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Abstract 
This paper presents a probabilistic model of cumulative damage based on 
Markov chains theory to model propagation of internal corrosion depth loca-
lized in a hydrocarbons transport pipeline. The damage accumulation me-
chanism is unit jump type, depending on the state. It uses a shock model 
based on Bernoulli trials and probabilities to remain in the same state or the 
next one. Data are adjusted to Lognormal distribution and proven with a 
Kolmogórov-Smirnov test. The vector obtained from multiplying the initial 
state vector with the transition matrix was developed and the system of equa-
tions to find each transition probability with a single inspection report was 
solved. In order to calculate propagation of internal corrosion after inspec-
tion, an exponential equation was proposed and a parameter was adjusted to 
the data. Time to expected failure was obtained by adding the time expected 
in each damage state. Each time step was adjusted to real time. 
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1. Introduction 

Throughout Mexico, there are approximately 54,000 kilometers of terrestrial 
pipeline in operation, transporting crude oil, natural gas, sour gas, sweet gas, 
gasoline, diesel, and other refined products. In addition, there are 2000 kilome-
ters of underwater pipeline. Almost half of pipeline has been operating for more 
than 30 years and, in spite of continual maintenance, inspection and patrolling 
works, problems caused by corrosion, damage by third parties, operation and 
design mistakes that may lead to system failure are present. Failures of these 
pipeline systems constitute significant financial losses and, in the worst scenario, 
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loss of human lives and damage to the environment. Failure may be due to sev-
eral causes and may occur in a small area of the pipeline; however, to identify 
significant factors contributing to failure in the pipeline is possible. Accidents 
due to corrosion in pipelines transporting hydrocarbon are the most frequent. 

Corrosion is damage to materials caused by ions transportation and due to 
potential difference in the material itself or between the material and its sur-
rounding environment. It is an irreversible interfacial reaction, generally of a 
metal, with its surrounding environment which damages or modifies its proper-
ties. Corrosion causes loss in mechanical resistance properties of the material, 
resulting in changes of structures and components geometry; therefore the ma-
terial loses the function for which it was intended, causing: 1) direct losses due to 
change in corroded tubular structures; 2) indirect losses resulting from loss of 
production due to temporary suspension of productive systems and facilities and 
pollution of goods generated; 3) loss of wellbeing and human lives; 4) efficiency 
loss; and 5) increase of exploitation costs. 

Corrosion is of major interest since the loss of metal invariably implies a re-
duction of the structural integrity of the pipe and an increase in the risk of fail-
ure. The two most significant factors involved in the corrosion process are the 
type of material and the environment. The environment includes conditions 
impacting on the internal and external walls of the pipe. Since most pipelines 
undergo various environmental conditions, the assessment must allow proper 
sectioning or consideration of each type of environment in each given segment. 
In addition, corrosion may be divided into uniform and localized corrosion. 
Uniform corrosion is that which develops at the same speed on all of the surface 
of the material, while localized corrosion refers to an accelerated attack on a spe-
cific superficial position, generally due to separation of anodic and cathodic 
areas, and is caused by inequalities of the structure or composition of the cor-
roding material or differences in the environment. Pitting corrosion is a special 
type of localized corrosion, defined as a very localized attack on passive metals, 
causing very narrow and deep cavities. 

The study of corrosion has been mainly based on deterministic approaches, 
particularly on the electrochemical corrosion theory; however, localized corro-
sion cannot be explained without statistical and stochastic points of view due to 
high dispersion of laboratory and field data (see ref. [1] and ref. [2]). Assessment 
of the integrity and reliability of pipelines has been studied in various ways in 
recent years and risk and reliability analyses have been applied to determine 
failure probabilities. 

A formal analysis is carried out using reliability tests in the risk of failure as-
sessment. Thus, from a structural point of view, reliability or probability of suc-
cess is the probability of a structure, an element or structural element satisfying 
the limit and service conditions for which it was intended. In this manner, the 
risk of failure assessment on ducts based on mechanical or structural reliability 
methods is a better approach in assessing safety, providing an analytical tool 
which allows the assessment of risk with more reasonable and verifiable methods 
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that may always be improved. Reliability methods provide elements to design a 
structural system and are also used to know the current conditions of a system. 
This is very important when making decisions regarding maintenance, repair or 
substitution of structural elements in the system, in order to take the structural 
system back to the required safety level specified. 

Cumulative damage is the irreversible accumulation of damage throughout 
the life of the element, which eventually results in degradation and failure. A 
stochastic process is a mathematical model of a dynamic process which evolu-
tion in time is governed by probabilistic laws (see ref. [3]). In probability theory, 
there were no general procedures or particular schemes to solve this type of 
problems. This brought a new general theory of random processes to study these 
problems. Any knowledge about the states of a system will lead us to study the 
type of stochastic processes called process without further effect or, by analogy, 
Markov chains or processes. Andrei Andreyevich Markov was a Russian ma-
thematician known for his works on theory of numbers and probabilities theory. 
The model proposed assumes a finite and discrete state of time using Markov 
processes, which assumes that probability of what will happen in a given in-
stance will depend exclusively on the immediate previous past. 

J.L. Bogdanoff and F. Kozin started their study of Markov’s cumulative dam-
age models in 1978. In the beginning, there was doubt about its usefulness in en-
gineering and its practical value. However, this negative point of view changed, 
since its potential application field in the cumulative damage phenomenon is 
vast. These models have been capable of describing and successfully analyzing 
life data of various phenomena, including fatigue, growth of cracks due to fati-
gue, corrosion, and change of properties of the material, among others. In addi-
tion, these models have provided profound knowledge about many interesting 
problems in engineering (see ref. [3]). Models of phenomena may be determi-
nistic or probabilistic. The interest of above-mentioned researchers is focused on 
the evolution in time under cyclic uses, damage due to fatigue, crack lengths, 
and loss of material. A probabilistic model is proper for cumulative damage 
phenomena in which uncertainties to estimate the mean life may not be ignored. 
Localized corrosion is known for showing high variation in measurable parame-
ters such as corrosion rate, maximum pitting depth, and time to perforation, 
among others. Variation in results is derived from the influence of heterogenei-
ties on the metal surface throughout pitting development and variations in the 
corroding environment throughout time. All these facts suggest that randomness 
is an inherent and unavoidable feature of pitting corrosion throughout time; 
therefore, stochastic models are a better choice for describing pitting corrosion 
than deterministic models are (see ref. [1]). Provan and Rodríguez used a 
non-homogeneous Markov process to model growth of pitting depth without 
taking into account the generation process. This model aims at describing the 
growth of pitting as a function of time of exposure, considering a discrete space 
of states of possible pitting depths. They compared the estimated results with 
experimental data reported for aluminum and directed their own experiences in 
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pitting corrosion towards stainless steels (see ref. [4]). H.P. Hong considered pit-
ting corrosion as a combination of two stochastic processes: he modeled the 
generation of the pitting process as a Poisson process and the propagation of 
depth as a Markov process (see ref. [5]). The probability distribution of pitting 
corrosion depth and probability of time to failure are obtained by combining 
both processes. To use the method, examples based on experimental data were 
developed. In this work, the transition intensity used to describe growth of a 
specific depth in the homogeneous Markov process depends on the total number 
of states used and does not define the number of optimal states to describe a 
given set of experimental data (see ref. [5]). Valor and his research team devel-
oped a stochastic model to simulate localized corrosion. Localized corrosion was 
modeled as a non-homogeneous Poisson process in which the time of induction 
to pitting initiation was simulated as carrying out a Weibull process. To simulate 
growth of pitting they used a non-homogeneous Markov process. The model 
proposed is validated using data from published experiments on localized corro-
sion (see ref. [6]). A stochastic prediction model of damage evolution due to 
corrosion in active sites, applicable under professional practice conditions, is 
presented by J.L. Alamilla and E. Sosa (see ref. [7]). It uses integrity and struc-
tural reliability analyses. Damage of a material and its evolution are determined 
by the damage state in a given time instant and a damage occurrence rate. To 
achieve this, the probability density function of the pitting corrosion damage 
depth of the system is estimated. Its application depends on the quantity of in-
spection reports available. Two scenarios are presented: when there is one in-
spection report and when there are two inspection reports. In the latter scenario, 
there is variation regarding whether defects may be identified in the two inspec-
tions or not (see ref. [7]). In this work, localized corrosion due to internal pitting 
is studied, since depending on a lower number of factors than external corro-
sion, simpler mathematical models may be developed (see ref. [8]). Corrosion 
analyzed in this work is focused on loss of pipe metal. In addition, a probabilistic 
model of cumulative damage due to corrosion is carried out. Cumulative dam-
age reduces reliability as time increases. Keeping high reliability levels, carrying 
out inspections, repairs, partial replacements, and keeping proper operation 
conditions may increase the cost of the system’s life cycle. This study is useful 
because it creates a tool that enables the prediction of the corrosion state in a gi-
veninstant of time, in order that resources for inspection, maintenance and re-
pair programs may be optimized. 

We set as an objective to establish a methodology based on a probabilistic 
damage model and Poisson and Markov stochastic processes that allow describ-
ing and predicting the state of corrosion in terrestrial pipelines for transport of 
hydrocarbons in a given period of time. 

For such purpose, we proposed to statistically analyze the data on pipeline in-
spection; to define the limit states of variable depth of corrosion defect; to de-
termine the starting and transition probability of the model; to assess corrosion 
of pipelines transporting hydrocarbons in several instants of time; and to calcu-
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late expected time to failure. 

2. Stationary Stochastic Model of Cumulative Damage 

In our model of cumulative damage in pipelines using Markov chains, it is as-
sumed that: 1) seriousness of the service cycle is repetitive and constant (that is, 
it is considered that anything that happens in a service cycle occurs in every oth-
er cycle); 2) damage states are discrete and called 1,2, , , ,j b   (failure); 3) 
cumulative damage in a service cycle depends only on the service cycle and the 
damage state at the beginning of the cycle; and 4) damage may only be increased 
in a service cycle, from the state occupied at the beginning of the cycle, to the 
state of a higher unit. 

Time x is made discreet by the first assumption, for that reason 0,1,2,x =   
Permissible damage states have been made discreet in the second assumption, 
therefore, the model has finite (discrete) damage and time states. As for the third 
assumption, the model does not mention anything about quantitative details of 
what happens within a service cycle. This third assumption is Markov’s, which is 
damage accumulation in a service cycle, only depending on the corresponding 
service cycle and the damage state in which the cycle started. In the model, to 
know how the starting damage was achieved is irrelevant. When state b is 
reached, withdrawal or failure occurs. Thus, state b is an absorbent state and 

1bρ = . The fourth assumption implies that it must be transitory since, once 
damage moves from a state to the next one, it never goes back to the immediate-
ly previous state. 

This version of the cumulative damage model is a stationary Markov process, 
with discrete time and finite states. The cumulative damage mechanism is of the 
unit jump type, depending on the state. 

Let 0D  be the random variable defined as the state occupied by damage in 
time 0x = . The starting probability distribution 0p  over damage states in 

0x =  are specified by vector line (1 × b): { }0 1 2 1, , , ,0bp π π π −=  , where 
{ }0 0jP D j π= = ≥  y 1

1 1b
jπ− =∑ . It should be noted that in no case does it 

start at failure state, since 0bπ = . π’s creates a mass function with 0D  proba-
bility. 

The constant probability P transition matrix is associated if each service cycle 
has constant seriousness; in addition, based on the fourth assumption, it is only 
possible to pass from a state to a higher state, therefore: 

1 1

2 2

3 3

1 1

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0 0 1

b b

p q
p q

p q
P

p q− −

 
 
 
 

=  
 
 
 
 







      





              (1) 

where 1 0jp> >  and 1j jp q+ = . pj is the probability to remain in state j for a 
step; qj is the probability that, in a step, damage goes from state j to state j + 1. It 
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may be observed that for (1) all damage states 1, , 1b −  are transitory and 
state b is absorbent. 

Let xD  be the damage state occupied in time x, and let:  
{ } ( ) 1, ,x xP D j p j j b= = ∀ =  , be probability that damage occupies state j at 

time x. Since ( ) 0xp j ≥  and ( )1 1b
xp j =∑ , px(j) creates a probability mass 

function in time x in damage states 1, ,b . Now, using vector line (1 × b): 
( ){ }1 , , ( )x x xp p p b=   to represent this probability mass function and, based on 

Markov’s chain theory: 

0 1 0,1,2,x
x xp p P p P x−= = ∀ =                      (2) 

where P0 = I and I is the identity matrix (b × b). 
A graphic view of Equation (2) is that of a set of vertical bars representing 

px(j), where x is on the time axis at regular intervals. When x increases, the 
probability mass is displaced from lower to higher states and, gradually, deviated 
to state b. In the last case, all masses accumulate in state b. Its final structure de-
pends on p0 and pj. It should be noted that px(b) is a distribution function accu-
mulated in time x, since the limit when x → ∞ is px(b) = 1, as all masses in the 
last case come to state b and stay there. Probability px(j) is the probability that 

xD  is in state j in time x. 
Given p0 and P, in (2) ( ){ }1 , , ( )x x xp p p b=   is calculated and it is known 

that the accumulated distribution function of time Wb to absorption in state b 
(with pb = 1) is px(b). bW  becomes time to failure in the cumulative damage 
model. Cumulative distribution function of bW  is given by: 

( ) { } ( ); 0,1,2,W b xF x b P W x p b x= ≤ = ∀ =                 (3) 

t reliability function ( );W x b  es: ( ) ( ); 1 ; 0,1,2,W Wx b F x b x= − ∀ =   Failure  

rate function ( );Wh x b is: ( ) ( )
( )

;
; 1 0,1,2,

1;
W

W
W

F x b
h x b x

x b
= − ∀ =

−



 The mean 

and variance of Wb are, respectively:  

{ } ( )0 ;b WE W x b∞= ∑   and ( ) ( ) { } { } 2

0var 2 ;b W b bW x x b E W E W∞= + −   ∑   

The probability that damage xD  is in state j in time x is determined by px(j): 
{ } ( ) 1, ,x xP D j p j j b= = ∀ =   and the cumulative distribution function of Dx 

is: ( ) { } ( )1; 1, ,j
D x xkF j x P D j p k j b

=
= ≤ = ∀ =∑  . Its mean and variance are 

given by: 

{ } ( )1
b

x xjE D jp j
=

= ∑  and ( ) ( ) { } 2

1var b
x x xjD p j E D

=
= −   ∑  

Thus, Equation (2) gives results required to determine basic probabilistic data 
for cumulative damage in which failure occurs upon arriving at state b. This eq-
uation is easy to program using standard routines to multiply matrices. If ad-
vantage of P’s shape is used, calculations may be efficiently managed. 

For this case, 1bρ =  and 1 1π = , cumulative damage process starts in state 1 
with x = 0. Random variable 1,bW , is time to failure in state b since it started in 
state 1 in x = 0. Geometric transformation of cumulative distribution function 

( );1,WF x b  de 1,bW  is: 
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( ) ( )( ) ( )( )
1

1 1

1 2 1

;1,
1 1 1 1

b
b

W
b

q q zz b
p z p z p z z

ψ
−

−

−

=
− − − −

               (4) 

and the transformation of the probability mass function ( );1,Wp x b  is: 

( ) ( ) ( );1, 1 ;1,W Wz b z z bφ ψ= −                        (5) 

Inversion of these two transformations is direct. If we assume that: 

1 2 11 0bp p p −> > > > > , then: 

( ) ( ) ( ) ( ) ( )1
1 1 2 2 1 1;1, 1 1, 1, 1 1,bx x x

W b bF x b g b p g b p g b p−
− −= − + − + −       (6) 

where:  

( ) ( )( ) ( )
2 3 1

1
1 2 1 3 1 1

1, b

b

q q qg b
p p p p p p

−

−

=
− − −





 

  

( ) ( )( ) ( )( ) ( )
1 1 1 1

1 2 1 1 1

1, j j b
j

j j j j j j j b

q q q q
g b

p p p p p p p p p p
− + −

− + −

=
− − − − −

 

 

 

  

( ) ( )( ) ( )
1 2 2

1
1 1 2 1 2 1

1, b
b

b b b b

q q qg b
p p p p p p

−
−

− − − −

=
− − −





           (7) 

It should be noted that: 

( );1, 0 0,1, , 2WF x b x b= ∀ = −                    (8) 

since a unit jump model may not reach state b from 1 in less than (b − 1) n-steps. 
Therefore, ( )1,jg b  satisfy certain relationships implied in (8). Equation (6) 
and Equation (7) are valid for 1 2 11 0bp p p −> > > > > .  

Inversion of (5) gives the probability mass function ( );1,Wp x b  of W1,b: and it 
is found using the technique used to obtain (6): 

( ) ( ) ( ) ( )11 1
1 1 1 1 1 11;1, 1, 1 1,bx x

W b b bp b q g b p q g b p−− −
− − −= − + −        (9)  

This equation may also be obtained noticing that: 

( ) ( ) ( );1, ;1, 1;1,W W Wp x b F x b F x b= − −                 (10) 

( );1,Wp x b  is equal to zero for 0,1, , 2x b= − . 
The mean and the first central moments of W1,b are obtained from the cha-

racteristic function of (5), using the differentiation technique. These are: 

{ } ( )
1

1,
1

1
b

b jE W r
−

= +∑  

( ) ( )
1

1,
1

var 1
b

b j jW r r
−

= +∑  

{ } ( )( )
1

3 1,
1

1 1 2
b

b j j jW r r rµ
−

= + +∑  

{ } ( ) ( )( )( ) ( )
1 12 2

4 1, 1,
1 1

3 var 1 1 2 1 3 1
b b

b b j j j j j jW W r r r r r rµ
− −

 = + + + + + +  ∑ ∑  
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where 

1 1j
j

j j

p
r

q q
= = −  and 

1
j

j
j

r
p

r
=

+
                 (11) 

The reliability function ( );1,W x b  corresponding to the cumulative distri-
bution function of (6) is: 

( ) ( ) ( ) ( ) ( )1
1 1 2 2 1 1;1, 1, 1, 1 1,bx x x

W b bx b g b p g b p g b p−
− −= − + + −     (12) 

The risk function ( );1,Wh x b  is obtained using (9), (10) and (12), these being: 

( ) ( ) ( ) ( )
( ) ( ) ( )

1
1 1 1 1

11 1
1 1 1 1

1, 1 1,
;1, 1

1, 1 1,

bx x
b b

W bx x
b b

g b p g b p
h x b

g b p g b p

−
− −

−− −
− −

− −
= −

− −





       (13) 

W1,b is time required to reach state b since it started with state 1 at time x = 0. 
Given that: 

1, 1 1b bW T T −= + +                       (14) 

where Tj’s are independent and, upon adding Tj’s characteristic function, we ob-
tain: 

( )
e

1 e

iu
j

j iu
j

q
u

p
φ =

−
                       (15) 

we have that W1,b’s characteristic function is: 

( ) 1
1

e
;1,

1 e

iu
b j

W iu
j

q
u b

p
φ −=

−∏                    (16) 

If we substitute eiu  with z, we obtain the geometric transformation of the 
probability mass function of W1,b given in (17) 

( ) ( )( ) ( )
1

1 1

1 2 1

;1,
1 1 1

b
b

W
b

q q zz b
p z p z p z

φ
−

−

−

=
− − −





             (17) 

This formula is the same as the one obtained in (5) using (4). 
Let us assume now that 1 2 1bp p p −′ ′ ′

  is a permutation of 1 2 1, , , bp p p − , then 
(4) becomes: 

( ) ( )( ) ( )( )
1 2

2

1
1

11

Ψ ;1,
1 1 1 1

b
b

W
b

q q q zz b
p z p z p z z

−
−

−

′ ′ ′
=

′ ′ ′− − − −




        (18) 

This equation may be inverted to find ( );1,WF x b  and obtain exactly the 
same equation as that defined in (6); for this reason, it may be said that there is 
( )1 !b −  permutations of jp . Thus, there are ( )1 !b −  models with the same 
cumulative distribution function ( );1,WF x b  of 1,bW . In order to know how 
these models are different from each other, the notion of sample function mean 
must be introduced. 

Time used in state j is random variable jT , whose characteristic function is 
given in (15). It is found that this is the expected time value used in each state, 
and it is given by: 

{ } 1j jE T r= +                           (19) 
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In the succession of the mean time used in each state, the adjacent points are 
linked with line segments; their segmented curve is the mean of the sample func-
tion, since it shows behavior of the sample function mean. Actually, the family of 
sample functions creates a propagated cloud coming from state 1 at 0x = . 
Mean simple function is the position of the mean of this cloud in various states. 
Time in which the sample function mean reaches b is, in case of the unit jump, 
{ }1,bE W .  
Now, it is possible to know the difference between models. While all ( )1 !b −  

models have the same ( );1,WF x b , each has a different sample function mean. 
This is a very important point, since it explains that the cumulative distribution 
function ( );1,WF x b  of 1,bW  does not define the evolution of the cumulative 
damage process. 

Let us consider the set of cumulative distribution functions ( );1,WF x j  for 
2, ,j b=  . This set depends on rj’s order. If the set is specified, this defines, in a 

unique manner, the evolution of the cumulative damage process even when in 
each ( );1,WF x b  set it is the same. 

The above observations apply to the 1 1π =  case. Let us assume that 

1 2, , , kπ π π  are different from zero or one, where 1k b< − . Therefore, 

1, , kp p  may not be reordered without changing ( );WF x b , since ( ); ,WF x j b  
depends on jp  order for 1, ,j k=  . However, 1 1, ,k bp p+ −  may be reor-
dered without altering ( );WF x b . Thus, unless all jπ  for 1, , 1j b= −  are 
different from zero, ( );WF x b  does not specify in a unique manner the cumula-
tive damage process of the model. 

The most important points of this simple stationary unit jump model with 
probability transition matrix given by (1) are: 
• starting damage distribution may be incorporated into the model; 
• variable seriousness in service cycles may be incorporated into the model, 

changing transition P matrices in time; 
• explicit shapes for bW ’s moments may be obtained; 
• jr ’s order does not change the cumulative distribution function of 1,bW ; and; 
• knowing the cumulative distribution function ( );1,WF x b  does not deter-

mine the evolution of xD . 

3. Application of the Model with Inspection Data 

Below some observations are shown on the bases of the cumulative damage 
model: 
• time is discrete 0,1,2,3,x =   Each x represents an actual time interval; 
• damage states are finite and discrete, called 1,2, , , ,j b   (failure). Each 

state is represented by certain thickness of the pipeline’s wall; 
• damage states are finite and discrete, called 1,2, , , ,j b   (failure). Each 

state is represented by certain thickness of the pipe’s wall; 
• the starting damage value may be random, but in this work it is considered 

that the pipeline has no damage at the beginning, and because of that the 
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probability to be in state 1 at time x = 0 is one, that is, the starting damage 
vector is { }0 1,0, ,0p =  ; 

• the state in which failure occurs is given by 1bρ = , that is, failure occurs in 
the last state, state b, not before that, and; 

• cumulative damage in an x time step is constant and does not decrease. 
Data of internal pitting corrosion depths in a 155,500.34 m long, 5.6 mm thick 

diesel-transporting pipeline were obtained. Inspection reported 96 corrosion pits. 
Upon carrying out a statistic analysis, their histogram was obtained, where each 
class interval of the histogram is considered a damage state of the model. 

Probability of each interval is obtained from dividing the number of defects of 
each interval into the total number of defects, therefore obtaining probability 
vector ( ) ( ){ }1 , , 7x x xp p p=  . Probabilities obtained from the probability den-
sity function are shown in Table 1.  

In order obtain transition probabilities, equations resulting from developing 
Equation (2) for times 1,2,3,4,5,6,7x =  are used. The starting probability vec-
tor { }0 1,0, ,0p =   is multiplied times the P transition matrix described in (1), 
raised to the power of x. Upon equaling probabilities of Table 1 with equations 
involving p1, p2, p3, p4, p5, p6, and p7 we have:  

( ) 7
11 0.1042xp p= =  

( ) ( )( )( )( )( )2 3 4 5 6
1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 22

0.3542

xp p p p p p p p q p q p q p q p q p q p= + + + + + +

=
 

upon solving above equations, the values of Table 2 were obtained. 
As can be observed, in this case it is not possible to find all the values of pj 

with the histogram, since its shape leads to numerical problems. 
A solution to this problem is to calculate the cumulative distribution function 

of data, to make an adjustment and obtain probabilities of each interval. Figure 
1 shows cumulative distribution obtained from data. 

Several adjustments were made to data with various probability functions. 
Figure 2 shows the various adjustments that were made. Adjustments with 
Lognormal and Birnbaum-Saunders distributions were found to allow solving 
numerical problems (see Birnbaum and Saunders, ref. [9]). Figure 3 and Figure 4 
show a comparison of histograms with both adjustments. The Birnbaum-Saunders 
distribution, also known as the fatigue life distribution, is a probability distribution  
 
Table 1. Probabilities of each state at time x = 7. 

( )1xp  ( )2xp  ( )3xp  ( )4xp  ( )5xp  ( )6xp  ( )7xp  

0.1042 0.3542 0.3646 0.0521 0.0625 0.0417 0.0208 

 
Table 2. Transition probabilities for P matrix at time x = 7. 

p1 p2 p3 p4 p5 p6 p7 

0.6859 0.7450 0.7930 0.0000 0.1950 0.7040 - 
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Figure 1. Empirical cumulative probability distribution function. 
 

 
Figure 2. Adjustment to the cumulative probability distribution function curve. 
 
extensively used in reliability applications to model failure times (see Birnbaum 
and Saunders, ref. [9]). 

The Lognormal distribution was chosen to present the probability distribution 
function of corrosion pitting. At first sight, differences may be observed between 
the histograms and the probability distribution functions; however, probability 
has a theory to know if the set of data resulting from sampling a random variable  
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Figure 3. Comparison between measured probabilities (heavy) and with Lognormal ad-
justment. 
 

 
Figure 4. Comparison between measured (heavy) probabilities and with Birn-
baum-Saunders (light) adjustment. 
 
may be represented with a certain distribution function. Based on the above, it is 
important to know if data actually adjust to the distribution proposed with an 
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acceptable reliability level. To this end, a Kolmogorov-Smirnov hypothesis test 
was carried out. The adjustment proposed passed this test with a 1% significance 
level, and so it is possible to use the Lognormal distribution for the following 
calculations. 

Figure 5 and Figure 6 show the evolution of transition pj probabilities and the 
rj relationship with both adjustments. 
 

 
Figure 5. p and r variation (Lognormal).  

 

 
Figure 6. p and r variation (Birnbaum-Saunders distribution). 
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The values of the probability to be in each state at time x = 7 from the histo-
gram adjusted with Lognormal function are shown in Table 3. 

Again, the procedure to find transition probabilities is carried out. Equations 
resulting from multiplying the starting state times the transition matrix raised to 
the power of x = 7 is vector 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 , 2 , 3 , 4 , 5 , 6 , 7x x x x x x x xp p p p p p p p=  

Upon equaling each px(j) to probability numerical values and solving equa-
tions, it is possible to find pj. Table 4 shows such values. Table 5 shows rj values,  

remembering that j
j

j

p
r

q
= . 

It can be observed that, with the Lognormal adjustment, it is possible to find 
transition probabilities up to x = 7. Until now, necessary data has been obtained 
up to inspection time. Probabilities to fill the transition matrix and r ratio have 
been obtained. This data is essential to know the time to failure expected, since 
the next step is to observe and assess the trends of probabilities found to extra-
polate data until failure. A way to use data obtained up to inspection time to ob-
tain the probabilities of transition to failure is by using an equation that is a 
function of a parameter and adjusted to data. In this way, probabilities after in-
spection may be known. 

Taking into account the shape of qj evolution for various states, the following 
equation is proposed: 

( ) ( )21 1 e 1, ,7qj I
j qq Y jλ− −= − − ∀ =   

where Yq is the lowest value of q, Iq is the state of the lowest value of q, and λ is a 
parameter adjusted to data. 

Since the thickness of the pipe under study is 5.6 mm and the class intervals of 
the histogram are 0.0643, it may be deducted that the number of b states to fail-
ure must be: 
 
Table 3. Probabilities of each state at time x = 7. 

( )1xp  ( )2xp  ( )3xp  ( )4xp  ( )5xp  ( )6xp  ( )7xp  

0.0481 0.2309 0.3311 0.2319 0.1058 0.0372 0.0111 

 
Table 4. Transition probabilities for P matrix at time x = 7. 

p1 p2 p3 p4 p5 p6 p7 

0.6483 0.6990 0.7020 0.6580 0.5620 0.3940 0.2130 

 

Table 5. j
j

j

p
r

q
=  ratio at time x = 7. 

r1 r2 r3 r4 r5 r6 r7 

1.8431 2.3223 2.3557 1.9240 1.2831 0.6502 0.2706 
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5.6 87.111
0.0643

tb
x

= = =
∆

 

where t is the thickness of pipe equal to 5.6 mm and x∆  is the class interval 
equal to 0.0643 mm. 

With data known up to the inspection time, λ’s value is found by calculating 
the mean square error. λ’s value minimizing error is λ = 0.055. Knowing this 
value, it is possible to calculate qj up to failure. Figure 7 shows a comparison of 
qj measured from data and that is calculated with λ’s function. It may be seen 
that there is good adjustment of the function. In this way, qj has been calculated 
up to failure. Figure 8 shows comparison of rj variation calculated as a function 
of λ and the one calculated from data. 

With the above adjustments, it is possible to obtain all the transition probabil-
ities of passing from one state to another one, considering all states, up to failure.  

Now that we have the transition matrix, the cumulative distribution function 
of Dx is calculated. 

( ) { } ( )
1

; 1, ,
j

D x x
k

F j x P D j p k j b
=

= ≤ = ∀ =∑   

and the mean and variance of Dx are given by: 

{ } ( )1
b

x xjE D jp j
=

= ∑  y ( ) ( ) { } 22
1var b

x j xjD j p j E D
=

= −   ∑  
Figure 9 shows the cumulative damage distribution function with actual data 

of the pipe under study, where it can be seen that it is complied with, that is to 
say: 

 

 
Figure 7. Comparison of qj calculated from data (measured) and λ’s function (modeled). 
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Figure 8. Comparison of rj calculated as a function of λ (modeled) and calculated from 
data (measured). 
 

 
Figure 9. Cumulative distribution function ( );1,WF x b  and ( );1,Wh x b  of the pipe un-

der study. 
 

( );1, 0 0,1, , 2WF x b x b= ∀ = −  

since a unit jump model may not reach state b from 1 in less than b – 1 step. 
Based on the above, the distribution curve starts to be different from zero in 
state 79. It may be seen that it quickly rises and that probability of time to failure 
being lower or equal to 120 is one, which means, at that time, the system has 
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failed. 
It may be observed that the failure function starts from zero, at the same time 

as the distribution function, since the pipeline is considered to have no damage 
at the beginning, and it raises until becoming constant at a 0.3 value. Based on 
the above, it may be said that the probability that pipeline fails, if it has worked 
in a given period, is low. Figure 10 and Figure 11 show the mean and variance 
of the pipe under study, respectively. 

The mean shows the damage state value expected for each step of time x. In 
 

 
Figure 10. Mean of Dx of the pipe under study. 
 

 
Figure 11. Variance of Dx of the duct under study. 
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the first stage, variation is not linear, but from state 20, variation of the mean is 
constant. Variance gives us the average of squares of deviations regarding the 
mean. In this case, it increases until it becomes constant in a value lower than 30, 
which shows that there is not a high variation and that the model is reliable. To 
know time to failure of the pipe, time used in state j is the random Tj variable, it 
being possible to apply Equation (19) with the rj until failure, in order to know 
the mean time used in each state, as well as its succession. Figure 12 shows the 
curve representing the mean of the sample function { } 1j jE T r= + . 

In order to prove and have an idea of how the theory works, simulations were 
carried out using Monte Carlo simulations. That is, a uniform distribution was 
used to obtain random times in each state, following a geometric distribution. 
The procedure includes simulating sampling functions and obtaining their mean 
to compare it with the theory’s. 

Figure 13 shows simulation of two sampling functions and their mean up to 
state 7. It should be noted that the mean is, in fact, in the middle of both realiza-
tions. Continuing in this way, Figure 14 shows five realizations, considering the 
seven damage states.  

Figure 15 shows 1000 sampling functions simulated and their mean in black. 
In addition, time expected was obtained with Equation (19), shown in red. It was 
observed that the difference between the mean obtained from realizations and 
the one obtained from data decreases as the number of simulations increases, 
because of this it can be said that the method is consistent. Figure 16 shows the 
comparison of the time mean in each state using (19) and the Monte Carlo model 
using 1000 sampling functions and considering the 80 damage states. Figure 16  
 

 

Figure 12. Evolution of { } 1j jE T r= +  calculated in function of λ (modeled). 
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Figure 13. Two sampling functions simulated with Monte Carlo and its mean, consider-
ing the seven damage states measured. 
 

 
Figure 14. Five sampling functions simulated with Monte Carlo and its mean, consider-
ing the seven damage states measured. 
 
shows that the mean lines are virtually the same, so it can be said that simula-
tions and the theory give similar results. In this way, time in which the mean of 
the sample function reaches b may be obtained, in this case { }1,bE W , that is, 
time to failure expected. In this way, for instance, to reach state 20, mean time 
expected is { }1,20 30E W =  time steps, and to reach failure { }1, 90bE W =  time 
steps. 
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Figure 15. Comparison of { } 1j jE T r= +  (red) with the mean of a model of M (black) 

using 1000 sampling functions (blue) considering the seven damage states measured. 
 

 

Figure 16. Comparison of { } 1j jE T r= +  (red) with the mean of a Monte Carlo model 

(black) using 1000 sampling functions (blue) considering the 80 damage states measured. 
 

Until now, the time steps to failure of the pipeline are known. It should be 
noted that throughout calculation and analysis, time steps 1,2,3,x =   have 
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been considered; however, it should also be considered that each time step used 
until now has an equivalence in actual time. 

It should be remembered that x = 7 was considered to realize equations 

0
x

xp p P= ; however, this number of states was arbitrary and may vary in accor-
dance with certain considerations, depending on each data set. Therefore, it is 
better to obtain it directly from data. The mean and its state are calculated. Then, 
the time value expected to that state is also calculated. The mean of this data set 
is 0.3767 and is in the third state. Upon calculating the state of the mean on the 
vertical axis of Figure 15 is and projecting it on the horizontal axis, it is found 
that time elapsed to reach that state is x = 12.5. Relating actual time of four years, 
in which the inspection was carried out with theoretical time x = 12.5, it is ob-
tained that a time step is equivalent to 0.32 years of actual time. With this data, it 
is possible to know the actual time to failure. In accordance with the analysis, the 
mean theoretical time to failure is { }1, 90bE W =  time steps, and in actual time it 
is 90 0.32 28.8× =  years. In this manner, it is possible to know the mean time 
to failure of any pipeline having an inspection report, using Markov chains 
theory.  

4. Conclusions 

The spread of corrosion shown in Figure 2 represents the expected evolution of 
pitting corrosion in the pipe. Note that, in its first stage, the corrosion rate is low; 
it then increases, before becoming constant until failure. Its explanation is due to 
there being an average of time that it stays in each state, and since the system 
starts from there being no damage at the beginning; it can be said that the nuc-
leation time is implicit. Nucleation is the time at which the corrosion cavity be-
gins to form on a microscopic level. In light of the fact that it is an average and it 
is assumed that the system starts without damage; it takes some time for all of 
the cavities to be generated. After, there is another stage in which it remains 
constant. This is because once the cavities have been generated and the film 
formed, the corrosion rate remains constant, ref. [10]. 

According to the phenomenon of localized corrosion—as described in the li-
terature, ref. [2]—the behaviour of the corrosion rate is due to the fact that, at an 
early stage, the part of the metal attacked is completely exposed to a high con-
centration of corrosive species, while later, a layer of oxides is formed with pas-
sive properties between the metal and the corrosive environment, thus serving as 
a protective barrier against corrosion, ref. [8]. This shows that the corrosion 
process in a pipe is almost stable if there are no sudden or radical changes that 
affect the kinetic process, ref. [7]. 

The model presented here, represents the evolution in time of damage caused 
by internal corrosion pitting in a hydrocarbon transport pipeline. It allows us to 
know, in detail, the spread of the corrosion depth at different moments from the 
time from the data of an inspection report. It is also possible to obtain a transi-
tion matrix from a single inspection report, as well as the fact that adjusting the 
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data to a normal log probability distribution avoided numerical problems. That 
said, it is essential to perform a Kolmogorov-Smirnov test at a 1% level of signi-
ficance, indicating whether the normal Log distribution can be used with an ac-
ceptable level of reliability. 

The comparison of the time used in each damage state, according to the 
theory of accumulated damage and with the Monte Carlo simulations, provides 
similar values, so it can be affirmed that the model is consistent. 

With the model presented it is possible to calculate the expected time to the 
failure of any pipe that has an inspection report. This can be very useful for the 
industry to schedule inspections and maintenance. 
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