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Abstract 

The Brouwer fixed-point theorem in topology states that for any continuous 
mapping f on a compact convex set into itself admits a fixed point, i.e., a 
point 0x  such that ( )0 0f x x= . Under suitable conditions, this fixed point 

corresponds to the throat of a traversable wormhole, i.e., ( )0 0b r r=  for the 

shape function ( )b b r= . The possible existence of wormholes can therefore 
be deduced from purely mathematical considerations without going beyond 
the existing physical requirements. 
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1. Introduction 

Wormholes are handles or tunnels in spacetime connecting widely separated re-
gions of our Universe or entirely different universes. Morris and Thorne [1] 
proposed the following line element for the wormhole spacetime: 

( )

( ) ( )
2

22 2 2 2 2 2dd e d d sin d ,
1

r rs t r
b r r

θ θ φΦ= − + + +
−

          (1) 

using units in which 1c G= = . Here ( )rΦ = Φ  is called the redshift function, 
which must be finite everywhere to prevent the appearance of an event horizon. 
The function ( )b b r=  is called the shape function since it determines the spa-
tial shape of the wormhole when viewed, for example, in an embedding diagram 
[1]. The spherical surface 0r r=  is the throat of the wormhole and is characte-
rized by the following condition: ( )0 0b r r= . Mathematically speaking, 0r r=  is 
called a fixed point of the function ( )b b r=  and will play a key role in our dis-
cussion. For a traversable wormhole, an important requirement is the flare-out 
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condition ( )0 1b r′ < ; also, ( )b r r<  for 0r r> . The flare-out condition can 
only be met by violating the null energy condition [NEC], which states that  

0T k kα β
αβ ≥                           (2) 

for all null vectors kα , where Tαβ  is the stress-energy tensor. Matter that vi-
olates the NEC is called “exotic” in Ref. [1]. In particular, for the outgoing null 
vector ( )1,1,0,0 , the violation has the form  

0.rT k k pα β
αβ ρ= + <                       (3) 

Here t
tT ρ= −  is the energy density, r

r rT p=  is the radial pressure, and 

tT T pθ φ
θ φ= =  is the lateral pressure. For completeness, let us also list the Eins-

tein field equations:  

( ) 2 ,
8

br
r

ρ
′

π
=                          (4) 

( ) 3

1 2 1 ,
8r

b bp r
r rr

′ Φ  = − + −    π
                (5) 

and 

( ) ( ) ( )
( )

2
2

1 1 .
8 2 2t

b b r b b r bp r
r r r b r r r b

 ′ ′ ′− Φ −  ′′ ′ ′= − Φ − Φ + Φ + − π  − −    
   (6) 

The purpose of this paper is to make use of fixed-point theory to show that 
certain physical conditions imply the possible existence of traversable worm-
holes. To that end, we need the following special case of the Brouwer fixed-point 
theorem: 

Theorem [2]. Let f be a continuous function from a closed interval [ ],a b  on 
the real line into itself. Then f has a fixed point, i.e., there is a point 0x  such 
that ( )0 0f x x= . 

A function that maps a set into itself is called a self-mapping. 

2. Some Consequences of the Brouwer Fixed-Point Theorem 

According to Ref. [3], the total mass-energy M of an isolated star is well defined 
as long as one retains spherical symmetry. In Schwarzschild coordinates,  

Total mass-energy inside radius  

( ) ( ) ( )2

0
4 d ,

r
r m r r r rρ′ ′π ′≡ = ∫                   (7) 

where ( )rρ  is the energy density. Moreover, everywhere outside the star,  

( ) total mass-energy in the Newtonian limit.m r M= ≡          (8) 

We also have from Equation (4) that  

( ) ( ) ( )2

0
8 d .

r
b r r r rρπ ′ ′ ′= ∫                     (9) 

The line element (page 608 in Ref. [3]) is given by  

( )

( ) ( )

( )

2
22 2 2 2 2 2

2
2 2 2 2 2

dd e d d sin d
1 2

2 d1 d d sin d , for ,
1 2

r rs t r
m r r

M rt r r R
r M r

θ θ φ

θ θ φ

Φ= − + + +
−

 = − − + + + >  − 

  (10) 
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where R is the radius of the spherical star. According to Equations (7) and (9), 
( ) ( )2b r m r= . With our wormhole spacetime in mind, a more convenient form 

of the line element is  

( )

( ) ( )
2

2 2 2 2 2 2dd e d d sin d , inside radius ,
1

r rs t r r
m r r

θ θ φΦ= − + + +
−

  (11) 

and 

( )
2

2 2 2 2 2 2dd 1 d d sin d , for ,
1

M rs t r r R
r M r

θ θ φ = − − + + + >  − 
   (12) 

where R is the radius of the star. Now ( )m r  corresponds to ( )b r  in line ele-
ment (1). 

To apply the Brouwer fixed-point theorem, we need to make use of the fact 
that every star has a dense core of radius 1r r= . For example, the average densi-
ty of our sun is approximately 1.4 g/cm3, while the density of the core is well 
over 100 g/cm3. We will consider some other quantitative aspects in the next sec-
tion. 

Suppose ( )rρ  denotes the mass density of the star for 1r r>  and consider 
the mass  

( ) ( ) ( )
1

2* 4 d .
r

r
m r r r rρ′ ′π ′= ∫  

Then ( )*
1 0m r =  and the mapping  

[ ) [ )*
1: , 0,m r ∞ → ∞  

is no longer a self-mapping. Let us therefore denote the mass of the spherical 
core of the star by ( )K r  and its mass density by ( )1 rρ . Then ( ) ( )1 r rρ ρ> . 
Now consider a new mapping  

( ) ( ) ( ) ( )
1

2
14 d ,

r

r
m r r r r K rρ′ ′ ′= +π∫                (13) 

where ( )1 1K r r> . Since ( ) ( )1 1m r K r= , we see that ( )1K r  is indeed the mass 
of the core. Letting r R=  be the radius of the star, we now draw the important 
conclusion that ( )m r  in Equation (13) maps the closed interval [ ]1,r R  into 
itself, i.e.,  

( ) [ ]*
1 1, , ,K r R r R  ⊂                      (14) 

where 

( ) ( ) ( )
1

* 2
14 d ,

R

r
R m R r r r K rρπ= = +∫               (15) 

provided that *R R≤ . This conclusion can be illustrated graphically, as shown 
in Figure 1. 

We also have  

( ) ( )24 1,m r r rρ′ = π                        (16) 

since ( )rρ  is very small in our geometrized units. So while ( )m r  is an in-
creasing function, ( )m r′  remains less than unity. 
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Figure 1. ( )m r  maps the closed interval [ ]1,r R  into itself. 

 
We have seen that we obtain a self-mapping provided that ( )1 1K r r> . How-

ever, Equation (14) and Figure 1 show that the mass ( )1K r  of the core must 
not be excessively large. 

Finally, from the Brouwer fixed-point theorem, we obtain (since ( ) ( )b r m r≡ ) 

( ) ( ) ( ) ( )0

1

2
0 0 1 04 d .

r

r
b r m r r r r K r rρπ= = + =∫             (17) 

By Equation (16), ( ) ( )0 0 1b r m r′ ′= < , so that the flare-out condition is satisfied. 
In the resulting wormhole spacetime, the region inside the throat 0r r=  is 

not part of the wormhole, but this region still contributes to the gravitational 
field. This can be compared to a thin-shell wormhole resulting from a Schwarz-
schild black hole [4]: while not part of the manifold, the black hole generates the 
underlying gravitational field. 

As actual (quantified) example of the type of wormhole discussed is given in 
Ref. [5]. It is shown that for a typical neutron star, the possible formation of a 
wormhole requires a core of quark matter that is approximately 1 m in radius. 
(Quark matter is believed to exist at the center of neutron stars [6].) Qualitative-
ly speaking, the conditions above apply to any star since, as already noted, stars 
are known to have dense cores. 

3. A Dark-Matter Background 

In the discussion of dark matter, several models have been proposed for the 
energy density. The best-known of these is the Navarro-Frenk-White model [7]  

( ) 2 ,

1

s

s s

r
r r
r r

ρ
ρ =

 
+ 

 

                      (18) 

where sr  is the characteristic scale radius and sρ  is the corresponding densi-
ty. The Universal Rotation Curve [8] is given by 

https://doi.org/10.4236/jamp.2020.87096


P. K. F. Kuhfittig 
 

 

DOI: 10.4236/jamp.2020.87096 1267 Journal of Applied Mathematics and Physics 

 

( )
( )( )

3

2 2
,c c

c c

r
r

r r r r
ρ

ρ =
+ +

                   (19) 

where cr  is the core radius of the galaxy and cρ  is the central halo density. 
Another example is the King model whose energy density is given by [9]  

( )
2

0

,rr
r

η

ρ κ λ
 

= + 
 

                     (20) 

where η , κ , 0r , and λ  are constants. 
All of these models have a low energy density. So if 1r  is the radius of a star, 

then the star itself becomes the core since its energy density is much larger than 
that of the surrounding dark matter. Furthermore, since there is no outer boun-
dary, we can choose R large enough so that ( )m r  in Equation (13) is a 
self-mapping. The existence of a fixed point now implies the possible existence 
of a wormhole in the dark-matter region. 

4. Conclusion 

A typical star has a dense spherical core. If 1r r=  denotes the radius of the core 
and ( )1K r  its mass, then ( )m r , the effective mass of the star, is given by Equ-
ation (13). The function ( )m r  satisfies the hypothesis of the Brouwer 
fixed-point theorem. The fixed point can be viewed as the radius of the throat of 
a traversable wormhole since ( ) ( )0 0 0b r m r r= =  and ( ) ( )0 0 1b r m r′ ′= < . This 
result agrees with an earlier finding [5] showing that a typical neutron star re-
quires a core of quark matter of radius 1 m for the possible existence of a 
wormhole. The above result can also be applied to a dark-matter setting by 
treating a star of radius 1r r=  as the core. So the possible existence of traversa-
ble wormholes follows directly from purely mathematical considerations without 
going beyond the physical requirements already in place.  
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