y t t t

y t t t

= +

= +
 [1] 

5. Result 

There is at least one Frobenius solution, in each case. When the roots of initial 
equation are real, there is a Frobenius solution for the larger of the two roots. If 

1y  is a Frobenius solution and there is not a second solution, then a second in-
dependent solution is the sum of a logarithmic expression ( )1 lny t t  and a 
Frobenius series. If there are complex roots, the first and second solutions will be 
of the real and imaginary parts of ( )y t . 

6. Conclusions 

When 0t =  is a singular point of the second-order ordinary differential equa-
tion 

( ) ( )
2 0

b t c t
y y y

t t
′′ ′+ + =  

in which ( )b t  and ( )c t  are not analytic in 0t = , the Frobenius method will 
apply and it has at least one solution which can be represented in the form  

( ) ( )2
0 1 2

0

k r k
r

r
y t t a t t a a t a t

∞

=

= = + + +∑   

The above ordinary differential equation also has a second solution such that 
they are linearly independent. 

Its form will be specified by “Equation (6)” in the following cases. 
The real case: If the roots of the initial equation are real, then there are the 

following cases: 
Case 1: 1 2k k−  is not an integer 

( ) ( )2 2
2 0 1 2

ky t t A A t A t= + + +  

Case 2: double roots 1 2k k k= =  

( ) ( ) ( )2
2 1 1 2ln ky t y t t t A t A t= + + +  

Case 3: roots differing by an integer  

( ) ( ) ( )2 2
2 1 0 1 2ln ky t ky t t t A A t A t= + + + +  

The complex case: When the roots of initial equation are distinctly complex, 
solution is of the form 
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( )
0

k r
r

r
y t t a t

∞

=

= ∑  

in which the coefficients ra  may be complex. ( )1y t  and ( )2y t  are the real 
and imaginary parts of ( )y t , respectively.  
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