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Abstract 
Investigating local dynamics of equilibrium points of nonlinear systems plays 
an important role in studying the behavior of dynamical systems. There are 
many different definitions for stable and unstable solutions in the literature. 
The main goal to develop stability definitions is exploring the responses or 
output of a system to perturbation as time approaches infinity. Due to the 
wide range of application of local dynamical system theory in physics, biolo-
gy, economics and social science, it still attracts many researchers to play with 
its definitions to find out the answers for their questions. In this paper, we 
start with a brief review over continuous time dynamical systems modeling 
and then we bring useful examples to the playground. We study the local dy-
namics of some interesting systems and we show the local stable behavior of 
the system around its critical points. Moreover, we look at local dynamical 
behavior of famous dynamical systems, Hénon-Heiles system, Duffing oscil-
lator and Van der Pol equation and analyze them. Finally, we discuss about 
the chaotic behavior of Hamiltonian systems using two different and new 
examples. 
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1. Introduction 

A dynamical system describes the evolution of a system over time using a set of 
mathematical laws. Also, it can be used to predict the interactions between dif-
ferent components of a system [1] [2]. There are two main methods to model the 
dynamical behaviors of a system, continuous time modeling, discrete-time mod-
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eling [1] [2] [3]. When the time between two measurements is negligible, the 
continuous time modeling governs the evolution of the system, however, when 
there is a gap between two measurements, discrete-time system modeling comes 
to play. Ordinary differential equations are the tool to model a continuous sys-
tem and iterated maps represent the discrete generations [4] [5]. 

In this paper we will be concerned with continuous dynamical systems which 
are defined by differential equations. Indeed, some famous examples of dynami-
cal systems can be written in terms of differential equations: the harmonic oscil-
lator, the pendulum and double pendulum, or the N-body problem [4]-[9]. A 
dynamical system is a triple ( ), ,tM KΦ  where M is called the phase space and 
is usually a smooth manifold or a subset of n , :t M K MΦ × → , called the 
evolution, is a smooth action of K in M and K is either a subset of   in the 
case of a continuous time dynamical system or a subset of   in the case of a 
discrete time dynamical system. The smooth action ( )t xΦ  describes the evolu-
tion with time t K∈  of a point x in the phase space M [4] [5] [6] [7]. 

Stability of a system is one of the most important parts of the studying the 
dynamical behavior of a system. Generally speaking, an unstable and also a 
chaotic system are not useful and we like to work with a system with stable and 
or periodic behavior (although chaos is a known behavior for many systems and 
sometimes people look for different strategies for chaotification of a system for 
different purposes [10] [11] [12]).  

There are different definitions for stability, however, all they have this com-
mon fact that a system is stable if perturbation, external input and or intention-
ally applied signals cannot make the system get away from the equilibrium point 
[13] [14]. There are three possibilities for dynamical behavior of a system after 
applying a perturbation [5]: 

1) The system state would return to the equilibrium state. 
2) The system state would not return to the equilibrium state but stays near to 

that state. 
3) The system state diverges from the equilibrium state. 
Mathematically speaking, the equilibrium state *x  is stable if for each initial 

conditions ( )0x  close enough to *x , the corresponding trajectory ( )x t  re-
mains near *x  for all 0t ≥ . 

( ) ( )* *0 0 : 0 , 0x x x t x tε δ δ ε∀ > ∃ > − < ⇒ − < ∀ ≥  

In this paper, we present some results regarding the study of local dynamics of 
non-linear continuous time dynamical systems. We provide different examples 
to display stable and unstable limit cycles and we demonstrate the numerical re-
sults for each case. Also, we study the local dynamics of three well known physi-
cal systems, Henon-Heiles system, Duffing oscillator and Van der pol equations 
and we display the evolution of solutions of the system in time. Finally, we dis-
cuss about the chaos in Hamiltonian systems and we provide two examples to 
show chaos in Hamiltonian systems. 
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2. Dynamical Systems Playground 

When we start to analyze the local dynamics of non-linear systems, the first step 
is finding the critical points and then exploring how the trajectories of the sys-
tem evolving in the neighborhood of critical point. This analysis helps us to find 
out how other solutions or trajectories of the system behave when they get close 
to the critical points. Another step to analyze a dynamical system is studying the 
trajectories which trace out a limit cycle or a closed curve. In this case, the solu-
tion ( )x t  of the system will go around and create a closed curve C with a cer-
tain period T. Therefore, the solutions ( ) ( ) ( )( ),x t x t y t=  of the system when 
it becomes periodic change to be ( ) ( ) ( ) ( ),x t T x t y t T y t+ = + =  for all t. Any 
trajectories which are close to the limit cycle C, follow the same behavior as the 
limit cycle C. For instance, they can get spiral in toward C, or they can spiral 
away from C, which demonstrates if the closed curve C is stable or unstable. See 
Figure 1.  

The root point for ( ) ( ) ( )2 2 2 2
1 , expF X Y X Y X Y= − − − −  is ( ) ( ), 0,0X Y = . 

The Taylor expansion for ( )1 ,F X Y  at ( ) ( ), 0,0X Y =  has the following form:  

( ) ( ) ( ) ( )2 2 22 2 2 4 2 51, e e 1 e 2
2

Y Y Y
nT X Y Y X Y X Y O X− − −= − + − − − +    (1) 

As it is clear from Figure 1, the point ( )0,0  is a stable fixed point and also 
the maximum of ( )1 ,F X Y  occurs at ( ) ( ), 0,0X Y =  and it is:  

( ) ( ){ }2 2 2 2max exp 0X Y X Y− − − − =                (2) 

In and Figure 2, we see ( ) ( ) ( )2 2 2 2
2 , expF X Y X Y X Y= + − − . The root for 

( )2 ,F X Y  is ( ) ( ), 0,0X Y = . The Taylor expansion for ( )2 ,F X Y  at 
( ) ( ), 0,0X Y =  has the following form:  

( ) ( ) ( ) ( )2 2 22 2 2 4 2 51, e e 1 e 2
2

Y Y Y
nT X Y Y X Y X Y O X− − −= − − + − +     (3) 

The minimum of ( )2 ,F X Y  happens for ( ) ( ), 0,0X Y =  which is equal:  

( ) ( ){ }2 2 2 2min exp 0X Y X Y+ − − =                 (4) 

For ( )2 ,F X Y  the point ( ) ( ), 0,0X Y =  is unstable. 
Another example, ( ) ( )2 2

3 , expF X Y X X Y= − −  which has been displayed in 
Figure 3. The maximum of ( )3 ,F X Y  occurs at ( ) ( ), 1,0X Y = −  and 
( ) ( ), 1,0X Y =  and it equals to:  

( ){ }2 2 2 1max exp
e

X X Y− − =                    (5) 

Also, the Taylor expansion for ( )2 ,F X Y  at 0X =  has the following form:  

( ) ( )2 2 2 22 4 6 8 91 1, e e e e
2 6

Y Y Y Y
nT X Y X X X X O X− − − −= − + − +        (6) 

As we can see in Figure 3, ( ) ( ), 1,0X Y = −  and ( ) ( ), 1,0X Y =  are stable.  
In Figure 4, we can see for ( ) ( )2 2 2

4 , expF X Y Y X Y= − − , ( ) ( ), 0, 1X Y = −  
and ( ) ( ), 0,1X Y =  are stable.  

https://doi.org/10.4236/jamp.2020.86089


T. Azizi, G. Kerr 
 

 

DOI: 10.4236/jamp.2020.86089 1183 Journal of Applied Mathematics and Physics 
 

 

Figure 1. ( ) ( ) ( )2 2 2 2
1 , expF X Y X Y X Y= − − − − , local dynamics. 

 

 

Figure 2. ( ) ( ) ( )2 2 2 2
2 , expF X Y X Y X Y= + − − , local dynamics. 

 

 

Figure 3. ( ) ( )2 2
3 , expF X Y X X Y= − − , local dynamics. 

 

 

Figure 4. ( )2 2 2expZ Y X Y= − − , local dynamics. 
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The maximum of ( )4 ,F X Y  occurs at ( ) ( ), 0, 1X Y = −  and ( ) ( ), 0,1X Y =  
and equals to  

( ){ }2 2 2 1max exp
e

Y X Y− − =                    (7) 

Also, the Taylor expansion for ( )4 ,F X Y  at 0X =  has the form  

( ) ( )2 2 22 2 2 4 2 51, e e e
2

Y Y Y
nT X Y Y X Y X Y O X− − −= − + +          (8) 

For ( ) ( ) ( )2 2 2 2
5 , expF X Y X Y X Y= − −  (Figure 5), ( ) ( ), 0,0X Y =  is a root 

and Taylor expansion for ( )5 ,F X Y  at 0X =  has the form  

( ) ( )2 2 2 22 2 4 2 6 2 8 2 91 1, e e e e
2 6

Y Y Y Y
nT X Y X Y X Y X Y X Y O X− − − −= − + − +   (9) 

here, ( ) ( ), 1, 1X Y = − −  and ( ) ( ), 1,1X Y = −  give the maximum of ( )5 ,F X Y  
which is  

( ){ }2 2 2 2
2

1max exp
e

X Y X Y− − =               (10) 

Finally, in Figure 6, ( ) ( ) ( )2 2 2 2
6 , expF X Y X Y X Y= − − −  has a root at 

( ) ( ), 0,0X Y =  and Taylor expansion for ( )6 ,F X Y  at 0X =  has the form  

( ) ( )2 2 2 22 2 4 2 6 2 8 2 91 1, e e e e
2 6

Y Y Y Y
nT X Y X Y X Y X Y X Y O X− − − −= − + − + +  (11) 

here, ( ) ( ), 1, 1X Y = − −  and ( ) ( ), 1,1X Y = −  give the minimum of ( )6 ,F X Y  
which is  

 

 

Figure 5. ( ) ( ) ( )2 2 2 2
5 , expF X Y X Y X Y= − − , local dynamics. 

 

 

Figure 6. ( ) ( ) ( )2 2 2 2
6 , expF X Y X Y X Y= − − − , local dynamics. 
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( ){ }2 2 2 2
2

1min exp
e

X Y X Y− − − = −                (12) 

3. Application of Continuous Dynamical Systems Modeling 
3.1. Hénon-Heiles System 

The Hénon-Heiles potential is one of the simplest examples of classical mechan-
ics and Hamiltonian systems [15] [16] [17] [18]. The Hénon-Heiles Hamiltonian 
demonstrates the emotion of stars around a galactic center. In 1964, Michael 
Hénon and Carl Heiles simplified the problem of the emotion of stars around a 
galactic center by using a Hamiltonian to describe the motion of stars near the 
equilibrium [16]. The Hénon-Heiles system has a vide application is studying 
chaotic dynamics in a system. If the energy of the motion becomes close to the 
bounding energy of the potential sink which is surrounding the center of the 
potential, this system displays chaotic dynamics feit 1984 wave. 

Consider the following nonlinear system of ordinary differential equations  

2

d
d
d
d

x y
t
y x x
t

 =

 = −


                        (13) 

The Hamiltonian function for this system has the form  

( )
2 2 3

,
2 2 2
y x xH x y = − +                    (14) 

For any ,x y  satisfying (13), we have d 0
d
H
t
= . For any solution 

( ) ( )( ),x t y t  of system (13), the Hamiltonian ( ) ( )( ),H x t y t  is constant, it 

means ( ) ( )( )d , 0
d

H x t y t
t

= . This is a very nice property of Hamiltonian func-

tion which is a conserved quantity for a system of ordinary differential equations 
and it is constant along all solution curves of the system. 

The solution curves are given by ( ),H x y C= . Here, there are two non de-
generate critical points ( )0,0  and ( )1,0− . The critical point ( )0,0  is a sad-
dle point and the eigenvectors corresponding to this critical points are ( )T1, 1−  
and ( )T1,1 . The critical point ( )1,0−  is a center. Figure 7 displays the level 
curves or contours of four different Hamiltonian functions.  

Consider the following Hamiltonian functions  

( )
2 2 3

1 ,
2 2 2
y x xH x y = − + +                    (15) 

( )
2 2 3

2 ,
2 2 2
y x xH x y = − +                    (16) 

( )
2 2 3

3 ,
2 2 2
y x xH x y = + +                    (17) 

( )
2 2 3

4 ,
2 2 2
y x xH x y = + −                    (18) 
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Figure 7. Hénon-Heiles system phase portraits. 
 

These Hamiltonian functions (15)-(18), are corresponding to different system 
of ordinary differential equations. The Hamiltonian function ( )1 ,H x y  has a 
critical point at ( )1,0  and the Hamiltonian function ( )2 ,H x y  has a critical 
point at ( )1,0− . As we can see in Figure 7, the stable and unstable manifolds 
from the origin for ( )1 ,H x y  and ( )2 ,H x y  form a homoclinic orbit which 
we can not see this property in Hamiltonian functions ( )3 ,H x y  and ( )4 ,H x y . 
This homoclinic loop connects the critical point ( )0,0  to itself and it takes in-
finite amount of time to make connection. For Hamiltonian functions ( )1 ,H x y  
and ( )2 ,H x y , the critical point ( )0,0  is called a saddle-node equilibrium and 
the Jacbian matrix of the system has a zero eigenvalues at this equilibrium point. 
However, the critical point ( )0,0  for the Hamiltonian functions ( )3 ,H x y  
and ( )4 ,H x y  demonstrates another kind of dynamics and it is called the Bog-
danov-Takens equilibrium point and the Jaobian matrix in this case has two zero 
eigenvalues. As it can be seen in Figure 7, the critical point ( )0,0  is unstable 
which is the property of Bogdanov-Takens equilibrium point. 

3.2. Duffing Oscillator 

The Duffing oscillator is a single ordinary differential equation which represents 
a nonlinear damped driven oscillator. This simple nonlinear system displays dif-
ferent kinds of dynamical behaviors from periodic and regular behaviors to 
chaos. When we add a driving force and friction, we can see this simple equation 
exhibit chaotic behavior [19] [20] [21]. The Duffing oscillator equation has the 
following form  

( ) ( )3 0, 0 , 0y y y x y A y Bα β γ′′ ′ ′+ + + = = =             (19) 

The law of energy conservation mentions that this is impossible to see chaotic 
motion in a single degree of freedom. Therefore, with adding a driving force and 
damping, the energy conservation would be eliminated. Then, the equations of 
motion has the form  

( ) ( )

( ) ( ) ( ) ( ) ( )3

d 1
2

d
d 2

2 1 1 sin
d

y
y

t
y

b y y y amp wt
t

α β


=


 = − − − +

          (20) 
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We have demonstrated different dynamical behaviors of (20) in Figures 8-10. 
The Duffing oscillator can be used to model different physical phenomenon 

such as stiffening springs, beam buckling, nonlinear electronic circuits, super-
conducting Josephson parametric amplifiers, and ionization waves in plasmas 
[22]. 

 

 

Figure 8. Chaotic solutions of Duffing oscillator (20) for 0.42amp = , 
0.5b = , 1.0α = − , 1.0β = , 1.0w = , Periodic solutions of Duffing 

oscillator (20) for 0.35amp = , 0.75b = , 1.0α = − , 1.0β = , 1.0w = . 
 

 

Figure 9. Periodic solutions of Duffing oscillator (20) for 0.45amp = , 
0.45b = , 1.0α = − , 1.0β = , 0.75w = , Chaotic solutions of Duffing 

oscillator (20) for 0.4amp = , 0.49b = , 1.0α = − , 1.0β = , 1.1w = . 
 

 

Figure 10. Periodic solutions of Duffing oscillator (20) for 0.43amp = , 
0.51b = , 1.0α = − , 1.0β = , 1.05w = , Chaotic solutions of Duffing 

oscillator (20) for 0.39amp = , 0.47b = , 1.0α = − , 1.0β = , 0.9w = . 
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3.3. The Van Der Pol Equation 

Van der Pol equation which is a well known second order ordinary differential 
equation with cubic nonlinearity has attracted many researchers in different field 
of science. This self oscillatory system, Van der Pol oscillator, has been consi-
dered as very useful mathematical model for many complicated systems [23] [24] 
[25]. Mathematical representation of the Van der Pol system has the form  

( )2 1 0x x x xµ′′ ′+ − + =                      (21) 

where constant µ  is a positive parameter depending on the tube constants. 
This equation represents describes the current ( )x t  in a certain type of va-
cuum tube. We can write (21) as a first order system of differential equations:  

( )2

d
d
d 1
d

x y
t
y x x x
t

µ

 =

 ′= − − −


                     (22) 

The numerical integration of Equation (22) has been represented in Figures 
11-14. 

As we can see, depending on different values for µ , solutions look like peri-
odic motion. When µ  small values, this motion is nearly sinusoidal, however 
for larger values of µ , the solutions seem to be relaxation oscillations which 
means solutions are similar to a series of step functions and jump twice per cycle 
between the positive and the negative values.  

4. Chaos in Continuous Dynamical Systems 

In this section, we assume that there is a Hamiltonian function with two degrees 
of freedom and it is given by 0 1H H Hε= + . Here, we consider ε  to be a very 
small parameter, 0H  an integrable Hamiltonian system and 1H  makes H to 
be non-integrable. For 0ε =  and also for 0 1ε<  , there exist quasi periodic 
cycles which are known as KAM tori. However, under perturbation, these quasi 
periodic cycles will be deformed and KAM tori will be dissolved gradually as we 
increase ε . This phenomenon can be observed in Figure 15 and Figure 16.  
 

 

Figure 11. Solutions of Van der Pol Equation (22) with 0.75µ =  and 5µ = . 
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Figure 12. Solutions of Van der Pol Equation (22) with 0.5µ =  and 3µ = . 
 

 

Figure 13. Solutions of Van der Pol Equation (22) with 0.25µ =  and 10µ = . 
 

 

Figure 14. Solutions of Van der Pol Equation (22) with 0.1µ =  and 15µ = . 
 

 

Figure 15. Dissolving the KAM tori caused by perturbation,  

( ) ( )( ) ( )( ) ( )( )( )( )2
1 , 1 2 sin 2 sin 2H x y x y yε βπ π= − + + − . 
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Figure 16. Dissolving the KAM tori caused by perturbation,  

( ) ( )( ) ( )( ) ( )( )( )( )2
2 , 1 2 cos 2 cos 2H x y x y yε βπ− + π= + − . 

 
According to, KAM theory when x is irrational, then the torus is preserved for 

small perturbation ε . But, proportional tori and adjacent irrational tori would 
be destroyed. Also, the stable manifold and unstable manifold of the saddle point 
which are intersecting transversely, appear to be Smale horseshoe and chaotic 
motion. As ε  increases gradually, these chaotic layers grow and they envelope 
larger area in phase space [26] [27]. 

5. Conclusion 

Dynamic systems modeling have been frequently used to describe different 
physical systems and have a very important role in predicting the interactions 
between multiple components of a system over time. In the present study, we 
explored different dynamical behaviors of some continuous dynamical systems, 
from stable and regular motions to periodic and limit cycles, and then chaotic 
and irregular oscillations. We started with studying the local dynamics of some 
vector fields and we demonstrated the local stable behavior of the system around 
its critical points. We continued this paper with studying the well known prob-
lems which have been used a lot for different physical purposes. Hénon-Heiles 
system, Duffing oscillator and Van der Pol equation are three important dy-
namical examples which have been widely studied numerically. We demon-
strated the stable and unstable manifolds from the origin form a homoclinic or-
bit in Hénon-Heiles system and we discussed about the local dynamical beha-
viors of its critical points. We showed that the critical point ( )0,0  is a saddle 
point and critical point ( )1,0−  is a center. For Duffing oscillator, which can be 
used to model different physical phenomenon, we showed the periodic and 
chaotic motions of the system using time series. Also, for Van der Pol equation, 
we presented the limit cycle solutions and periodic behavior of the system. We 
concluded that depending on different values for µ , solutions look like period-
ic motion. When µ  small values, this motion is nearly sinusoidal, however for 
larger values of µ , the solutions seem to be relaxation oscillations, which 
means solutions are similar to a series of step functions and jump twice per cycle 
between the positive and the negative values. Finally, we discussed about the 

https://doi.org/10.4236/jamp.2020.86089


T. Azizi, G. Kerr 
 

 

DOI: 10.4236/jamp.2020.86089 1191 Journal of Applied Mathematics and Physics 
 

chaos in Hamiltonian systems and we provided two interesting and different 
examples which exhibit chaotic behaviors. We assume a Hamiltonian function 
with two degrees of freedom and it can be obtained by adding an integrable Ha-
miltonian system and a non-integrable Hamiltonian system. We showed that for 

0ε =  and also for 0 1ε<  , there exist quasi periodic cycles which are known 
as KAM tori. However, under perturbation, these quasi periodic cycles will be 
deformed and KAM tori will be dissolved gradually as we increase ε . 
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