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Abstract 

This article presents a brief and new solution to the problem known as the 
“Fermat’s Last Theorem”. It is achieved without the use of abstract algebra 
elements or elements from other fields of modern mathematics of the twen-
tieth century. For this reason it can be easily understood by any mathemati-
cian or by anyone who knows basic mathematics. The important thing is that 
the above “theorem” is generalized. Thus, this generalization is essentially a 
new theorem in the field of number theory. 
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1. Introduction 

Fermat’s last theorem (known historically by this title) has been an unsolved 
puzzle in mathematics for over three centuries. The theorem itself is a decep-
tively simple formulation in mathematics, while Fermat famously stated that the 
problem had been solved around 1637. His claim was discovered 30 years after 
his death, as a clear statement on the margin of a book, but Fermat died without 
leaving any evidence as to his claim. This claim eventually became one of the 
most famous unsolved problems of mathematics. Efforts made to prove it, led to 
substantial development in number theory, and over time Fermat’s Last Theo-
rem gained legendary prominence as one of the most popular unsolved prob-
lems in mathematics [1]-[8].  

Because this problem is easily understood by everyone (in terms of its word-
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ing), most incorrect proofs have been created from time to time of any other 
problem in the history of mathematics. 

The “Fermat’s last theorem” was made known to me, before it is solved by 
Professor Andrew Wiles [9]. The problem impressed me and I recorded it in my 
memory. Later, for several years I never tried to solve it. But, because in all those 
years never did I stop solving problems from International Mathematical Olym-
piad (IMO) or finding solutions to unsolved problems of Number Theory, at 
some time I thought about trying to solve Fermat’s last theorem, believing it 
could have a brief solution. This was done eleven years ago. One morning while 
I was at my desk, I pulled it out in the surface from my memory and within a 
short time, when, I start to analyze the problem, I devised the double inequality 
(1.5) and at that moment with a great enthusiasm I exclaimed (like Archimedes) 
that I solved the “Fermat’s last theorem”.  

Double inequalities (1.5) and (2.5) are the keys to the solutions I present to 
you. Also, very important are the conditions (1.7) and (1.14) for the classical 
theorem and (2.10) and (2.19) respectively for the general theorem. First I com-
pleted the solution at the classical problem. This solution, led me to generalize 
the problem. 

2. A Brief New Proof to Fermat’s Last Theorem  

Fermat’s last theorem (classical problem) 
If x, y, z are positive integers that differ from each other, then the following 

equation: 
n n nx y z+ =  (where n N∈ , 1n > )              (1.1) 

when 3n≥ , have no positive integer solutions. 
Proof of Theorem 
We consider positive integers x, y, z that differ from each other and hypothes-

ize that they verify the Equation (1.1) for a natural number 1n > . Also, we hy-
pothesize, without loss of the generality, that: 

n n nx y z x y z< < ⇔ < <                       (1.2) 

Taking into account the Equation (1.1) and the condition (1.2), on the basis of 
the above hypothesis, we have: 

2n n n n n n nx x x y z x z+ < + = ⇔ < ⇔  

2
nz

x
 <  
 

                            (1.3) 

Also, is: 2n n n n n n ny y x y z y z+ > + = ⇔ > ⇔  

2
n

z
y

 
< 

 
                            (1.4) 

By combining conditions (1.3) and (1.4) we have: 

2
n nz z

y x
   < <   

  
                        (1.5) 
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Comment: The double inequality (1.5) is sufficient but not necessary, i.e. the 
converse is not always the case. For example, we consider that 3, 4, 5x y z= = =   

and 3n = . We have, 
3 35 51.96 2 4.63

4 3
   ≅ < < ≅   
   

 and 3 3 33 4 91 125 5+ = ≠ = . 

If we substitute z with y λ+  or z y λ= + , where λ  is a positive integer, 
then for the positive integers x, y, z, which according to the hypothesis we origi-
nally made, verify the Equation (1.1) for a natural number 1n > , it is true that: 

( )nn n nx y z y λ+ = = +                      (1.6) 

We will prove that when the positive integers x, y, z verify the Equation (1.1) 
for a natural number 1n > , the number x is greater than the number λ or x λ> . 

Indeed from Equation (1.6) we have: 

( )
( )1 2 2 11

2

nn n n

n n n n n

x y z y

n n
y ny y ny

λ

λ λ λ λ− − −

+ = = +

−
= + + + + + ⇔

 

( )1 2 2 11
0

2
n n n n nn n

x ny y nyλ λ λ λ− − −−
− = + + + >  or 

n nx xλ λ> ⇔ >                        (1.7) 

So, given the above we have: 
1 x y zλ≤ < < <                        (1.8) 

We distinguish the following cases: 

Α. 
y n
λ
≤  

We have: 1 11 1yn
n y n y

λ λ
λ

≥ ⇔ ≤ ⇔ + ≤ + ⇔  

11 1
n n nn y z

n y y y
λ λ     + + ≤ + = = ⇔      

       
 

11
nn z

n y
  + ≤   

   
                        (1.9) 

Considering Bernoulli’s inequality is (for 1n ≥ ):  

1 11 1 2
n

n
n n

 + ≥ + = 
 

                    (1.10) 

By combining the conditions (1.9) and (1.10) we have: 

11 2
n nz

y n
   ≥ + ≥   

  
                    (1.11) 

Because of condition (1.11) we observe that condition (1.5) is not satisfied, so in 
this case Equation (1.1) has no positive integer solutions 1n∀ > . 

Β. 
y n
λ
>  

Since in case A. Equation (1.1) does not have positive integer solutions, ob-

viously if they exist, this will be in case B, when the condition 
y n
λ
>  is applied. 
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So, we have: 

y n
λ
> ⇔ y nλ>                        (1.12) 

We will then prove that when positive integers x, y, z verify the Equation (1.1) 
for a natural number 1n > , the number λ is less than the difference 2y −  or:

2yλ < − . From condition (1.8) we have: { 1y x≥ + , 1x λ≥ + }. By adding the 
members of the above inequalities and deleting x, also we have: 2y λ≥ + ⇔

2yλ ≤ − . It remains to be seen whether the equation 2yλ = −  holds. This 
equality is true when the following condition applies: 

1 2x yλ = − = − *                      (1.13) 

*Is, ( xλ <  and 2yλ = − ) or 2 2 0y x y x y x− < ⇔ − < ⇔ − =  or 1y x− = . 
The first condition is rejected because x y=  (not acceptable), from the second 
condition we have 1y x= + , so ( )2 1 2 1y x xλ λ λ= − ⇔ = + − ⇔ = − . 

Combining the Equation (1.6) and Equation (1.13) we have: 

( ) ( ) ( ) ( )1 2 2 2 2n n n nλ λ λ λ λ+ + + = + + = + ⇔  

( ) ( ) ( ) ( ) ( )( )1 2 2 1 2 2 1 1n n n n nn nλ λ λ λ λ+ + + = + ⇔ + = − + ⇔  

2 2 1
1

n
nλ

λ
+  = − + 

. This is an absurd, because a rational number cannot be equal 

to an integer**.  

**The number 2
1

nλ
λ
+ 

 + 
, is a rational number because ( )1, 2 1λ λ+ + =  for

1λ ≥ . 
Therefore, when Equation (1.1) verified, it is true that: 

2yλ < −                           (1.14) 

Given the condition (1.14), we have: 

1 12
2 2

y yy
y y

λ
λ λ

< − ⇔ > ⇔ >
− −

              (1.15) 

Based on condition (1.15), we distinguish the following sub cases: 

Β1. 2
y y n

yλ
> ≥

−
 

We have: 2 2
2

y n y yn n n yn y
y

≥ ⇔ ≥ − ⇔ ≥ −
−

 (because 1n > ) ⇔   

2
1

ny
n

≤
−

 (due to (1.12)) we have: 
2

1
nn y

n
λ < ≤

−
 or 

2
1n

λ <
−

. Equation (1.1) 

has positive integer solutions when 1λ ≥  or 
21

1n
λ≤ <

−
. So, 

21 3
1

n
n

< ⇔ <
−

. 

While on the contrary, the Equation (1.1) has no positive integer solutions when 

0 1λ = <  or 
2 1

1n
λ < ≤

−
. So, 

2 1 3
1

n
n

≤ ⇔ ≥
−

.  

Β2. 2
y yn

yλ
> ≥

−
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We have: 2 2
2

yn yn n y yn y n
y

≥ ⇔ − ≥ ⇔ − ≥
−

 (because 1n > )⇔   

2
1

ny
n

≥
−

 (due to (1.12), we have: 
2

1
ny n

n
λ≥ >

−
*** or 

2
1n

λ>
−

. So we’re 

being led to the same conclusion as Β1. 

***The inequality 
2

1
ny n

n
λ≥ >

−
, was written this way with the following 

reasoning: We hypothesize it’s 
2

1
nn

n
λ ≥

−
 and we have: 

2 2
1 1

nn
n n

λ λ≥ ≥⇔
− −

 

(
2 0

1n
>

−
 ∀ 1n > ) or 1λ ≥  regardless from the exponent n. Then considering  

the conditions y nλ>  and 2yλ < − , because the number λ is greater or equal 
than number one for all n or 1λ ≥ , 1n∀ > , we have:  

- y nλ> ⇔
1

y n
λ
<  or 

1 1
y y n

λ
≤ <  or 

1 1
y n
<   

- 2yλ < −  or 2 1 2 3y λ> + ≥ + =  or 3y > ⇔
1 1

3y
<  

On the basis of inequalities 
1 1
y n
<  and 

1 1
3y

< , we distinguish the following 

conditions: 1 1 1
3y n

< <  and 
1 1 1

3y n
< ≤ . We observe that for 2n =  the first  

condition is satisfied while the second condition is not satisfied, on the contrary 
for 3n ≥ , the second condition is satisfied while the first condition is not satis-
fied. Therefore, there is always at least one natural number n greater than the  

number one or 1n > , so that, the condition 1 1 1
3y n

< <  or 
1 1 1

3y n
< ≤  is not  

satisfied. This means that the Equation (1.1) is not verified always for every nat-
ural number 1n >  and this is contrary to the sentence “when 1λ ≥  regard-
less from the exponent n, the Equation (1.1) has solution for every natural  

number 1n > ” which arises from the hypothesis that 
2

1
nn

n
λ ≥

−
, according to 

the logic by which the solution of the problem was structured, in this paper. This 

is an absurd and that is why inequality 
2

1
nn

n
λ ≥

−
 is rejected. Therefore we 

consider the inequality 
2

1
n n

n
λ>

−
 is acceptable and so we ended up in the in-

equality 
2

1
ny n

n
λ≥ >

−
. (For a different reasoning, for the same, see in Annex) 

Conclusion 1: From the above it is concluded that Equation (1.1), when 
3n <  have positive integer solutions, whereas when 3n ≥  does not have pos-

itive integer solutions. In the second case, Fermat’s last theorem is verified. 

3. New Theorem  

“Generalization of the ‘Fermat’s last theorem’’ 
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If 1 2 3 1, , , , ,m mx x x x x−  are positive integers that differ from each other (m fi-
nite number), then for 3m ≥  the following equation:  

( ) ( ) ( ) ( ) ( )1 2 3 1
n n nn n

m mx x x x x−+ + + + = , (where n N∈ , 1n > )   (2.1) 

when 2 2n m m≥ − , have no integer solutions. For, 3m = , Fermat’s last theo-
rem occurs. 

Proof of Theorem 
We consider positive integers 1 2 3 1, , , , ,m mx x x x x−  that differ from each oth-

er (m finite number) and hypothesize that they verify Equation (2.1) for a natu-
ral number 1n > . Also, we hypothesize, without loss of the generality, that: 

( ) ( ) ( ) ( )1 2 1 1 2 1
n nn n

m m m mx x x x x x x x− −< < < < ⇔ < < < <      (2.2) 

Taking into account Equation (2.1) and the condition (2.2), on the basis of the 
above hypothesis we have: 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 2 1
n nn n n n n

m mx x x x x x x−+ + + < + + + =   or 

( )( ) ( ) ( )1
1

1 1
n

nn m
m

x
m x x m

x
 

− < ⇔ − <  
 

              (2.3) 

Also, ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 2 1
n n n n nn n

m m m m mx x x x x x x− − − −+ + + > + + + =   or 

( )( ) ( )1
1

1 1
n

n n m
m m

m

x
m x x m

x−
−

 
− > ⇔ < − 

 
            (2.4) 

By combining conditions (2.3) and (2.4) we have: 

1 1

–1
n n

m m

m

x x
m

x x−

   
   

  
< <                   (2.5) 

Comment: The double inequality (2.5) is sufficient but not necessary, i.e. the 
converse is not always the case. For example we consider that 1 3x = , 2 4x = , 

3 5x = , 4 6x = , 4m =  and 5n = . We have, 5 5 5 53 4 5 4392 7776 6+ + = ≠ =  

and 
5 56 62.49 4 1 3 32

5 3
   ≅ < − = < =   
   

. 

If we substitute mx  with 1mx λ− +  or 1m mx x λ−= + , where λ  is a positive 
integer, for the positive integers 1 2 3 1, , , , ,m mx x x x x− , which according to the 
hypothesis we originally made, verify the Equation (2.1) for a natural number 

1n > , it is true that: 

( ) ( ) ( ) ( ) ( )1 2 1 1
n n nn n

m m mx x x x x λ− −+ + + = = +         (2.6) 

We distinguish the following cases: 

Α. 1

2
mx n

mλ
− ≤

−
 

We have, 1

1 1

2 21 1
2

m

m m

xn m m
m n x n x

λ λ
λ
−

− −

− −
≥ ⇔ ≤ ⇔ + ≤ + ⇔

−
 

1

1 1 1

21 1
n n nn

m m

m m m

x xm
n x x x

λλ −

− − −

     +− + ≤ + = = ⇔      
       
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1

21
n n

m

m

x m
x n−

  − ≥ +   
  

                       (2.7) 

Considering Bernoulli’s inequality, it is (for 1n ≥ ),  

2 21 1 1 2 1
nm mn m m

n n
− − + ≥ + = + − = − 

 
            (2.8) 

By combining the conditions (2.7) and (2.8) we have, 

1

21 1
n n

m

m

x m m
x n−

  − ≥ + ≥ −   
  

                  (2.9) 

Because of condition (2.9), we observe that double inequality (2.5) is not satis-
fied, so in this case Equation (2.1) has no positive integer solutions 1n∀ > . 

Β. 1

2
mx n

mλ
− >

−
 

Since in case A. the Equation (2.1) does not have positive integer solutions, 

obviously if they exist, this will be in case B, when the condition 1

2
mx n

mλ
− >

−
 

is applied. So, we have: 

1
12 2

m
m

x n nx
m m

λ
λ
−

−> ⇔ >
− −

                (2.10) 

We will then prove that when positive integers 1 2 3 1, , , , ,m mx x x x x− verify the 
Equation (2.1) for a natural number 1n > , the number λ is less than the differ-
ence ( )1 1mx m− − −  or ( )1 1mx mλ −< − − .  

1) First, we consider that 1x λ> . Based on this condition, we have:  

1 2 3 11 m mx x x x xλ −≤ < < < < < <               (2.11) 

From condition (2.11) we have, { 1 2 1m mx x− −≥ + , 2 3 1m mx x− −≥ + ,  ,  

2 1 1x x≥ + , 1 1x λ≥ + }. By adding the members of the above inequalities and 
making all deletions, also we have: ( ) ( )1 11 1m mx m x mλ λ− −≥ + − ⇔ ≤ − − . It 
remains to be seen whether the equation ( )1 1mx mλ −= − −  holds. This equality 
is true when the following condition applies: 

( )1 2 11 2 1mx x x mλ −= − = − = = − − *            (2.12) 

*It is proved in the same way, as previously proved the condition (1.17) (see 
Annex). 

First way: If ( )1 1mx mλ −= − − , taking into account the condition (2.12) we 
have: ( ( )1 1i mx i x mλ −= − = − −  and 1 1i m≤ ≤ − ) or ( ( )1– 1i mi x x m−= + −  
and ( )11 1 1i mx x m m−≤ − + − ≤ − ) or ( 11 1i mx x m−≤ − + −  and 1 0i mx x −− ≤ ) or 

11 1 0 1i mx x m m−≤ − + − ≤ + −  or 1 1 2m m≤ − ⇔ ≥ . This is an absurd, because
3m ≥ , so be ( )1 1mx mλ −≠ − − . 

Second way: If ( )1 1mx mλ −= − − , combining (2.6) and (2.12) we have: 

( ) ( ) ( ) ( )1 2 1 2 1n n n nm mλ λ λ λ+ + + + + + − = + −        (2.13) 

By applying mathematical induction we have:  
- For 3m = , from (2.12) we have: ( ) ( ) ( )1 2 2n n nλ λ λ λ+ + + = + + ⇔   
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( ) ( ) ( ) ( ) 21 2 2 2 2 1 2 1
1

n
n n n nn nλλ λ λ λ

λ
+ + + + = + = + ⇔ = − + 

, this is an 

absurd, because a rational number cannot be equal to an integer. 
So, for 3m = , ( ) ( ) ( )1 2 2 2n n nλ λ λ+ + + ≠ + . 

- For m k= , we hypothesize that is true the following condition: 

( ) ( ) ( ) ( )1 2 1 2 1n n n nk kλ λ λ λ+ + + + + + − ≠ + −         (2.14) 

- We will prove and for 1m k= +  is true that: 

( ) ( ) ( ) ( ) ( )1 2 1 2n n n n nk k kλ λ λ λ λ+ + + + + + − + + ≠ +      (2.15) 

Combining the conditions (2.14) and (2.15) we have, 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1n n n n n nk k k kλ λ λ λ λ λ+ + + + + + − + + ≠ + − + +  

Suffice it to prove that: ( ) ( ) ( )2 1 2n n nk k kλ λ λ+ − + + ≠ +  or 

( ) ( ) ( )1 n n nk k kλ λ λ λ λ+ + − + + ≠ + +  or –11 1 1
n n

k k
λ λ
λ λ

   + + ≠ +   + +   
 

or –11 1 1
n n

k k
λ λ

λ λ
   ≠ + − +   + +   

 or 11
n

nr r
kλ

 ≠ − − + 
, ( 1r

k
λ

λ
= +

+
) (2.16) 

If, 
( )

1 1 11 1 1 1 1 0
nn

n
nr r

k r krλ λ
  > − − ⇔ > − − > − =    + +   

 (true, so the 

condition (2.16) also is true and consequently and the condition (2.15)). So, 
must be ( )1 1mx mλ −≠ − − . 

2) Second, we consider that 1 1mx xλ −≤ <  or 1i ix xλ− ≤ < , 2 1i m≤ ≤ − . 
First way: Based on the immediately above condition we have: { 1 2 1m mx x− −≥ + , 

2 3 1m mx x− −≥ + ,  , 1ix λ≥ + }. By adding the members of the above inequali-
ties and making all deletions, we have: 

( ) ( )1 1m ix m i x m iλ− −≥ + − ≥ + −  or ( )1mx m iλ −≤ − −          (2.17) 

Hypothesizing that: ( )1 1mx mλ −≤ − − ， because from (2.17) is also  
( )1mx m iλ −≤ − −  we have: ( ) ( )1 11m mx m x m iλ − −≤ − − ≤ − −  or  
( ) ( )1 1m ix m i x m iλ− −≥ + − ≥ + − . This is true due to (2.17), therefore,  
( )1 1mx mλ −≤ − − . It remains to be seen whether the equation ( )1 1mx mλ −= − −  

holds. This equality is true when the following condition applies: 

( ) ( )2 12 1i m mx i x m x mλ − −= − = = − − = − − **        (2.18) 

**The condition (2.18) proves on the same way as the condition (2.12) (see 
Annex). 

So, if ( )1 1mx mλ −= − −  and into taking account the condition (2.18) is: 
( )1 1i mx i x mλ −= − = = − −  or ( )1– 1i mi x x m−= + − , where 2 1i m≤ < − .  

Given the previous conditions, we have: 12 1 1i mx x m m−≤ − + − < −  or  
( 1 0i mx x −− <  and ( )12 1 0 1i mx x m m−≤ − + − < + − ) or 2 1 3m m< − ⇔ < . 
This is an absurd, because 3m ≥ . So must be ( )1 1mx mλ −≠ − − .  

Second way: From condition (2.17) is: ( ) ( )1 1m ix m i x m iλ− −≥ + − ≥ + −  or
( )1mx m iλ −≤ − − . Hypothesizing that: ( )1 1mx mλ −≥ − −  and into taking ac-
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count the previous condition we have: ( ) ( )1 11m mx m x m iλ− −− − ≤ ≤ − −  or
( ) ( )1 1 1 1m m i m m i i i− − ≤ − − ⇔ − ≥ − ⇔ − ≥ − ⇔ ≤ . This is an absurd, be-

cause 2 1i m≤ < − , so must be ( )1 1mx mλ −< − − . 
Note: The proof that ( )1 1mx mλ −≠ − − , can be done and by applying ma-

thematical induction (see Annex). Also, is always 1mxλ −< (see Annex). 
Thus, in all cases, when the Equation (2.1) is verified for a natural number

1n > , it is true that: 

( )1 1mx mλ −< − −                         (2.19) 

Given condition (2.19) we have: 

( ) ( ) ( )
1 1

1
1 1

1 11
1 1

m m
m

m m

x x
x m

x m x m
λ

λ λ
− −

−
− −

< − − ⇔ > ⇔ >
− − − −

    (2.20) 

Based on condition (2.20) we distinguish the following sub cases: 

Β1. 1 1

1 ( 1) 2
m m

m

x x n
x m mλ

− −

−

> ≥
− − −

 

We have: 
( ) ( ) ( )1

1 1
1

2 1
1 2

m
m m

m

x n m x nx n m
x m m

−
− −

−

≥ ⇔ − ≥ − − ⇔
− − −

  

( ) ( ) 11 2 mn m n m x −− ≥ − +  (if, 2 0n m− + >  or 2 1n m− + ≥ ) ⇔  
 ( )

( )1

1
– 2m

n m
x

n m−

−
≤

+
 (due to (2.10)) we have: ( )

1

1
2 2m

n mn x
m n m

λ −

−
< ≤

− − +
 or 

( )( )1 2
2

m m
n m

λ
− −

<
− +

                       (2.21) 

Based on condition (2.21) we have: Equation (2.1) has positive integer solutions 

when 1λ ≥  or ( )( )1 2
1

2
m m

n m
λ

− −
≤ <

− +
. So, ( )( )1 2

1
2

m m
n m
− −

<
− +

2 2n m m⇔ < − . 

While on the contrary, the Equation (1.1) has no positive integer solutions when 

0 1λ = < or ( )( )1 2
1

2
m m

n m
λ

− −
< ≤

− +
. So, ( )( ) 21 2

1 2
2

m m
n m m

n m
− −

≤ ⇔ ≥ −
− +

.  

Β2. ( )
1 1

12 1
m m

m

x xn
m x mλ

− −

−

> ≥
− − −

 

We have: 
( ) ( ) ( )1

1 1
1

1 2
2 1

m
m m

m

xn nx n m m x
m x m

−
− −

−

≥ ⇔ − − ≥ − ⇔
− − −

 

( ) ( )12 1mn m x n m−− + ≥ −  (if, 2 0n m− + >  or 2 1n m− + ≥ ) ⇔  
( )

1

1
2m

n m
x

n m−

−
≥

− +
 (due to (2.10)) we have: ( )

1

1
2 2m

n m nx
n m m

λ−

−
≥ >

− + −
*** or  

( )( )1 2
2

m m
n m

λ
− −

>
− +

. So we’re being led to the same conclusion as Β1. 

***The inequality 
( )

( )1

1
2 2m

n m nx
n m m

λ−

−
≥ >

− + −
, was written this way with the 

following reasoning: We hypothesize it’s 
( )

( )
1

2 2
n mn

m n m
λ

−
≥

− − +
 and we have: 

( )
( )

( )( )
( )

1 1 2
2 2 2

n m m mn
m n m n m

λ λ
− − −

≥ ≥
−

⇔
− + − +

(if 21 2m n m m− ≤ < −  and 3m ≥
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is 
( )( )
( )

1 2
0

2
m m

n m
− −

>
− +

) or 1λ ≥ . Also if 2 0n m− + ≤  or 1
2

n
m

≤
−

, because is

( )
1 1

1

1
1 2

m m

m

x x n
x m mλ

− −

−

> > ≥
− − −

, we observe that if 1 1 1mx x λ− > > ≥  or 

1 1mx xλ− > ≥ , is true that 
( )

1 1

1

1
1 2

m m

m

x x n
x m mλ

− −

−

> > ≥
− − −

. Therefore, if 

( )
( )

1
2 2

n mn
m n m

λ
−

≥
− − +

 the number λ is greater or equal than number one or 

1≥λ  for all n, m. Then considering the conditions 1 2m
nx

m
λ− >

−
 and 

( )1 1mx mλ −< − − , because 1λ ≥  for each natural number 1n >  and every 
3m ≥ , we have: 

- 1 2m
nx

m
λ− >

−
⇔

1

2

m n
m

x
λ

−

−
<  or 

1 1

1 2

m m n
m

x x
λ

− −

−
≤ <  or 

1

1 2

m n
m

x −

−
<  

- ( )1 1mx mλ −< − −  or ( )1 1 1 1mx m m mλ− > + − ≥ + − =  or 1 3mx − > ⇔  

1

1 1

mx m−

<  

On the basis of inequalities 
1

1 2

m n
m

x −

−
<  and 

1

1 1

mx m−

<  we distinguish the 

following conditions: 
1

1 1 2

m

m
x m n−

−
< <  and 

1

1 2 1

m

m
x mn−

−
< ≤ . We observe  

that for ( 2)n m m< −  the first condition is satisfied while the second condition 
is not satisfied, on the contrary for ( 2)n m m≥ − , the second condition is satisfied 
while the first condition is not satisfied. Therefore, there is always at least one 
natural number n greater than the number one or 1n > , so that the condition  

 
1

1 1 2

m n
m

x m−

−
< <  or 

1

1 2 1

m

m
x mn−

−
< ≤  is not satisfied. This means that the  

Equation (2.1) is not verified always for each natural number 1n >  and every
3m ≥  and this is contrary to the sentence “if 1λ ≥  regardless from the pa-

rameters n, m the Equation (2.1) has solutions for each natural number 1n >  

and every 3m ≥ ” which arises from the hypothesis that 
( )

( )
1

2 2
n mn

m n m
λ

−
≥

− − +
, 

according to the logic by which the solution of the problem was structured in 

this paper. This is an absurd and that is why inequality 
( )

( )
1

2 2
n mn

m n m
λ

−
≥

− − +
 is 

rejected. Therefore we consider the inequality 
( )

( )
1
2 2

n m n
n m m

λ
−

>
− + −

 is accepta-

ble and so we ended up in inequality 
( )

( )1

1
2 2m

n m nx
n m m

λ−

−
≥ >

− + −
. (For a dif-

ferent reasoning, for the same, see in the Annex) 
Conclusion 2: From the above it is concluded that the Equation (2.1) when 

2 2n m m< −  have integer solutions, whereas when 2 2n m m≥ −  have no integer 
solutions. In the second case, for 3m = , answer to Fermat’s Last Theorem is given. 
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4. Analysis of Results  

1) From condition 2 2n m m≥ − , if 3m =  we have: 23 2 3 3n ≥ − × = . We 
observe that solution of “Fermat’s Last Theorem” occurs. This, to me, is a very 
strong indication that the solution of the generalization of Fermat’s theorem is 
correct. 

2) If ( 2 0n m− + >  or 2 1n m− + ≥ ), is 1n m≥ − . In this case we have:  

i) If 2 2n m m≥ − , is ( )( )1 2
1

2
m m

n m
λ

− −
< ≤

− +
 and the Equation (2.1) has no 

positive integer solutions.  

ii) Whereas, if 21 2m n m m− ≤ < − , can be ( )( )1 2
1

2
m m

n m
λ

− −
> ≥

− +
 and so, 

Equation (2.1) can have positive integer solutions. 

3) What happens if 2 0n m− + ≤  or 2n m≤ −  or 1
2

n
m

≤
−

? In this case 

we have: 
( )

1 1

1

1
1 2

m m

m

x x n
x m mλ

− −

−

> > ≥
− − −

. We observe that, if 1 1x λ> ≥  or  

1 1xλ ≥ ≥ , is 
( )

1 1

1

1
1 2

m m

m

x x n
x m mλ

− −

−

> > ≥
− − −

. So, in this case Equation (2.1) 

also can have positive integer solutions. For example, if 1 3x = , 2 4x = , 3 12x = , 

4 13x = , 1λ = , 2n =  and 4m = . We have, 2 2 4 2 0n m− + = − + =  and 

2 2 2 23 4 12 13+ + =  and 
2 213 131.174 4 1 18.778

12 3
   ≅ < − < =   
   

. 

4) The immediately above example and the example which follows, namely:
5 5 5 5 527 84 110 133 144+ + + =  [10], are indicative of the correctness of those in-

dicated in steps 3, 2. ii), in this section. 
5) Equation (1.1) and Equation (2.1) make sense if 1n > , because for 1n = , 

they have infinite solutions or else always have solutions. Thus, in this case, the 
assumptions and terms had used in the above solutions do not apply. 

6) In Equation (1.1), if 1 3n< < , is 2n =  and so it has solutions that we 
known since ancient times as Pythagorean Triads. 

7) Below, are presented some solutions of Equation (2.1), have made by 
prominent researchers, from time to time, of course using always the more times 
computer. It is easy to find that these solutions are perfectly in line with the 
general theorem. 

Solutions of the Equation (2.1), which have made by prominent researchers: 
4 4 4 4 430 120 272 315 353+ + + =  (R. Norrie, 1911),  

5 5 5 5 5 57 43 57 80 100 107+ + + + =  (Sastry, 1934, third smallest),  
5 5 5 5 527 84 110 133 144+ + + =  (Lander & Parkin, 1966),  
5 5 5 5 5 519 43 46 47 67 72+ + + + =  (Lander, Parkin, Selfridge, smallest, 1967), 

4 4 4 42682440 15365639 18796760 20615673+ + =  (Noam Elkies 1986), 
4 4 4 495800 217519 414560 422481+ + =  (R. Frye, 1988), 

7 7 7 7 7 7 7 7127 258 266 413 430 439 525 568+ + + + + + =  (M. Dodrill, 1999), 
8 8 8 8 8 8 8 8 890 223 478 524 748 1088 1190 1324 1409+ + + + + + + =  (S. Chase, 2000), 
5 5 5 5 555 3183 28969 85282 85359+ + + =  (Frye, 2004). 
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5. General Conclusion 

The new solution to Fermat’s Last Theorem, which presented here, is as brief 
and simple as its wording. It is achieved without the use of abstract algebra or 
elements from other fields of modern mathematics of the twentieth century. For 
this reason, it can be easily understood by any mathematician or by anyone who 
knows basic mathematics. This means that it has pedagogical value. At the same 
time, it is important, that the above “theorem” is generalized to an arbitrarily 
large number of variables. This generalization is essentially a new theorem in the 
field of the number theory, very useful to researchers of that field, because it 
gives answers to many open problems of the number theory. Also, it is impor-
tant, that the solutions which were found by many prominent researchers in the 
past, are perfectly in line with the general theorem. 
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Appendix 

1) Prove that when 1xλ <  and ( )1 1mx mλ −= − −  is  
( )1 2 11 2 1mx x x mλ −= − = − = = − − . 

Is, ( 2mxλ −<  and ( )1 1mx mλ −= − −  or  
( )1 2 1 21 1m m m mx m x x x m− − − −− − < ⇔ − < −  or 1 2 0m mx x− −− =  or 1 2 1m mx x− −− =  

or 1 2m mx x i− −− = , where   2,3, , 2mi= − . Condition 1 2 1m mx x− −− =  is ac-
cepted, while the others are easily rejected. If 1 2 1 20m m m mx x x x− − − −− = ⇔ =  (no 
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true) and if 1 2 1 2m m m mx x i x x i− − − −− = ⇔ = +  or  
( ) ( ) ( )1 2 21 1 1m m mx m x i m x m iλ − − −= − − = + − − = − − +    (no true), because 
( ) ( )2 11 1m mx m i x m− −− − + > − −   . Indeed, if we consider that, 
( ) ( ) ( ) ( )2 1 1 21 1 1 1 1m m m mx m i x m m m i x x− − − −− − + > − − ⇔ − − − + > − ≥        or 

1i >  or 2i ≥  (it is true, also the condition 1 2m mx x i− −− =  is not true). So, we 
have: 1 2 1m mx x− −= + , therefore  

( ) ( ) ( ) ( )1 2 21 1 1 2m m mx m x m x mλ λ λ− − −= − − ⇔ = + − − ⇔ = − − . We repeat the 
same procedure for the couple 2 3,m mx x− −  and for all other similar pairs, thus 
proving the condition (2.12). 

2) Prove that ( )1 1mx mλ −≠ − − , when 1i ix xλ− ≤ <  and 2 1i m≤ ≤ − , by 
applying mathematical induction 

If ( )1 1mx mλ −= − − , combining Equation (2.6) Equation (2.18) we have: 

( ) ( ) ( ) ( ) ( )1 1 1 2 1nn n n n
ix x i m mλ λ λ−+ + + + + + + − = + −      (a.1) 

By applying mathematical induction we have:  
- For 3m = , from Equation (a.1) we have: 

( ) ( ) ( )1 2 2 2n n nx λ λ+ + = +                    (a.2)  

Also, is: ( ) ( ) ( ) ( ) ( )1 2 2 2 2 2n n n n nnx λ λ λ λ λ λ+ + ≤ + + < + + = + . 
So, for 3m = , the condition (a.2) is not applies, therefore, is: 

( ) ( ) ( )1 2 2 2n n nx λ λ+ + ≠ + . 

- For m k= , we suppose that is true the following condition: 

( ) ( ) ( ) ( ) ( )1 1 1 2 1nn n n n
ix x i k kλ λ λ−+ + + + + + + − ≠ + −       (a.3) 

- We will prove and for 1m k= +  is true that: 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 2nn n n n n
ix x i k k kλ λ λ λ−+ + + + + + + − + + ≠ +    (a.4) 

Combining the conditions (a.3) and (a.4) we have, 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 1nn n n n n
ix x i k k kλ λ λ λ−+ + + + + + + − ≠ + − + +  . 

Suffice it to prove that: ( ) ( ) ( )2 1 2n n nk k kλ λ λ+ − + + ≠ + ⇔  

( ) ( ) ( ) –11 1 1 1
n n

n n nk k k
k k

λ λλ λ λ λ λ
λ λ

   + + − + + ≠ + + ⇔ + + ≠ +   + +   
 or 

–1 11 1 1 1
n n n

nr r
k k k

λ λ
λ λ λ

     ≠ + − + ⇔ ≠ − −     + + +     
, ( 1r

k
λ

λ
= +

+
)  (a.5) 

If, 
( )

1 1 11 1 1 1 1 0
nn

n
nr r

k r krλ λ
  > − − ⇔ > − − > − =    + +   

 (true, so the  

Condition (a.5) also is true and consequently and the condition (a.4)). So, in this 
case be ( )1 1mx mλ −≠ − − .  

3) Justification for selecting the inequality 
2

1
ny n

n
λ≥ >

−
 in B1 of problem 2 

The inequality 
2

1
ny n

n
λ≥ >

−
 was written this way, with the following rea-

soning: Hypothesizing that is 
2

1
nn

n
λ ≥

−
 we have: 

2 2
1 1

nn
n n

λ λ≥ ≥⇔
− −

. The 

https://doi.org/10.4236/jamp.2020.84053


D. Chr. Poulkas 
 

 

DOI: 10.4236/jamp.2020.84053 697 Journal of Applied Mathematics and Physics 

 

maximum value of 
2

1n −
 occurs when 2n =  or 

max

2 2 2
1 2 1

n
n

  = = − − 
 and 

therefore is 2λ ≥ . However, it is known from the Greek ancient times that if 
1 3n< <  or 2n = , the Equation (1.1) has solutions and for 1λ = . But, this is 

an absurd and for this reason in this case condition 
2

1
nn

n
λ ≥

−
 is rejected. Con-

sidering now, that 2n ≠  and hypothesizing for 3n ≥  that 
2

1
nn

n
λ ≥

−
, then 

again we have: 
2 2

1 1
nn

n n
λ λ≥ ≥⇔

− −
. Its maximum value of 

2
1n −

 occurs when 

3n =  or 
max

2 2 1
1 3 1

n
n

  = = − − 
 and therefore is 1λ ≥ , since it is 

2 0
1n
>

−
 for  

each 3n ≥ . This, according to the logic by which the solution of the problem 
was constructed in this article, means that the Equation (1.1) has solutions for all 

3n ≥  (because the value of λ greater or equal than number one or 1λ ≥  for all 
3n ≥ ). However, this conclusion is in stark contrast to the conclusion in B1, 

which resulted from a valid 100% inequality and is therefore an absurd. That is  

why inequality 
2

1
nn

n
λ ≥

−
 again is rejected and so we consider that inequality 

2
1

n n
n

λ>
−

 is acceptable and therefore we ended up in inequality 
2

1
ny n

n
λ≥ >

−
. 

4) Justification for selecting the inequality 
( )

( )1

1
2 2m

n m nx
n m m

λ−

−
≥ >

− + −
 in 

B2 of problem 2 

The inequality 
( )

( )1

1
2 2m

n m nx
n m m

λ−

−
≥ >

− + −
 was written this way, with the 

following reasoning: For 3m = , the previous inequality becomes 
2

1
ny n

n
λ≥ >

−
. 

Thus, with the same explanation as in case B2 of the problem 1 it turns out that 

the inequality 
2

1
ny n

n
λ≥ >

−
 is rejected. Because, according to the logic by  

which the solution of the problem was structured in this paper, the Equation (2.1) 
always has solutions for 1λ ≥ , regardless of the parameters n and m, therefore 
the previous conclusion for 3m =  is an absurd. That is why and the general  

inequality 
( )

( )
1

2 2
n mn

m n m
λ

−
≥

− − +
 is rejected and therefore we consider that the 

inequality 
( )

( )
1
2 2

n m n
n m m

λ
−

>
− + −

 is acceptable and so we ended up in inequality

( )
( )1

1
2 2m

n m nx
n m m

λ−

−
≥ >

− + −
. 

5) Prove that, when the Equation (2.1) has positive integer solutions, is

1mxλ −< . 
We have: ( )1 11m mx m xλ − −< − − < ⇔ 1mxλ −< . 
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