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Abstract 
The Nappi-Witten Lie algebra was first introduced by C. Nappi and E. 
Witten in the study of Wess-Zumino-Novikov-Witten (WZNW) models. 
They showed that the WZNW model (NW model) based on a central ex-
tension of the two-dimensional Euclidean group describes the homogene-
ous four-dimensional space-time corresponding to a gravitational plane wave. 
The associated Lie algebra is neither abelian nor semisimple. Recently K. 
Christodoulopoulou studied the irreducible Whittaker modules for finite- 
and infinite-dimensional Heisenberg algebras and for the Lie algebra ob-
tained by adjoining a degree derivation to an infinite-dimensional Heisenberg 
algebra, and used these modules to construct a new class of modules for 
non-twisted affine algebras, which are called imaginary Whittaker modules. 
In this paper, imaginary Whittaker modules of the twisted affine Nap-
pi-Witten Lie algebra are constructed based on Whittaker modules of Hei-
senberg algebras. It is proved that the imaginary Whittaker module with the 
center acting as a non-zero scalar is irreducible. 
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1. Introduction 

The conform field theory (CFT) plays an important role in mathematics and 
physics. Current algebra [1] [2] has proved to be a valuable tool in understand-
ing CFT and String Theory. All the CFTs we know so far can be constructed one 
way or another from current algebras. The simplest is the WZW models [3] [4], 
which realize current algebra as their full symmetry. For obvious reasons, the 
first type of algebras to be analysed was compact ones, used for compactification 
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purposes in String Theory. Later on, non-compact algebras (of the type SL(N, R), 
SU(M, N) and SO(M, N)) and their cosets have been considered [5] [6] [7] in 
order to describe curved Minkowski signature spacetimes. Only recently did 
current algebras of the non-semisimple type receive some attention [8]. The 
Nappi-Witten model is a WZW model based on a non-semisimple group. It was 
discovered by C. Nappi and E. Witten [8] that the WZW model based on the 
Heisenberg group coincides with the σ-model of the maximally symmetric gra-
vitational wave in four dimensions. The corresponding Lie algebra is called the 
Nappi-Witten Lie algebra nw, which is neither abelian nor semisimple. More 
results on NW model were presented in [9] [10] [11] [12]. 

The Lie algebra nw is a four-dimensional vector space over   with genera-
tors { }, , ,P P J T+ −  and the following Lie bracket: 

[ ], , , , , , , 0.P P T J P P J P P T+ − + + − −     = = = − ⋅ =       

There is a non-degenerate invariant symmetric bilinear form ( ),  on nw de-
fined by 

( ) ( ) ( ), 1, , 1, otherwise, , 0.P P T J+ − = = =  

Just as the non-twisted affine Kac-Moody Lie algebras given in [13], the 
non-twisted affine Nappi-Witten Lie algebra is defined as 



1,nw nw t t K D− = ⊗ ⊕ ⊕     

with the bracket defined as follows: 

[ ] ( ) ,0, , , ,m n m n
m nx t y t x y t m x y Kδ+
+ ⊗ ⊗ = ⊗ +   

, 0, , m mnw K D x t mx t   = ⊗ = ⊗    

for ,x y nw∈  and ,m n∈ . 
There exist Lie algebra automorphisms θ  of nw and θ  of nw : 

( ) ( ) ( ) ( ), , , ,P P P P T T J Jθ θ θ θ+ + − −= − = − = =  

( ) ( ) ( )1 ,nn nx t K D x t K Dθ λ µ θ λ µ⊗ + + = − ⊗ + +  

for ,n x nw∈ ∈ , and ,λ µ∈ . The twisted affine Nappi-Witten Lie algebra is 
defined as follows: 
 [ ]  ( ){ }

( ) ( )2 2 1

|

.n n

n n

nw v nw v v

T J t P P t K D

θ θ

+ − +

∈ ∈

= ∈ =

   = + ⊗ ⊕ + ⊗ ⊕ ⊕   
   
∑ ∑



 
       

 

The representation theory for the non-twisted affine Nappi-Witten Lie algebra 
has been well studied in [14]. The irreducible restricted modules for the 
non-twisted affine Nappi-Witten Lie algebra with some natural conditions have 
been classified and the extension of the vertex operator algebra ( )

4ˆ ,0HV l  by the 
even lattice L has been considered in [15]. Verma modules and vertex operator 
representations for the twisted affine Nappi-Witten Lie algebra have also been 
investigated in [16]. Recently K. Christodoulopoulou defined Whittaker mod-
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ules for Heisenberg algebras and used these modules to construct a new class of 
modules for non-twisted affine algebras (imaginary Whittaker modules) [17]. 
[18] studied virtual Whittaker modules of the non-twisted affine Nappi-Witten 
Lie algebra. Inspired by the works mentioned above, the aim of the present pa-
per is to give a characterization of the imaginary Whittaker modules for the 
twisted affine Nappi-Witten Lie algebra  [ ]nw θ . 

Here is a brief outline of Section 2. First, we obtain a Heisenberg subalgebra 
H  by the decomposition of the Lie algebra  [ ]nw θ . Second, we construct the 
imaginary Whittaker module ,Wψ ϕ  of  [ ]nw θ  by the Whittaker module of H . 
Finally, we give the properties of the module ,Wψ ϕ  (see Propositions 2.2 and 
2.3) and prove that ,Wψ ϕ  with K acting as a non-zero scalar is irreducible (see 
Theorem 2.4). 

Throughout the paper, denote by  , * ,  ,   and +  the sets of the 
complex numbers, the non-zero complex numbers, the non-negative integers, 
the integers and the positive integers, respectively. All linear spaces and algebras 
in this paper are over   unless indicated otherwise. 

2. The Imaginary Whittaker Modules 

In the following, for x nw∈  and n∈ , we will denote nx t⊗  by ( )x n . It is 
clear that  [ ]nw θ  has the following decomposition 

 [ ]  [ ] ( )  [ ] ,nw nw H nwθ θ η θ+ −= ⊕ ⊕ ⊕

  

where 

 [ ] ( ){ }  [ ] ( ){ }Span | 2 1 , Span | 2 1nw P n n nw P n nθ θ+ −+ −= ∈ + = ∈ +    

( ) ( ) { }{ } ( ) ( ){ }Span , , , | 2 \ 0 , Span 0 , 0 .H T m J m K D m T Jη= ∈ =

   

We first review the Whittaker modules of the Heisenberg algebra H  in [17]. 
Let 

2
i

i
H H

∈
= ⊕ 


, where 

( ) ( ) ( ) ( ){ }1 1Span , , Span , , 2 ,i iH T i J i H J i T i i
i i − +

 = = − − ∈ 
 

 

    

0
2

, .i
i

H K D H H
+

±
±

∈
= ⊕ = ⊕  


   

Thus H  is an infinite-dimensional Heisenberg subalgebra of  [ ]nw θ . 
Assume that *( )Kλ ∈   and ( ):U Hψ + →   is an algebra homomorphism 

such that 0Hψ + ≠


. Set H K+= ⊕  b . Let ( ), Kψ λ ω= 

   be a one-dimensional 
vector space viewed as a b -module by 

( ) ( ) ( ), , for all .K K x x x U Hω λ ω ω ψ ω += = ∈    

     

Set 

( ) ( )
( )

( ), , , 1 .K K
U

M U Hψ λ ψ λ ω ω= = ⊗⊗


 

 
b

 

Define an action of ( )U H  on ( ), KMψ λ
  by left multiplication. Then 

( ) ( ), KM U Hψ λ ω= 

  and ( ), KMψ λ
  is a Whittaker module of type ψ  for H . 
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Lemma 2.1 ([17]) Let ( ) 0Kλ ≠ . If 0
iHψ ≠


 for infinitely many 2i +∈  , 
then ( ), KMψ λ

  is irreducible as a ( )U H -module. 
In the following we define the imaginary Whittaker module of  [ ]nw θ  ac-

cording to [17]. We will assume that ( )*Kϕ η∈ ⊕   is such that 
Kϕ λ=

 and 
( ) 0Kϕ ≠ . Let ( ):U Hψ + →   is an algebra homomorphism such that 

0
iHψ ≠


 for infinitely many 2i +∈  . 
Set  [ ] ( )nw Hθ η+= ⊕ ⊕ p . p  is a parabolic subalgebra of  [ ]nw θ . It is ob-

vious that , 0H η  = 


  and  [ ]nw θ +  is an ideal of p . Let ( ), KMψ ϕω∈ 

  be a 
Whittaker vector of type ψ . Define a ( )U p -module structure on ( ), KMψ ϕ

  by 
letting 

( )  [ ] ( ),, 0 for all , any .Khv h v nw v h K v Mψ ϕϕ θ η+= = ∈ ⊕ ∈ 

   

Set 
 [ ]( )

( )
( ), , , 1 .K

U
W U nw Mψ ϕ ψ ϕθ ω ω= = ⊗⊗ 



p

 

Define an action of  [ ]( )U nw θ  on ,Wψ ϕ  by left multiplication. Then ,Wψ ϕ  is 
called an imaginary Whittaker module of type ( ),ψ ϕ  for  [ ]nw θ . 

We assume that ( )*Kα η∈ ⊕   is such that ( )( )0 0Tα = , ( )( )0 1Jα = , 
( ) 0Kα = . Let χ α∈ . Set 

 [ ]( )  [ ]( ) [ ] ( ){ }| , for all .U nw v U nw h v h v h K
χ

θ θ χ η
−− −= ∈ = − ∈ ⊕   

It is easy to see that  [ ]( )0
U nw θ − ≅  .  

 [ ]( ) ( )
1

Span | 2 1
rr

i i
i

U nw P n n
α

θ
−− −

=

 ≅ ∈ + 
 
∏  , 

 [ ]( )  [ ]( )U nw U nw
χ

χ α
θ θ

−− −

∈
= ⊕


. Set 

( ){ }, , | for all ,W W h h h Kρ
ψ ϕ ψ ϕω ω ρ ω η= ∈ = ∈ ⊕   

for any ( )*Kρ η∈ ⊕  . 
Proposition 2.2 
1) ,Wψ ϕ  is a free  [ ]( )U nw θ − -module, and 

 [ ]( ) ( ), , .KW U nw Mψ ϕ ψ ϕθ −≅ ⊗ 

  

2) ( ) ( ), KM Uψ ϕ ω≅ p  as p -modules and we can view ( ), KMψ ϕ
  as the p

-submodule ( )U ωp  of ,Wψ ϕ  under this isomorphism. 
3) , ,W W ϕ χ

ψ ϕ ψ ϕ
χ α

−

∈
= ⊕


 and as modules for Kη ⊕  , 

 [ ]( ) ( ), , .KW U nw M
χ

ϕ χ
ψ ϕ ψ ϕθ

−−− ≅ ⊗ 

  

In particular, ( ), , KW Mϕ
ψ ϕ ψ ϕ≅  . 

Proof. 1) Since  [ ]  [ ]nw nwθ θ −= ⊕ p , the PBW Theorem implies that 

 [ ]( )  [ ]( ) ( )U nw U nw Uθ θ −= ⊗ p  and thus  [ ]( ) ( ), , KW U nw Mψ ϕ ψ ϕθ −≅ ⊗ 

  as 
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vector space over  . So the map  [ ]( ) ( ) ,,: Kg U nw M Wψ ϕψ ϕθ − ⊗ →

  defined by 

( ),v vτ τ→  is an isomorphism of left  [ ]( )U nw θ − -modules. 

2) The map 1u u→ ⊗  defines a p -isomorphism of ( ), KMψ ϕ
  onto the p

-submodule ( )U ωp  of ,Wψ ϕ . 
3) Kη ⊕   acts semisimply on  [ ]( )U nw θ −  via the adjoint action and 

 [ ]( )  [ ]( )U nw U nw
χ

χ α
θ θ

−− −

∈
= ⊕


. It is clear that the isomorphism g of (1) maps 

 [ ]( ) ( ), KU nw M
χ

ψ ϕθ
−− ⊗ 

  isomorphically to ,W ϕ χ
ψ ϕ

−  for every χ α∈ . In par-

ticular, if 0χ = , then ( ), , KW Mϕ
ψ ϕ ψ ϕ=   because  [ ]( )0

U nw θ − ≅  . Thus (3) 

holds. 
The following proposition is evident for weight modules. 
Proposition 2.3 Any  [ ]( )U nw θ -submodule V of ,Wψ ϕ  has a weight space 

decomposition 

,V V W ϕ χ
ψ ϕ

χ α

−

∈
= ⊕ 


 

relative to Kη ⊕  . 
Proof. Set ϕ χ ρ− = . Then by Proposition 2.2 (3), we have  

( )
( ){ }

*
, , , ,, | for all .

K
W W W W h h h Kρ ρ

ψ ϕ ψ ϕ ψ ϕ ψ ϕ
ρ η

ω ω ρ ω η
∈ ⊕

= = ∈ = ∈ ⊕⊕





  

Any ,v Wψ ϕ∈  can be written in the form 
1

n

j
j

v v
=

= ∑ , where ,
j

jv W ρ
ψ ϕ∈ , and 

there exists h Kη∈ ⊕   such that ( )( )1,2, ,j h j nρ = 

 are distinct. We have 
for v V∈ , 

( ) ( ) ( )
1

0,1,2, , 1 .
n ll

j j
j

h v h v V l nρ
=

= ∈ = −∑   

This is a system of linear equations with a nondegenerate matrix. Hence all 

jv  lie in V. 
We are now in a position to give the main result of this paper as follows. 
Theorem 2.4 Let ( )*Kϕ η∈ ⊕   and ( ):U Hψ + →   be an algebra ho-

momorphism such that ( ) 0Kϕ ≠  and 0
iHψ ≠


 for infinitely many 2i +∈  . 
Then ,Wψ ϕ  is irreducible as a  [ ]( )U nw θ -module. 

Proof. Let 0 V≠  be a  [ ]( )U nw θ -submodule of ,Wψ ϕ . We next show that 

,V Wψ ϕ= . By Proposition 2.2 (2), we can identify ( ), KMψ ϕ
  with ( )U ωp . Since 

( ) ( ), KM U Hψ ϕ ω=   is irreducible as a ( )U H -module and  [ ]( ),W U nwψ ϕ θ ω= , 
it suffices to show that ( ), 0KV Mψ ϕ ≠

 . 
By Proposition 2.3, for some χ α∈ , we have , 0V W ϕ χ

ψ ϕ
− ≠ . Let rχ α=  

and ,0 rv V W ϕ α
ψ ϕ

−≠ ∈  . We assume 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 ,i
i i

ki i i i i i
i r p q

i I
v P n P n T s T s J t J t Dξ ω− −

∈

= − − − −∑   
 

where *
iξ ∈ , 1

i i
rn n≥ ≥

, 1 i

i i
ps s≤ ≤ , 1 i

i i
qt t≤ ≤ , I is a finite index set, 
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2 1i
jn ∈ + , , 2i i

j js t +∈  , , , ,i i ir p q k ∈ . 
Claim There exists 2 1n∈ +  such that ( ) 0P n v+ − ≠ . 
Set 

{ }min | ,i
r rn n i I= ∈  

{ } { }1 1
1

max | max | 2 max | 2 1.
ip

i i i
j

j
n n i I s i I n i I

=

 
= ∈ + ∈ + ∈ ∈ + 

 
∑   

It is clear that 

( ) { }1 1
1

2 max | 0.
ip

i i i i
r r j

j
n n n n s n i I

=

− ≤ − − − − ∈ <∑  

Moreover, 

{ }

( ) { }

1 1
1

1

1 1
1

2 max |

2 max | 0,

i

i i

i

p
i i i i i i

r p r j p
j

p
i i i i

r j
j

n n s n n s n i I s

n n s n i I

=

−

=

− + ≤ − − − ∈ +

= − − − − ∈ <

∑

∑
 

for all i I∈ . It is easy to check that, for each i I∈  such that i
r rn n= , the coef-

ficient of the basis element 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1
i

i i

ki i i i i i
r r p qP n P n T n n T s T s J t J t D ω− −
− − − − − −    

in ( )P n v+ −  is { }# |1 , 0i
i j rj j r n nξ × ≤ ≤ = ≠ . Thus ( ) 0P n v+ − ≠ . 

Since ( ) ( )1
,0 rP n v V W ϕ α

ψ ϕ
− −+≠ − ∈  , we can use induction on r and conclude 

that there exists  [ ]( )u U nw θ∈  such that ( ) ( ),0 KuP n v V Mψ ϕ
+≠ − ∈ 


. The 

theorem is proved. 

3. Conclusion 

We construct the imaginary Whittaker module ,Wψ ϕ  of the twisted affine Nap-
pi-Witten Lie algebra  [ ]nw θ  by its Heisenberg subalgebra H . We study the 
structure of the module ,Wψ ϕ  and prove that ,Wψ ϕ  with the center acting as a 
non-zero scalar is irreducible. Our future work is to determine the maximal 
submodule of ,Wψ ϕ  when it is reducible. 
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