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Abstract 

This paper presents an algorithm for analysis of the dielectric radomes. In 
this method, the radome is discretized by a regular grid with rooftop basic 
functions. The Volume Integral Equation (VIE) for 3D dielectric object is 
transformed to linear system by Galerkin’s testing formulation. Furthermore, 
the linear system is presented by Toeplitz matrix which can be solved by the 
Conjugate Gradient algorithm combined with Fast Fourier Transform 
(CG-FFT) iteratively. Also, the algorithm requires less computational com-
plexity and memory. This paper simulates the mono-static Radar Cross Sec-
tion of dielectric radome by the CG-FFT, which was validated against com-
mercial software FEKO. 
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1. Introduction 

Radome is a significance component in modern communication system. Com-
monly, radome consists of dielectric materials [1] [2] [3] [4]. Modeling and effi-
cient simulation of radome plays an important role in analysis. Computational 
Electromagnetics (CEM) is a method for electromagnetic analysis of the radome. 
Commonly, Finite Element Method (FEM) Finite Difference Time Domain 
(FDTD) and Method of Moment (MoM) are popular methods of CEM. Howev-
er, for the simulation of radome, FEM and FDTD usually consume a lot of 
memory because of its discretization of whole region including the volume 
which is vacuum [5]. MoM only requires the discretization of dielectric object 
rather than the whole region, but has to solve the linear equation, which means 
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that it consumes computational complexity O(N2) if solved iteratively [6] [7]. 
In this paper, we present an algorithm called CG-FFT for the simulation of di-

electric radome, which applies Fast Fourier Transform combined with Conju-
gate Gradient algorithm. And it requires less computational complexity if solved 
iteratively. We also calculate the mono-static RCS of a dielectric radome to vali-
date the algorithm. Generally, CG-FFT is a feasible method for the simulation of 
dielectric radome. 

2. Theory 

The governing equation for three-dimensional dielectric object is following [8]: 
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where the Ei(r) is the incident electric field, the wave number k = ω(μ0ε0)1/2, ω is 
angular frequency. ε0 is dielectric constant in vacuum, μ0 is permeability con-
stant in vacuum, ε(r) is the relative dielectric distribution function in dielectric 
object. And r is the observation location, r' represents the source location. D(r') 
represents the electric displacement field. Field A(r) is following: 
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where G(r, r') is three dimensional free-space Green function, its expression is: 
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And χ(r) is defined as the difference between the dielectric permittivity and 
background, which expression is presented as following: 
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The dielectric object is covered by a cuboid and discretized by a regular grid, 
as the Figure 1 shows. 

And the electric displacement field D(r) is divided into a set of basic func-
tions. 
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Figure 1. Arbitrary dielectric object embedded in a cuboid [7]. 
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where dn is unknown, and q
nφ  is defined as the rooftop basic function on x,y,z 

directions respectively, and the superscript q = x,y,z. 
After substituting the representation of A(r) into Equation (1), the Galerkin 

testing formulation can be written as: 
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Here, the operator .,.  denotes the integration of inner product of two vec-
tor functions. 

Substituting the expansion for D(r) into Equation (6), above equation is 
represented as below: 
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For brevity, write the simplified Equation (7) as: 

( ) ( )1 1 2 2* *q q q
q q n n nd d d= + +B H G S G S                (8) 

In which, the property of rooftop basic function ( ) ( )0m mϕ ϕ= −r r r  is ap-
plied. In Equation (8), Bq is the matrix decided by incident electric field. G1 and 
G2 are Toeplitz matrices. S1 and S2 are diagonal matrices with the parameters of 
the scatterers. The operator * denotes the convolution. To solve Equation (8), 
Conjugate Gradient method is applied, in which Fast Fourier Transform is used 
for acceleration of convolution during iteration. The convolution in Equation 
(7) can be evaluated by using FFT efficiently as blow: 

( ) ( ) ( )( )1 1 1 1* q q
n nd IFFT FFT FFT d= ⋅G S G S              (9) 

Therefore, the computational complexity per iteration remains order NlogN 
in CG algorithm [9] [10]. The above algorithm allows for the possibility of si-
mulating the scattered field. 

3. Simulation 

In this section, we first validate the CG-FFT algorithm, and discuss the memory 
and time required, but also investigate the convergence of the CG method, 
which relates to material of object. Finally, the algorithm is applied for the simu-
lation of a hemi-sphere dielectric radome. 

Here we present a simulation of solid dielectric sphere to validate the CG-FFT 
algorithm. The radius is 0.5 m, and the relative dielectric constant of the sphere 
equals to 4.0. In case of scatter, Radar Cross Section is the equivalent area seen 
by a radar, the bi-static RCS can be estimated as: 
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The incident wave is polarized in the x-direction and propagating in -z direc-
tion. And incident frequency is 300 MHz. In post processing, the pitch angle θ 
range from 0 deg to 180 deg and azimuth angle equals to 0 deg. The size of grid 
is 1/10 of the wavelength in three dimensions. As Figure 2 shows, the bi-static 
RCS calculated by CG-FFT is corresponding to the result simulated by FEKO, 
which validates the correctness of the CG-FFT algorithm. 

Take the dielectric sphere as an example, we discuss the consumption of the 
memory and the time spent during per iteration, which relates to the number of 
rooftop functions. Statistically, we present the memory and time vary according 
to the number of the rooftop functions. Additionally, the number of the rooftop 
functions equal to the product of numbers of rooftop functions in three direc-
tions (q = x, y, z). The memory consumed is presented in Figure 3(a), which is 
approximately linear with the number of rooftop functions. And time consump-
tion per iteration averagely is showed in Figure 3(b). 

As Figure 3 shows, the memory consumed rises linearly with the number of 
rooftop functions. Because memory is almost used for the storage of the rooftop 
functions. Meanwhile, the time consumption per iteration increases nonlinearly. 

Additionally, the efficiency is not only related to the consumption per itera-
tion, but also related to the total number of iteration. We also discover that the 
total number of iteration has a relation to the relative dielectric constant of the 
object. The total number of iteration with different material property is pre-
sented in Table 1. 

As Figure 4 shows, as the relative dielectric constant rises, the total number of 
iteration increases nonlinearly. Namely, if the relative dielectric constant of the 
electromagnetic object is closer to that of background, the less iteration is cost. 
For the object with large relative dielectric constant, the CG-FFT algorithm  

 

 
Figure 2. Bi-static RCS of dielectric sphere. 
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(a) 

 
(b) 

Figure 3. Time and memory consumption. (a) Memory consumed; (b) Time consump-
tion per iteration averagely. 

 
Table 1. Total number of iteration with different material property. 

Relative dielectric constant Total number of iteration 

2 16 

3 42 

4 80 

5 110 

6 230 

7 198 

8 318 
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Figure 4. Total number of Iteration Increases nonlinearly. 

 

 
(a) 

 
(b) 

Figure 5. Simulation of the hemi-sphere dielectric radome. (a) Hemi-sphere dielectric 
radome; (b) Mono-static RCS of dielectric radome. 
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performs not so good. However, radome is usually consisted of small relative di-
electric constant, which means the algorithm is suitable for the simulation of 
radomes. 

Next, a hemi-sphere dielectric radome is showed in Figure 5(a) and is simu-
lated. The outer radius of radome is 1 meter. The thick is uniformly 10 
micrometer. The relative dielectric constant equals 4.0. The incident wave is po-
larized in the x-direction and propagating in -z direction. The mono-static RCS 
of dielectric radome computed by CG-FFT and that from commercial software 
FEKO is showed in Figure 5(b), which validates the CG-FFT algorithm. The 
frequency ranges from 200 MHz to 400 MHz. 

4. Conclusion 

In this paper, the CG-FFT algorithm is applied for the simulation of the dielec-
tric radome. In this algorithm, the Fast Fourier Transform is combined with 
Conjugate Gradient algorithm, in which the computational complexity of per 
iteration remains order NlogN. The result above indicates its feasibility for si-
mulation of dielectric radomes. 
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