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Abstract 
In this paper we discuss the uniqueness and existence of solution to a real gas 
flow network by employing graph theory. A directed graph is an efficient way 
to represent a gas network. We consider steady state real gas flow network 
that includes pipelines, compressors, and the connectors. The pipelines and 
compressors are represented as edges of the graph and the interconnecting 
points are represented as nodes of the graph representing the network. We 
show that a unique solution of such a system exists. We use monotonicity 
property of a mapping to proof uniqueness, and the contraction mapping 
theorem is used to prove existence. 
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1. Introduction 

In this paper we investigate the existence and uniqueness of solution to a real gas 
flow pipeline network by representing the network by graph. A directed graph is 
an efficient way to represent a gas network. The pipelines and compressors are 
represented as edges of the graph and the interconnecting points are represented 
as nodes of the graph representing the network. In a directed graph representa-
tion of a gas network, each edge has been assigned a flow direction. Existence 
and Uniqueness of Solutions to the Generalized Riemann Problem for Isentropic 
Flow is discussed in [1]. In that paper a gas flow in networks of pipelines is con-
sidered. Their models are based on the generalized Riemann problem formula-
tion, where the flow in each connected pipe section is described by the hyper-
bolic conservation law supplemented by initial conditions within each section of 
the flow network. In our case, we consider a steady state and isothermal flow in 
the pipelines, which enables us to simplify the three conservation laws (mass, 
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momentum, and energy) into a single equation for each pipeline, see (3.1). The 
flow equation of the gas in a compressor is given in (3.2). As we are employing 
graph theory to study the gas flow network, reviews of some preliminary con-
cepts from graph theory are presented in the first section of this paper. In the 
second section we present the mathematical model for steady state real gas flow 
in a pipeline network. Section three contains the discussion about existence and 
uniqueness of solution for a real gas flow network. 

2. Preliminary 
Graph Theory 

A graph ( ),G V E=  is a structure consisting of a finite set V of elements called 
vertices or nodes and a set E whose elements are called edges [2]. A directed 
graph or digraph is a graph in which each edge has a direction from one node to 
another. A walk of a graph G is defined as a finite alternating sequence of vertic-
es and edges, beginning and ending with vertices, such that each edge is incident 
with the two vertices immediately preceding and following it. A walk in which 
no vertex appears more than once is called a path. A path beginning and ending 
with the same vertex is called a cycle. 

A graph G is said to connected if there is at least one path between every pair 
of vertices in G. A tree is a connected graph with no cycles. A spanning tree T of 
G is a tree consisting of all vertices in G. For a given spanning tree T of G, any 
edge in G which is not in the tree T is called a chord. A basic result from graph 
theory states that adding a chord to a spanning tree T will create exactly one 
cycle. Such a cycle formed by adding a chord to a spanning tree is called a fun-
damental cycle. 

Theorem 1: A tree with n vertices has 1n −  edges. 
Proof: The theorem will be proved by induction. on the number of vertices. It 

is easy to see that the theorem is true for 1,2,3n = . Assume that the theorem 
holds true for all trees with fewer than n vertices. Let us now consider a tree T 
with n vertices. In T let ke  be an edge with end vertices iv  and jv . Since 
there is one and only one path between every pair of vertices in a tree, there is no 
other path between iv  and jv  other than ke . Therefore, deletion of ke  from 
T will disconnect the graph. Furthermore, kT e−  consists of exactly two com-
ponents, and there are no cycles in T, each of these components is a tree. Both of 
these trees ahve fewer than n vertices each, and therefore, by the induction as-
sumption, each contains one less edge than the vertices in it. Thus kT e−  has 

2n −  edges. Hence T has exactly 1n −  vertices. 
Theorem 2: Let n and e be the number of vertices and edges, respectively, in a 

connected graph G. Let T be a spanning tree of G. Then 
1) The number of edges in T is 1n −  and the number of chords correspond-

ing to the spanning tree T is 1e n− +  chords.  
2) The number of the fundamental cycles corresponding to the spanning tree 

T is exactly the number of chords, 1e n− + . 
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Proof: 
1) Since a spanning tree is a tree, theorem 1 can be used to show the first part 

of 1). Since a chord is an edge in G which is not in the given spanning tree T, the 
number of chords corresponding to T is the total number of edges e in the graph 
G minus those 1n −  edges which belong to the spanning tree T, i.e. 1e n− + . 

2) From part 1), we know that we have only 1e n− +  chords. Each chord 
creates a fundamental cycle, and hence the number of the fundamental cycles 
with respect to the given spanning tree is 1e n− + .  

Incidence matrix of a digraph 
Let G be a directed graph with n vertices and e edges, with no circuits (cycles). 

The node-edge incident matrix A of G is an n × e matrix, defined as  

1, if edge is coming in to node
1, if edge is going in to node

0, otherwise.
ij

j
a j


= −



 

Theorem 3: If A is the incident matrix of a connected graph with n nodes, the 
rank of A is 1.n −  

Proof: Since there are exactly one −1 and one 1 in every column of the inci-
dence matrix A, the sum of all these row vectors is 0. Thus the n vectors are not 
linearly independent. Therefore, the rank of A is less than n. Since the graph G is 
connected, it cannot be partitioned like 

1

2

0
0
A

A
A

 
=  
 

 

such that 1A  is with m rows and 2A  with n m−  rows. In other words, no m 
by m sub matrix of A can be found, for 1m n≤ − , such that the sum of those m 
rows is equal to zero. Since there are only three constants −1, 0, and 1 in this 
field, the additions of all vectors taken m at a time for 1,2, , 1m n= −  ex-
hausts all possible linear combinations of 1n −  row vectors. Thus we have just 
shown that no linear combination of m row vectors of A, for 1m n≤ −  can be 
equal to zero. Therefore, the rank of A must be at least 1n − . Since the rank of 
A is no more than 1n −  and no less than 1n − , it must be exactly equal to 

1n − .  
A matrix fA , which is 1n −  by e obtained from A by deleting one of its 

rows is called reduced incident matrix. 
Theorem 4: The reduced incidence matrix of a tree is invertible. 
Proof: A is the incidence matrix of a tree means, by theorem 2, it has n rows 

and 1n −  columns. Hence, fA  is an 1n −  by 1n −  matrix. By theorem 3, A 
has rank 1n −  implies that fA  is of rank 1n − . Since fA  is a square matrix 
of order 1n −  and has rank 1n − , fA  is invertible. 

Cycle (circuit) matrix of a digraph 
Let G′  be the un-directed version of a digraph G, i.e., G′  is the graph G 

with out considering the directions. Each cycle in G′ , after being assigned an 
arbitrary orientation, can be represented by a vector whose components are are 
−1, 1, or 0 according to whether and how the edge is included in the cycle. A 
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cycle matrix B is a matrix where each row corresponds to a cycle vector, and is 
defined by  

1, if cycle contains edge and their orientation coincides
1, if cycle contains edge and their orientation are opposite

0, if the th cycle does not include edge
ij

i j
b i j

i j


= −



 

A cycle is also called circuit. 
A set of fundamental cycles with respect to any spanning tree in a connected 

digraph are the only independent cycles in the digraph, since each contains an 
edge not in any of the others. The rest of cycles can obtained as linear combina-
tions of these fundamental cycles. A sub matrix fB  of the matrix B in which all 
rows correspond to the fundamental cycles is called Fundamental Cycle matrix. 
If n is the number of vertices and e the number of edges in a connected digraph, 
then fB  is an 1e n− +  by e matrix, because the number of fundamental cycles 
is 1+− ne , each fundamental cycle being produced by one chord. Since the 
fundamental cycles are linearly independent the rank of fB  is 1e n− + . 

Theorem 5: Let B and A be, respectively, the circuit matrix and incidence 
matrix of a digraph such that the columns in B and A are arranged using the 
same order of edges. Then  

T T 0AB B A= =  

Proof: Consider the mth row in B and the kth row in A. If the cycle m does 
not include any edge incident on vertex K, the product of the two rows is clearly 
zero. If, on the other hand, vertex k in cycle m, there are exactly two edges (say x 
and y) incident on K that are also in cycle m. This situation can occur in only 
four different ways. The possible entries in row k of A and row m of B in column 
positions x and y are tabulated in Table 1 for each of these four cases. In each 
case, the dot product is zero.  

3. Mathematical Model of a Steady State Gas Flow in Pipeline  
Networks 

A typical gas network consists of one or more gas sources, one or more gas deli-
veries, pipelines, compressors, and other devices, such as valves and regulators 
[3] [4]. The compressors are installed in the network to increase the gas pressure 
so that the gas can flow through the pipeline to the locations where it is con-
sumed. Valves and regulators provide control of the gas flow rate, prevent exces-
sive growth of pressure in the network. 

 
Table 1. Possible entries in row k of A and row m of B in column positions x and y.  

Case Row k  Row m  Dot Product 

 column x column y column x column y Row k. Row m 

1) −1 1 1 1 0 

2) 1 −1 −1 1 0 

3) −1 −1 1 −1 0 

4) 1 1 −1 1 0 
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We consider the three basic components of a gas network to model the gas 
flow in pipeline networks: 

1) pipelines, 
2) compressors, and  
3) nodes (interconnection points).  
A directed graph is an efficient way to represent a gas network. The pipelines 

and compressors are represented as edges of the graph and the interconnecting 
points are represented as nodes of the graph representing the network. In a di-
rected graph representation of a gas network, each edge has been assigned a flow 
direction. If the actual direction of the gas flow coincides with the direction of 
the edge, the flow rate is positive, otherwise the flow rate is negative. 

3.1. Gas Flow in Pipes 

Gas flow in a pipe is described by the three conservation laws (mass, momentum, 
and Energy) closed by an equation of state. If we consider the flow to be steady 
state and isothermal, the gas flow can be described by the following equations  

( )

( )

2

2
,

u p fu u
x D

P P T

ρ

ρ

∂ +
 = −
 ∂
 =

                     (1) 

where ρ  is the gas density, u is the average flow velocity, P is the pressure, T is 
the temperature, f is friction factor, x is position, and D is the diameter of the 
pipe. If we use the volumetric flow rate Q and pressure P as flow variables, and  

use the substitution 
Pc
ρ

=  the above equations can be written as:  

2

2

Q c p
fQ QP

x D

 
∂ + 
  = −

∂
                     (2) 

If we consider that c is the average of its values at the two end points of the 
pipe, we can integrate the above equation to get 

2 2
2 2log log 0

2 2 2
u d

u d

fQ Q LP P
cQ P cQ P

D
− − + + =             (3) 

The logarithmic terms are because of the inertia term included in eqn which is 
neglected by many authors. 

3.2. Compressor Equations 

Compressors are installed in the gas network to transport gas and compensate 
for the loss of energy due to frictional resistance which results in a loss of pres-
sure at the downstream of the pipe. The flow rate through the compressor and 
pressures at the upstream and downstream of the compressor are related by the 
following equation.  

1

1 for 1:
1

cd
cu c

cu

P
W z RTQ c t

P

γ
γγη

γ

− 
  ∗ = − =  −    

         (4) 
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where: 

cuP  is inlet pressure. 

cdP  is outlet pressure. 

cQ  is flow rate through the compressor. 
W is power of the compressor. 
η  is compressor efficiency. 
γ  is ratio of specific heats. 

cuz  is compressibility factor at entry.  

3.3. Node Equations 

We can categorize the nodes in the network as source nodes (where gas is sup-
plied to the system), junction nodes (where two or more edges are connected), 
and sink nodes (where gas is delivered for consumption). At a source nodes ei-
ther the pressure or the flow rate is specified. While at junction or a sink node a 
flow rate balance is made. 

3.3.1. Pressure Node 
If the pressure value pS  is specified at a node of the network, then we get the 
equation  

pP S=                             (5) 

at this node.  

3.3.2. Flow Node 
The node at which we balance the flow rates coming into and going out of the is 
called flow node. Suppose a flow node connects N edges (pipes or compressors) 
and has a nodal flow rate qS . qS  is positive if gas is added in to the network, 
negative if gas is tapped out of the network, and zero if there is no gas entering 
or leaving the network at this node. 

Then balancing the flow rate at this node gives us  

for 1:
i i

j j q q
j In j Out

Q Q S i N
∈ ∈

− = =∑ ∑                 (6) 

iIn  is the set of incoming flows in to the ith Flow Node. 

iOut  is the set of outgoing flows from the ith Flow Node. 
Therefore, the steady state, isothermal gas flow in pipeline networks is de-

scribed by a non-linear simultaneous equation containing (3), (4), (5), and (6). 
This system of equations can be written as  

( ) ( ), , ,p cF x y x P Q Q= =                     (7) 

4. Existence and Uniqueness of the Solution to a Network  
Which Can Be Represented by a Tree 

In the present section, proofs for existence and uniqueness of solutions to a gas 
flow network will be given. First, we present a proof of uniqueness of solutions 
which is based on a monotonicity property of a mapping. Existence is then 
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proved with the help of the contraction mapping theorem (4.2). Assume the gas 
flow network of n nodes can be represented by a tree. Suppose the pressure value 

pS , of one node, say node 1 is given. By theorem (1) this tree has 1n −  edges. 
Let lA  and A be, respectively, the pipe-node incidence matrix and the 
edge-node incidence matrix of the tree. Let fA  be the reduced incidence matrix. 
Now the network equations can be written as:  

( )
2

T 2

1

1

log , equations
2

1 , 1 equations
1

l p p

cd
c

cu

p

f q

PA cQ P Q m

P
W bQ t n m

P

P S

A Q S

γ
γ

φ

γη
γ

−

  
− ⊗ =  

 
      ∗ = − = − −   −     
 =


=

       (8) 

where pQ  and cQ  are, respectively, pipe flows and compressor flows. Since 

fA  is obtained from A by deleting the row corresponding to the reference node, 
it is 1n −  by 1n −  matrix and is invertible. Hence, there is a unique solution 
for the last Equation in (8). If we have t compressors involves 2 pressures, there 
fore the t pressures can be determined if the values of the other t pressures are 
known. Assuming the t pressures from the compressor equations and one pres-
sure from the reference node are known, we have only 1n t m− − =  unknown 
pressures. By substituting the known flow rates and the known pressures in to 
the pipe equations we get 1n t− −  equations for 1n c− −  unknown pressures. 
Since the rows of T

lA  are rows of the reduced incidence matrix fA , they are 

linearly independent. This implies T
lA  is invertible and we get the unique solu-

tion 
2

2 log
2 p

P cQ P− ⊗  for the first Equation of (8). This gives us unique P as 

2
2 log

2 p
P cQ P− ⊗  is one-to-one. 

4.1. Uniqueness of the Solution to a Gas Flow Network  

In this section, let us assume we have a network of pipes, with no compressor, 
which can be represented by directed graph. Suppose the gas flow network has n 
nodes. Assume the pressure pS  is given at a reference node, say at node 1. 
Then our network system of Equations (7) takes the form:  

( )
2

T 2

1

log
2

p

f q

PA cQ P Q

P S

A Q S

φ
  

− ⊗ =  
 

 =
 =

                 (9) 

Let fB  be the reduced cycle matrix with respect to some spanning tree. The 
size of fB  is 1e n− +  by e, and its rank is 1e n− + . The above system is 
equivalent to  
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( )

( )

2
T 2

1

log
2

0
p

f

f q

PA cQ P Q

P S

B Q

A Q S

φ

φ

  
− ⊗ =  

 
 =
 =
 =

                (10) 

Now let us consider the system  

( ) 0f

f q

B Q

A Q S

φ =


=
                        (11) 

The system (11) contains only the flow variable Q. The first equation contains 
1e n− +  equations and the second contains 1n −  equations. Hence, system (11) 

consists of e equations for e unknown flwo rate variables. First, we show that the 
solution of the system (11) is unique, and then it can be shown that the first two 
equations of system (10)  

( )
2

T 2

1

log
2

p

PA cQ P Q

P S

φ
  

− ⊗ =  
  
 =

                (12) 

give unique P. System (12) consists of 1e +  equations for n unknowns. But, we 
can eliminate 1e n− +  equations as they are linar combinations of the others, 
since 1e n− +  ( )i Qφ  are expressed in terms of the others in the equation 

( ) 0fB Qφ = . 
Now let us show that the solution of system (11) is unique. 
Definition: A mapping : H HΦ →  is said to be strictly monotonic if for 

every ,x y H∈  we have  

( ) ( )( ), 0,x y x yΦ −Φ − ≥  

and equality holds if and only if x y= . 
Theorem 6: Let : d dΦ →  , for some positive integer d, is given by  

( ) ( ) ( ) ( ) ( )( )T
1 1 2 2 3 3, , , , d dx x x x xΦ = Φ Φ Φ Φ  

where  

( ) , for 1i j j j jx c x x j dΦ = ≤ ≤  

with 0jc > . Then Φ  is strictly monotonic. 
Proof: For every [ ) [ )T T

1 2 3 1 2 3, , , , , , , , , d
d dx x x x y y y y= = ∈x y   ,  

( ) ( )( ) ( )( )
1

,
d

j j j j j j j
j

x y x y c x x y y x y
=

Φ −Φ − = − −∑  

The function ( )h s s s=  is a strictly increasing function for all s. Hence, 
each term on the right-hand side is non-negative. Thus,  

( ) ( )( ), 0.x y x yΦ −Φ − ≥  

Equality holds if and only if every term at the right hand side is zero, so 
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j jx y= , for every j. There fore, Φ  is strictly monotonic.  
Definition: Let 0, 0r t> > , be two integers, and d r t= + . We say an r d×  

matrix A and a t d×  matrix B are perpendicular to each other if they satisfy  
1) ( )rank A r= , ( )rank B t= ;  
2) T TAB BA=   
Let : 0dM x Ax= ∈ℜ =  and : 0dN y By= ∈ = . Then we have M perpen-

dicular to N and  

.d M N= ⊕  

Theorem 7: Let matrices A and B be perpendicular to each other. Suppose 
: d dΦ →   is strictly monotonic, then foe every ds∈ , the solution to the 

system of equations  

( ) 0
AQ s
B Q

=
 Φ =

                        (13) 

is unique. 
Proof: Suppose both u and v are solutions of system (13), then  

( )
( ) ( )( )

0

0

A u v

B u vφ

 − =


Φ − =
 

Hence, u v M− ∈ , and ( ) ( )u v NφΦ − ∈ . Thus ( ) ( )( ), 0u v u v− Φ −Φ = . 
Since Φ  is strictly monotonic, the above equation implies that u v= . Hence, 
the solution is unique.  

By applying the above theorem, and taking fA A= , fB B= ,and fs s= , it is 
shown the solution of the system (11) is unique. 

4.2. Existence of the Solution for a Gas Flow Network 

In this section, we discuss the existence of solution to a general gas flow network 
that contains pipes and compressors. Let us consider a network of m pipes, t 
compressors, and n nodes. Assume the pressure is given, say at node 1, i.e. 

1 pP S= . We use the The Contraction Mapping Theorem to show existence of a 
solution for such gas flow network. 

Definition: Let ( ),X d  be a metric space. A function :T X X→  is called a 
contraction mapping if there exists k ∈  such that 0 1k< <  and  

( ) ( )( ) ( ), ,d T x T y kd x y≤  

for any ,x y X∈ . 
Theorem 8: (The Contraction Mapping Theorem): If ( ),X d  is a complete 

metric space and :T X X→  is a contraction mapping, then T has one and 
only one fixed point, (i.e., there exists exactly one x X∈  such that ( )T x x= ).  

Sketch of the proof of the Contraction Mapping Theorem. The complete proof 
is found in [5]. The proof proceeds in several steps:  

1) starting from an arbitrary 0x X∈ , construct the sequence nx X⊂  by 
taking ( )1n nx T x −= ;  

2) prove that ( ) ( )1 0 1, ,n
n nd x x k d x x+ ≤ , and therefore  
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( ) ( )0 1, ,
1

n m

m n
k kd x x d x x

k
−

=
−

 for any natural numbers ,n m  with m n> ;  

3) conclude that { }nx  is a Cauchy sequence, and thus, since X is complete, 
converges;  

4) prove that limn nx x→∞=  is a fixed point of T;  
5) prove that x is the only fixed point of T.  
Now, we want to show that the equation  

( )T x y=  

has locally unique solution. The Contraction Mapping Theorem can be applied 
as follows: If we can find 0x  such that the jacobian determinant, J, of T at 0x  
is different from zero, then we can introduce  

( ) ( ) ( )( )1
0 .G x x J x T x y−= − −  

The equation ( )x G x=  is equivalent to ( )T x y= . If G is a contraction 
mapping, then G has a unique fixed point x  and thus ( )T x y= . 

The jacobian ( )J x  is expressed in the following form 

( ) ( ) ( )
( ) ( )

A x D x
J x

B x C x
 

=  
 

 

where 

( ) ( )( )( )ij m t n
A x a x

+ ×
=  

( )

( )

( )

( )

1

, if Node is the upstream node of Pipe

1 , if Node is the upstream node of Compressor

, if Node is the downstream nod

i i
iu iu

iu iu

m c
iu c cu

cu

ij i i
id id

id id

F x CQ
a P j i

P P

F x
a W bQ P j c

P
a x F x CQ

a P j
P P

γγη
γ

−
+

∂  
= = − − ∂  

 ∂ −
= = − +  ∂  

= ∂  
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( ) 1

e of Pipe

, if Node is the downstream node of Compressor

0, else

m c
id c cd

cd

i

F x
a bQ P j c

P
γ

−
+











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∂ = = ∂

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( ) ( )( )( ) ( )ij m t m t
D x d x

+ × +
=  
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( )

( )
1

log if

1 if
1

ii iu

i id
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CfL QF x P
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+
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( ) 0 ifijd x i j= ≠  

( ) ( )( )ij n n
B x b x

×
=  

( )
th1, if Node is the Pressure Node

0,elseij
j i

b x


= 

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( ) ( )( ) ( )ij n m t
C x C x

× +
=  

( )

th

th

1, if flow flows into the FlowNode
1, if flow flows out of the Flow Node

0, else
ij

j i
C x j i




= −



 

Choose 0x  such that ( )0 0ijd x ≠ , ( )0 0iua x <  and ( )0 0ida x >  

Then ( )( )0det 0J X ≠  

Example: Let us consider the following network with 3 pipes, 1 compressor, 
and 5 junctions.  

The Jacobian of the matrix of the system of equations of the gas flow network 
dipicted in Figure 1 is given by 

1 1 11

2 2 22

3 3 33

4 4 44

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 0

u d

u d

u d

u d

a a d
a a d

a a d
a a d

J

 
 
 
 
 
 
 =
 

− 
 − 
 −
 
 

 

By performing elementary row and column operations on J 

( )0
~

0
m tI

J
B

+

∗

 
  
 

 

where ( )* *
ij n n

B b
×

=   

*

, if node is a pressure node

, if flow flows from node to node

, if flow flows from node to node

, if and node is a flow node

0, else
i i

ij

ku

kk

kd
ij

kk

ku kd

k out k Inkk kk

b i

a
k j i

d
a

b k i j
d

a a
i j i

d d∈ ∈



−



= 



− =




∑ ∑

 

( ) ( )*0 0det J det B≠ ⇔ ≠  

For our example given above 
 

 
Figure 1. Example of a gas flow network. 
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1 1 4 4

11 11 44 44

4 4 2 2
*

44 44 22 22

2 2 3 3

22 22 33 33

3 3

33 33

1 0 0 0 0

0 0

0 0

0 0

0 0 0

u d u d

u d u d

u d u d

u d

a a a a
d d d d

a a a a
d d d dB

a a a a
d d d d

a a
d d

 
 − − +
 
 

− − + =
 

− − + 
 

− − 
 
 

 

Let *
dB  be the matrix obtained by deleting the rows and columns containing 

the Pressure Nodes, then 

( ) ( )* *0 0ddet B det B≠ ⇔ ≠  

Properties of *
dB  are  

1) Diagonally dominant (column), strictly dominant at column j, where node j 
is connected to a Pressure Node( there is at least one Pressure Node).  

2) Irreducible.  
Hence, *

dB  is invertible. 
⇒  *B  is invertible. 
⇒  J is invertible. 
Define ( ) ( ) ( )( )1

0G x x J x F x y−= − −  

⇒  ( ) ( ) ( )1
0G x I J x J x−′ = −  

Since ( )G x′  is continuous at 0x  
0∀ >  δ∃  such that ( )0x x G xδ ′− < ⇒ <   

Choose   such that 0 1< <  

1 2,x x∀  in ( )0 ,B x δ  

( ) ( ) ( )1 2 1 2 1 2 |G x G x G x x x x x′− ≤ − < −  

If ( )
( )0 1

0

1,y B F x
J x

δ
−

 − ∈
 
 

 , then ( )( ) ( )0 0, ,G B x B xδ δ⊂  

⇒  G is a contraction in ( )0 ,B x δ  
⇒  G has a unique fixed point.  
⇒  ( )F x y=  has a unique solution in ( )0 ,B x δ  

5. Conclusion 

In this paper, we discussed the existence and uniqueness of solution to the real 
gas flow network. A review of some basic concepts from graph theory is given as 
we discussed the flow network as a graph. The flow network is represented by a 
graph in which pipes and compressors are represented as edges and the junction 
points as nodes of the graph. The flow is assumed to be steady state and iso-
thermal. The Contraction Mapping Theorem is applied to show the existence of 
the solution to the considered gas flow network, and its uniqueness is proved 
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using monotonicity property of a mapping.  
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Nomenclature 

ρ  Gas density 
u Flow velocity 
P Pressure 
Pu Upstream pipe inlet pressure 
Pd Downstream pipe outlet pressure 
T Temperature 
Q Volumetric flow rate in a pipe 
x Position  
D Pipe diameter 
L Pipe length 
η  Compressor efficiency  
W Compressor power  
Zcu Comprehensibility factor of a gas at compressor entry  
R Gas constant  
Qc Flow rate through the compressor  
γ  Ratio of specific heats  
Pcu Inlet compressor pressure 
Pcd Outlet compressor pressure 
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