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Abstract 
This article provides to descript a consistent of the even-even 182-200Pt isotopes. 
This has been achieved using the interacting boson model-2 (IBM-2) and in-
cluding configuration mixing (IBM-2 CM). Our attention is paid to describe 
the nuclei shape and to their connecting with shaping coexistence phenome-
non. Ten isotopes are studied, ranging from the middle of the neutron shell 
to very near the doubly closed shell at 208Pb. The same Hamiltonian is used 
for all the nuclei studied, with parameters which are constant or smoothly 
varying. In this study, we showed the transition between more axially sym-
metric deformed features of light Pt isotopes to γ-unstable and vibrational 
isotopes (near spherical shape) for 198-200Pt isotopes. 
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1. Introduction 

Some nuclei near closed shells appear to have both the vibrational structure ex-
pected for a near-spherical shape, and rotational structure, which is typical of 
deformed nuclei [1]. This phenomenon of shape coexistence involves two con-
figurations of the nucleus which have different numbers of active nucleons. In 
an IBM description, the two configurations have different boson numbers; Nv 
being the same but Nπ different, or vice versa. The most common situation in-
volves a difference in Nπ (Nv) of two bosons between the normal configuration 
and the so-called intruder configuration, corresponding to a pair excitation 
across a shell or sub-shell gap [1] [2]. 

Shape coexistence in atomic nuclei has become a very active field of research 
during the last decades and clear signals of its existence have been obtained at 
and near proton or neutron closed shells [1] [2] [3], more in particular in light 
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nuclei with a closed neutron shell at N = 8, 20, 28, and 50 closed shells as well as 
in heavy nuclei such as the Sn and the Pb nuclei. It seems that, without exception, 
shape coexistence is associated with the presence of low-lying excited 0+ states. 

In the case of the IBM-2, shape coexistence arises including two-particle 
two-hole (2p-2h) (or even higher np-nh). Excitations across the closed shells, 
but they consider them as extra bosons, i.e., pairs of nucleons. This extension is 
called IBM-2 configuration mixing. In two previous papers [4] [5], we used the 
IBM-CM to extensively study the Pt nuclei. We carried out a detailed analysis of 
the energy spectra and absolute B (E2) values for states up to an energy of 1.5 
MeV. Garc’ıa-Ramos et al., [5], studied shape evolution and shape coexistence in 
Pt isotopes: Comparing interacting boson model configuration mixing and 
Gogny mean-field energy surfaces. In this work, the evolution of the total energy 
surface and the nuclear shape in the isotopic chain 172–194Pt are studied in the 
framework of the interacting boson model, including configuration mixing. The 
results are compared with a self-consistent Hartree-Fock-Bogoliubov calculation 
using the Gogny-D1S interaction and a good agreement between both ap-
proaches is found. 

In this article, it will be studied to extract the parameters describing the IBM-2 
CM Hamiltonian precisely. After showing some theories and laws about IBM-2, 
it represents the results of the Pt isotopes comparing with some experimental 
data on energy levels, electromagnetic transition probabilities (B(E2) and 
B(M1)), monopole transitions, mixing ratios and quadrupole moments. 

2. The Interacting Boson Model-2 (IBM-2) 
2.1. The Hamiltonian of Interacting Boson Model-2 (IBM-2) 

As the IBM-2 model, the protons and neutrons degrees of freedom are taken in-
to account explicitly. Consequently, one can write the Hamiltonian [6] [7] as, 

H H H Vπ ν πν= + +                         (1) 
~ .v v vv v vH d d d d V V Q Q Mπ π π ν ππ π πε ε κ+ + += + + + + +            (2) 

Here ε  is the d-boson energy, κ  is the strength of the quadrupole inte-
racting between proton and neutron bosons. 

The quadrupole moment operator, in the IBM-2 model, has the form: 

( )( ) ( )( )2 2~ ~ ~Q s d d s d dρρ ρρ ρ
κ+ + += + +                  (3) 

where ρ π=  or ν , Qρρ  is the quadrupole deformation parameter for pro-
tons ( )ρ π=  and neutrons ( )ρ ν= . Where the terms Vνν  and Vππ  are the 
proton-proton and neutron-neutron d-boson interacting only and written by: 

( ) ( )( ) ( )( ) ( )0221 2

0,2,4

1 2 1
2 L

J
V C J d d ddρρ ρ ρ ρ

+ +

=

 = +   ∑                (4) 

The Majorana interaction is represented the term Mπν , that accounts for the 
symmetry energy and shits the states with mixed proton-neutron symmetry state 
with respect to the fully symmetric ones which affects only the relative location 
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of the states with mixed symmetry, it is with respect to the totally symmetric 
states. For the reason that little experimental information is familiar states with 
mixed symmetry that has the form: 

( )( ) ( )( ) ( )( ) ( )( )2 2~ ~ ~ ~ ~ ~ ~ ~
2

1.3
2

k k
k

k
M d d d d d s s d d s s dπν π π π π π ν π ν π ν π νξ ξ+ + + +

=

= − + − −∑  (5) 

2.2. Electromagnetic Transitions and Quadrupole Moments in 
IBM-2 

Generally, the E2 transition operator of one-body in the IBM-2 is 

( ) ( ) ( )vT l T l T lπ= +                        (6) 

( ) ( )( ) ( ) ( ) ( )

( )( ) ( )( ) ( )

22 2~ ~ ~

22 2~ ~ ~

2

v v

T E e s d d s d d

e s d d s d d

π ππ π

ν ν

χ

χ

+ + +

+ + +

 = + +  

 + + +  

 

( )2 v vT E e Q e Qπ π= +                       (7) 

which Qρ  is in the form of Equation (3). For simplicity, the ρχ  has the same 
value as in the Hamiltonian. Also, one suggests it by the single j-shell microsco-
py. Generally, the E2 transition results are not sensitive to the choice of eν  and 
eπ , whether e eπ ν=  or not. Thus, the reduced electric quadrupole transition 
rates between i fJ J+ +→  states are given by: 

( ) ( )
212; 2

2 1i f f i
i

B E J J J T E J
J

+ + + +→ =
+

             (8) 

In IBM-2, the electric quadrupole moment is written as: 

( )
1 2 216 2

05I

J J
Q J T E J

J J
π   =    −   

              (9) 

One can calculate IBM-2 eigen functions and energy eigenvalues are usually 
achieved numerically by the program code NPBOS [8]. Then, the result of ei-
genvectors can be calculated transition rates and related properties using the 
program code NPBTRN [8]. The relationship is between the parameters of Equ-
ation (2). 

2.3. Configuration Mixing in Interacting Boson Model-2  
(IBM-2 CM) 

Configuration mixing can be treated in the IBM-2 using a technique developed 
by Duval and Barrett [9]. Separate IBM-2 calculations are achieved for the two 
configurations and the results are then mixed this is done by the interaction 
configuration mixing can be remedied in the IBM-2 by a technique method de-
veloped by Duval and Barrett [9]. Separate IBM-2 calculations are done for the 
two configurations and the results are then mixed using the interaction 

( )( ) ( )( )0 0
mixV s s s s d d d dπ π π π π π π πα β+ + + += + + +              (10) 
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where the intruder configuration is assumed to involve the proton shell. There 
are three parameters in the mixing calculation, the mixing strengths α  and β  
in Equation (23), and the pair excitation energy, ∆ , which gives the relative 
energies of the two unperturbed configurations. 

The total mixing Hamiltonian is then given by 

1 2mix mixH H H V= + +                    (11) 

where H1 (H2) is the IBM-2 Hamiltonian for the first (second) configuration, as 
given by Equation (11), and an amount fl has been added to the energies of the 
second configuration. 

The mixed wave functions are used to calculate B (E2) values of observed 
transitions and quadrupole moments. The E2 transition operator is given by [9]: 

( ) ( ) ( )( )2 2 2 4 2 4 42T E e Q Q e e Q Qπ ν π π= + + +             (12) 

where Qρ  were defined in Equation (3) and je  and ( )0,2je jρ =  are ad-
justable parameters. The suffixes 2 and 4 refer to the normal and the intruder 
configurations respectively. 

For simplicity, 2e e eπ ν2 2= =  and 4e e eπ ν4 4= = . 
For a mathematical simplicity, the neutron boson and proton boson effective 

charges are often taken to be equal, and the parameters πχ  and νχ  (in in-
truder configuration) are taken to be the same as the Hamiltonian parameters 

πχ  and νχ  respectively. The T(E2) transition operator can then be written as: 

( ) ( )22T E e Q Qπ ν= +                       (13) 

When two configurations are present, this operator becomes [9]: 

( )2 i i
i

T E e Qρ ρ
ρ

= ∑                        (14) 

where ρ π=  or ν  and i denotes the configuration. The effective charges of 
the two configurations are not the same, in general. 

3. Results and Discussion 
3.1. Choice of Parameters 

The normal configuration for platinum isotopes involves 2Nπ =  (sometimes 
denoted as 2π, two proton boson holes), counting from the Z = 82 closed shell. 
The neutron configuration for 196

78 118Pt  for example, is 2Nν =  (four neutron 
boson holes), counting from the N = 126 closed shell. The vibrational spectra 
can be calculated by diagonalizing the IBM-2 Hamiltonian, (Equation (2)), in 
the space of two proton and Nν  neutron s and d bosons. In order to describe 
the rotational states, an alternative configuration must be specified and a sepa-
rate set of IBM-2 calculations made, based on that configuration. The alternate 
configuration used for the 186-200Pt isotopes involves a two-particle-four-hole ex-
citation in the shell model proton space [1] [9] [10]. This corresponds to two 
proton boson particles and two proton boson hole in the IBM-2 space. For sim-
plicity, the proton boson particles and hole are treated equivalently, even though 
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the underlying fermion pair degrees of freedom originate in different major 
shells. 

The IBM-2 calculations have been done in model spaces with ( )2 2Nπ π=  
and ( )4 4Nπ π=  to describe the vibrational and rotational states, respectively, 
the two calculations are combined using Equation (11). 

In the phenomenological calculations the parameters appearing in the Hamil-
tonian ((Equation (2) and Equation (11)) in two configurations may in general 
depend both on proton ( Nπ ) and neutron ( Nν ) boson number. Guided by the 
microscopic theory as we have assumed that only 2 4,π πε ε  and 2 4,π πκ κ  de-
pend on Nπ  ( )2 ,4π π  and Nν  i.e., ( ),N Nπ νε , ( ),N Nπ νκ , while νχ  de-
pends only on Nν  and πχ  on Nπ , i.e., ( )Nν νχ , ( )Nπ πχ . Thus a set of 
isotopes, (constant Nν ) have the same value of νχ , while a set of isotones, 
(constant Nπ ), have the same value of πχ . This parameterization allows one to 
correlate a large number of experimental data. Similarly, when a proton-proton 
Vππ  and neutron-neutron Vνν , interaction is added, the coefficients LC  are 
taken as ( )LC Nπ π  and ( )LC Nν ν , i.e. the proton boson interaction will only 
depend on Nπ , and the neutron boson on Nν . Since there is no information 
on the location of the states with mixed neutron-proton symmetry we kept the 
coefficients appearing in the Majorana force Mπν  (see Table 1 and Table 2). 

The values of the parameters used for the present calculations are given in 
Table 1. The value of the parameter (boson energy) ε  for the 4Nπ =  confi-
guration, 4πε , is constant for all isotopes and the values of ε  for the 2Nπ =  
configuration, 2πε , are nearly constant. The quadrupole-quadrupole interac-
tion strengths κ  trends for ( 2π ) both configurations follow the microscopic 
predictions [9]. 

The values of the parameter νχ  used for Pt isotopes are the microscopic 
predictions from Bijker et al., 1980 [11]. They were reported only for neutron 
number 102 122N≤ ≤ . The values of νχ  for Pt isotopes were determined by 
extrapolating the microscopic trend to larger neutron number. This was done in  
 
Table 1. IBM-2 Hamiltonian parameters for the Pt isotopes (normal configuration 

2Nπ = ). All energies are in MeV; 2π
πχ  and 2π

νχ  are dimensionless. 

Nuclei 2πε  2πκ  2π
νχ  2π

πχ  2
0C π
ν  2

2C π
ν  2

4C ν
ν  

186Pt 0.610 −0.148 −0.52 −0.810 −0.250 −0.160 0.00 

188Pt 0.580 −0.161 0.00 −0.810 −0.250 −0.160 0.00 

190Pt 0.580 −0.178 0.46 −0.810 0.00 −0.127 0.00 

192Pt 0.580 −0.180 0.81 −0.810 0.450 −0.09 0.00 

1946Pt 0.580 −0.180 0.95 −0.810 0.500 0.00 0.00 

196Pt 0.580 −0.180 1.05 −0.810 0.560 0.002 0.00 
198Pt 0.580 −0.180 1.07 −0.810 0.750 0.0018 0.00 
200Pt 0.590 −0.180 1.08 −0.810 0.800 0.001 0.00 

1 3 0.11ξ ξ= = , 2 0.0ξ = , 2 2 2
0 2 4 0.00C C Cπ π π
π π π= = = . 
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Table 2. IBM-2 Hamiltonian parameters for the Pt isotopes (normal configuration 
4Nπ = ). (2P-2h), All energies are in MeV; 4π

πχ  and 4π
νχ  2π

νχ  are dimensionless. 

Nuclei 4πε  4πκ  4π
νχ  4π

πχ  4
0C π
ν  4

2C π
ν  4

4C π
ν  

186Pt 0.550 −0.155 1.080 −1.10 −0.250 −0.160 0.00 

188Pt 0.550 −0.150 1.070 −1.10 −0.250 −0.160 0.00 

190Pt 0.550 −0.145 1.050 −1.10 0.00 −0.127 0.00 

192Pt 0.550 −0.140 0.950 −1.10 0.450 −0.09 0.00 

1946Pt 0.550 −0.135 0.811 −1.10 0.500 0.00 0.00 

196Pt 0.550 −0.130 0.461 −1.10 0.560 0.002 0.00 

198Pt 0.550 −0.125 0.00 −1.10 0.750 0.0018 0.00 

200Pt 0.550 −0.120 −0.520 −1.10 0.800 0.001 0.00 

1 3 0.11ξ ξ= = − , 2 0.0ξ = , 4 4 4
0 2 4 0.00C C Cπ π π
π π π= = = . 

 
a manner consistent with the phenomenologically determined νχ  values which 
were used for the neighboring platinum and osmium isotones [11]. The same 
values of νχ  are used for both configurations. 

The emphasis in this work is on describing overall trends with constant or 
smoothly varying parameters of the Hamiltonian (Equations. (2), (11)), rather 
than obtaining the best possible fit to the experimental data for each nucleus. 
This is done in an effort to find a set of IBM-2Hamiltonian parameters which is 
appropriate for the entire isotopic chain. 

The normal configuration for platinum involves 2Nπ =  (sometimes ( 2π ) 
denoted as ( 2π ), two proton boson hole), counting from the Z = 82 closed shell. 
The neutron configuration for 196Pt for example, is 4Nν

− =  (four neutron bo-
son holes), counting from the N = 126 closed shell. The vibrational spectra can 
be calculated by diagonalizing the IBM-2 Hamiltonian, Equation (2), in the 
space of one proton and 4Nν =  neutron s and d bosons. In order to describe 
the rotational states, an alternative configuration must be specified and a sepa-
rate set of IBM-2 calculations made, based on that configuration. The alternate 
configuration used for the Pt isotopes involves a four-particle-four-hole excita-
tion in the shell model proton space. This corresponds to two proton boson par-
ticles and two proton boson hole in the IBM-2 space. The two configurations are 
depicted schematically energy levels in Table 2. For simplicity, the proton boson 
particles and hole are treated equivalently, even though the underlying fermion 
pair degrees of freedom originate in different major shells. 

3.2. Energy Spectra 

The configuration mixing calculations are done using the computer code 
NPMIX [10], which calculates the energy eigenvalues and eigenfunctions. The 
computer codes NPBEMX and BEMIX [10] are subsequently used to calculate 
matrix elements for transition rates and other properties. 

The mixing between the two configurations ( 2π ) and ( 4π ) is apparent in the 
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experimental data shown in Figures 1-3. Consider, for example, the 14+ , 20+  
and 24+ , 20+  states in 186-196Pt isotopes. In the latter, the vibrational (2) state is 
lower in energy than the rotational ( 4π ) 14+  and 24+  states. The states are 
close in energy and mutually repel, with the vibrational 4+ state being lower in 
energy and the rotational 4+ state higher in energy than would be expected 
without configuration mixing. 

In the second configuration ( 4π ) configuration interaction parameters 
2 4
2 2C Cπ π
ν ν= , 2 4

0 0 0C Cπ π
ν ν= =  and 2 4

4 4 0C Cπ π
ν ν= =  for all isotopes. For most nuclei, 

the spectral structure comes primarily from the pairing and quadru-
pole-quadrupole terms in the IBM-2 Hamiltonian, Equation (2), and the Vνν  
term is relatively unimportant. Since there is only two proton boson to interact 
through .Q Q , the residual interaction among the neutron bosons Vνν  interac-
tion is comparatively large. 

From Figure 1, in the normal configuration the ground state band the mo-
ment of inertia increases, beta band ( 2 2 20 ,2 ,4+ + + ) is pushed up, where the state 

20+  becomes bandhead (a member of γ-band) of 0Kπ += . In 194-200Pt isotopes, 
only five 20+  states are observed around 1.25 MeV is produced, some of these 
states do not have a ( ) ( )6 6SU SU

π ν
⊗  symmetry. 

In the IBM-2-CM approach, the lightest Pt isotopes, are deformed (172-178Pt). 
In 186Pt isotope a prolate shape and a γ-soft minimum coexist, but a 
well-deformed prolate minimum quickly develops in 180Pt isotope, becoming the 
most pronounced prolate minimum at the mid-shell, i.e., in 182Pt isotope with 
the prolate shape remaining well pronounced up to 186Pt isotope. Moving to-
wards heavier mass Pt isotopes, γ-flat energy surfaces start to develop. For 188Pt 
isotope, a much extended energy surface develops in the γ-direction (deviation 
from symmetry axis), becoming completely γ-unstable when reaching 190–196Pt 
isotopes, the 198-200Pt isotopes tends to spherical shape because approach to magic 
number. 

We show in Figure 1 the evolution of the energy of the ground state band ( 12+ ,

14+ , 16+ , and 18+ ) increases toward the middle of the major shell with the num-
ber of the valence neutrons and remain almost constant for 180 186A≤ ≤  iso-
topes. Although these tendencies are well reproduced, the rotational properties 
or rotational features are somewhat enhanced in the calculated levels for 
180 184A≤ ≤ , which are slightly agreement in energy with the experimental 
data. From both results, the IBM-2 CM and the experimental data, we observed 
the fingerprints for structural evolution with a jump between 186Pt and 188Pt iso-
topes, also the shape of the nucleus changed from prolate (186Pt isotope) to oblate 
(188Pt isotope) deformation, this case is called phase transition. The 188Pt isotope 
takes the oblate shape because the yrast states gradually departure to neutron 
closed shell. 

One can also find signatures for a shape or phase transition in the systematics 
of the quasi-β-band levels shown in Figure 2. In 180-186Pt isotopes configuration 
mixing, the 20+  baldhead and the state 32+  nearly constant in both IBM-2 data 
and experimental data. The two levels are pushed up rather significantly from  
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Figure 1. Ground state band in Pt isotopes. Experimental data are 
taken from Refs. [12]-[21]. 

 

 
Figure 2. Beta state band in Pt isotopes. Experimental data are taken 
from Refs. [12]-[21]. 

 
186Pt isotope to 188Pt isotope. Consistently with the systematics in the 
ground-state band. The calculated 20+  and 32+  states are higher than, but still 
follow, the experimental data. The 13+  state lies close to the 24+  state. However, 
this calculation predicts that this trend persists even for 188-198Pt isotopes, whereas 
the energy spacing between the experimental 13+  and 24+  states for these iso-
topes is larger. Similar deviation occurs for high spin states. This means that our 
calculations suggest the feature characteristic of the O (6) symmetry (γ-unstable). 

The γ-band states shown in Figure 3, we can see the good agreement between 
IBM-2 calculations and experimental data for 180 188A≤ ≤ , where the 13+ , 

34+  and 32+  states are energetically closed. 
The high spin states for example., 26+ , 23+ , 44+ , states, we observe some devi-

ation occurs for these states. This means that our calculations suggest the feature 
characteristic of the O (6) symmetry, where the staggering occurs as high spin 
beta band states such as 32+ , 34+ , 26+ , ..., etc., However, the experimental 
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Figure 3. Gamma state band in Pt isotopes. Experimental data are taken 
from Refs. [12]-[21]. 

 
levels are lying more regularly, particularly for 188 196A≤ ≤ , and thus appear 
to be in between the O(6) symmetry and triaxial rotor symmetry. The deviation 
of the γ -band structure seems to be nothing more than a consequence of an al-
gebraic nature of the IBM-2, and indeed has also been found in existing pheno-
menologically calculations of IBM-2. 

A characteristic feature of the γ-unstable limit of the IBM-2 is a bunching of 
γ-band states according to 2+, (3+, 4+), (5+, 6+), ..., that is, 3+ and 4+ are close in 
energy, etc. This even-even staggering is observed in certain O(6) nuclei but not 
in all and in some it is, in fact, replaced by the opposite bunching (2+, 3+), (4+, 
5+), ... which is typical of a rigid triaxial rotor [22]. From these qualitative obser-
vations it is clear that the even–even γ-band staggering is governed by the 
γ-degree of freedom (i.e., triaxiality) as it changes character in the transition 
from a γ-soft vibrator to a rigid triaxial rotor. The energy surface becomes rather 
flat, evolving towards a spherical minimum at 200Pt and beyond. The possibility 
of triaxial deformation was not considered (tends to spherical shape). 

3.3. Electric Transition Probability B(E2) 

Calculations of electromagnetic properties give us a good test of the nuclear 
models prediction. The electromagnetic matrix elements between eigenstates 
were calculated using the programs NPBTRN and NPBEMX for IBM-2 and 
IBM-2 CM model respectively. 

From Equations (7), we note that an E2 transition mainly depends on identi-
fying proton and neutron bosons effective charges eπ  and eν . These isotopes 
lying in region between SU(3) limit (rotational nuclei) and O(6) limit (γ-soft 
nuclei), therefore, the relationship between ( eπ , eν ) and the reduced transition 
probability B(E2) for rotational limit SU(3) and γ-soft limit O(6) is given in the 
form [23] [24]: 
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For O(6) limit 

( ) ( )( )
1 1

4
2;2 0

5
N e N e N

B E
N

π π ν ν+ + + +
→ =              (16) 

For SU(3) limit 

( ) ( )( )
1 1

2 3
2;2 0

5
N e N e N

B E
N
π π ν ν+ + + +

→ =             (17) 

where ( )1 12;2 0B E + +→  is the experimental reduced transition probability from 
the first excited states ( 12+ ) to the ground state ( 10+ ), N is the total number of 
bosons. 

The relations (26) and (27), was used to estimate the effective boson charges 
for proton and neutron bosons ( eπ , eν ). In these calculations, we use the fol-
lowing criteria to determine the effective charges. 0.173 e.beπ =  is a constant 
throughout the whole isotopic chain and the eν  changes with neutron number. 
This is true if the neutron (proton) interaction does not depend on the proton 
(neutron) configurations. The values of eπ  and eν  are determined by fitting 
to the five ( )1 12;2 0B E + +→  and ( )2 12;2 2B E + +→  in 194Pt and 196Pt isotopes 
from the first configuration ( 2Nπ = ). They are given in Table 3. 

For the configuration mixing, the effective charges for bosons is evaluated in 
the same manner in normal configuration, For simplicity, 2 2 2e e eπ ν= =  and 

4 4 4e e eπ ν= = . The ratio of the two quadrupole effective charges, 4 2e e  in Eq-
uation (25) is taken to be the same quadrupole interaction strengths, as the ratio 
of the corresponding 4 2π πκ κ , for each isotope (see Equation (12) and Table 1, 
Table 2). This is reasonable, since the effective charge and the strength of the 
quadrupole interaction are both proportional to the mean square proton radius. 
Thus, the only new parameter needed to determine the reduced transition rates 
is 2e . The value for the Pt isotopes was determined by fitting of 
( )1 12;2 0B E + +→  in 196Pt isotope.  
It is well known that absolute gamma ray transition probabilities offer the 

possibility of a very sensitive test of nuclear models and the majority of the in-
formation on the nature of the ground state has come from studies of the energy 
level spacing. The transition probability values of the excited state in the ground 
state band constitute another source of nuclear information. Yrast levels of 
even-even nuclei ( 2 ,4 ,6 ,J π + + +=  ) usually decay by E2 transition to the lower 
lying yrast level with 2f iJ J+ += − . 

In Table 4 we show the ( )1 12;2 0B E + +→  and ( )1 12;4 2B E + +→  values, 
which are of the same order of magnitude and display a typical decrease towards 
the middle of the shell. 

As a consequence of possible M1 admixture the ( )1 12;3 2B E + +→  quantity is 
rather difficult to measure. There is no experimental data to compare the values 
 
Table 3. Effective charge used in E2 transition calculations ( 0.173 e.beπ = ). 

Isotopes 180Pt 182Pt 184Pt 186Pt 188Pt 190Pt 192Pt 194Pt 196Pt 198Pt 200Pt 

eν  (eb) 0.1243 0.126 0.1286 0.128 0.129 0.1295 0.132 0.138 0.142 0.143 0.144 
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Table4. Electric transition probability ( )2; i fB E J J+ +→  in e2b2 units. 

IBM-2 CM IBM-2 Exp. i fJ J+ +→  Nuclei 

0.583 0.572 0.59 [14] 1 12 0+ +→  

Pt- 186 
0.0431 0.032 - 2 12 0+ +→  
0.143 0.112 - 2 12 2+ +→  
0.173 0.140 - 1 14 2+ +→  
0.522 0.522 0.520 (94) [25] 1 12 0+ +→  

Pt- 188 
0.027 0.0021 - 2 12 0+ +→  

0.0963 0.698 - 2 12 2+ +→  
0.822 0.721 - 1 14 2+ +→  
0.355 0.350 0.350 (44) [25] 1 12 0+ +→  

Pt- 190 

0.021 0.018 - 2 12 0+ +→  
0.472 0.440 - 2 12 2+ +→  
0.827 0.634 - 1 14 2+ +→  
1.873 1.972 1.800 (13) [26] 1 13 2+ +→  
0.389 0.382 0.382 (12)[27] 1 12 0+ +→  

Pt- 192 

0.0072 0.006 0.0044 (5) [27] 
2 12 0+ +→  

0.487 0.481 0.460 (5) [27] 2 12 2+ +→  
0.544 0.597 0.580 (30) [27] 1 14 2+ +→  
0.776 0.852 0760 (15) [25] 

1 13 2+ +→  
0.327 0.324 0.324 (16) [28] 1 12 0+ +→  

Pt- 194 

0.467 0.476 0.470 (3) [28] 1 14 2+ +→  
0.351 0.331 0.320 (8) [28] 1 16 4+ +→  
0.339 0.421 0.360 (11) [28] 1 18 6+ +→  
0.263 0.310 0.280 (12) [28] 2 24 4+ +→  
0.331 0.279 0.280 (12) [28] 2 26 4+ +→  

0.0175 0.0019 0.0014 (2) [28] 2 12 0+ +→  
0.631 0.520 0.423 (15) [29] 

2 12 2+ +→  
0.883 0.887 0.870 (43) [29] 2 14 4+ +→  

0.0289 0.027 0.01 (5) [29] 2 14 2+ +→  
0.281 0.280 0.280(8) [25] 1 12 0+ +→  

 
Pt- 196 

0.325 0.320 0.318 (23) [11] 2 12 0+ +→  
0.411 0.412 0.409 (22) [11] 1 14 2+ +→  

0.0081 0.006 0.003 (1) [30] 2 14 2+ +→  
0.187 0.192 0.139 (97) [11] 2 14 4+ +→  
0.146 0.144 0.142 (77) [25] 2 20 2+ +→  
0.042 0.023 0.022 (10) [11] 2 10 2+ +→  
0.207 0.182 0.177 (25) [30] 2 24 2+ +→  
0.521 0.427 0.421 (116) [30] 1 16 4+ +→  
0.355 0.337 0.318 (23) [30] 2 12 0+ +→  
0.147 0.136 0.130 (11) [30] 1 13 2+ +→  
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Continued 

0.200 0.212 0.212 (10) [25] 1 12 0+ +→  

Pt- 198 
0.0005 0.00076 0.0003 (1) [30] 2 12 0+ +→  

0.311 0.289 0.262 (38) [30] 2 12 2+ +→  

0.297 0.297 0.2700 (23) [30] 1 14 2+ +→  

0.202 0.200 - 1 12 0+ +→  

Pt- 200 
0.0008 0.00089 - 2 12 0+ +→  

0.245 0.275 - 2 12 2+ +→  

0.310 0.281 - 1 14 2+ +→  

 
of IBM-2. For 190Pt isotope, we give the agreement with experimental value, from 
these values seems to decrease for 190-196Pt isotopes. 

In Table 4, we show ( )2 12;2 0B E + +→  values. Experimentally the results are 
radically different for the Ptisotopes. In some Ptisotopes the value seems to de-
creased towards the middle of the shell, whereas in another 196Pt isotope is in-
creased. Our calculations could not reproduce these contradictory features si-
multaneously. The results for ( )2 12;2 0B E + +→  values are shown in Table 4. 
This quantity is rather small since this transition is forbidden in all three sym-
metries of the IBM-2. 

As a consequence of possible M1 admixture the ( )2 12;2 2B E + +→  quantity is 
rather difficult to measure. For some Ptisotopes, we give the different, conflict-
ing experimental results and we see that no general feature be derived from them, 
from these values seems to decrease for Ptisotopes. 

In 194Pt isotope, there is a good agreement between experimental and calcu-
lated ( )2 12;0 2B E + +→  value. This confirms our earlier statement about the na-
ture of the lowest 20+  state in this isotope. Other transitions such as 

( )1 12;6 4B E + +→ , ( )1 12;8 6B E + +→  and ( )2 22;4 2B E + +→  are small values in 
sometimes because these transitions between different bands (cross over transi-
tions) and the selection rules which determine these transition. 

In Table 5, the quadrupol moment, qualitatively, for first excited state 

( )12Q + , second excited states ( )22Q +  and ( )14Q + , for the ground state band, 
the positive ( )12Q +  and ( )14Q +  mean a negative intrinsic quadrupole mo-
ment (for ground state 0Q ). For the beta band, a negative ( )12Q +  means a 
negative intrinsic quadrupole moment 0Q . The negative 0Q  implies that the 
nucleus has an oblate shape; the positive intrinsic quadrupole moment 0Q  
means that the nucleus has a prolate shape. The overall the IBM-2 and IBM-2 
CM results is a good agreement with the experimental data. 

4. Concluding Remarks 

In the present work, we have analyzed the spectroscopic properties for the Pt 
isotopic chain 182-200Pt in terms of the interacting boson model-2 (IBM-2) and 
interacting boson model configuration mixing (IBM-2 CM). Calculations of 
energy levels for even-even 182-200Pt isotopes were performed with the whole  
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Table 5. Quadrupole moments ( )iQ J +  in eb Units for Pt isotopes. 

IBM-2 CM IBM-2 Exp. iJ +  Nuclei 

0.091 0.096 - 12+  

Pt-186 −0.065 −0.082 - 22+  

0.079 0.088 - 14+  

0.087 0.081 - 12+  

Pt-188 −0.079 −0.072 - 22+  

0.188 0.182 - 14+  

0.621 0.556 - 12+  

Pt-190 −0.529 −0.522 - 22+

 
0.627 0.571 - 14+  

0.580 0.53 0.55 (21) [17] 12+  

Pt-192 −0.68 −0.62 - 22+  

0.61 0.58 - 14+  

0.697 0.650 [18] 0.63 (6) 12+  

Pt-194 −0.62 −0.52 [18] −0.5 (5) 22+  

0.58 0.503 [18] 0.5 (10) 14+  

0.71 0.64 [19] 0.62 (8) 12+  

Pt-196 −0.421 −0.33 [19] −0.39 (16) 22+  

1.018 1.007 [19] 1.03 (12) 14+  

0.490 0.44 [20] 0.42 (12) 12+

 
Pt-198 −0.281 −0.25 - 22+  

0.422 0.38 - 14+  

 
Hamiltonian (Equation (2) and Equation (11)) using NPBOS computer code. 
182-200Pt nuclei (Z = 78) have two proton bosons ( 2Nπ =  normal configuration) 
and the neutron boson varied from 13Nν =  for 182Pt isotope to 4Nν =  for 
200Pt isotope. 

The energy levels in Pt isotopes especially (ground state band) are a good 
agreement with the experimental data. In this study, we see that the excitation 
energy of the state 13+  in 186-200Pt isotopes (heavier Pt isotopes) is predicted 
sometimes too high in comparison with experimental data. 

In the IBM-2-CM approach, the lightest Pt isotopes are deformed (172-178Pt). In 
186Pt isotope a prolate shape and a γ-soft minimum coexist, but a well-deformed 
prolate minimum quickly develops in 180Pt isotope, becoming the most pro-
nounced prolate minimum at the mid-shell, i.e., in 182Pt isotope with the prolate 
shape remaining well pronounced up to 186Pt isotope. Moving towards heavier 
mass Pt isotopes, γ-flat energy surfaces start to develop. The 198-200Pt isotopes 
tend to spherical shape because of the approach to magic number. 

Concerning electric transition probability B(E2) values, we find that in all 
calculations the overall trend is reproduced reasonably very well in some transi-
tions, but notice some discrepancies present case of the decay of the 20+  states 
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in heavier Pt isotopes, in general, better than the values calculated by Bjjker et 
al., [11]. 
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