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Abstract 
Character of contract pressure distribution between the outside surface of the 
sealing material and rigid cylinder wall depending on geometrical sizes and 
mechanical properties of a sealer under its unilateral compression, is defined. 
The magnitude of the axial load for achieving tightness is determined. The 
dependence between the magnitude of the axial load necessary for achieving 
tightness and geometrical sizes is determined. It is shown that with a decrease 
in the height of the sealing element, the axial load necessary for achieving 
tightness greatly increases. Threshold height of the sealer, above which con-
tact pressure depends little on the magnitude of the axial load, is defined. The 
stress-strain state of the sealing element is defined with regard to viscous-elastic 
properties of its material. It is shown that this greatly influences its sealing 
ability. 
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1. Introduction 

Achieving tightness with the least external load by sealers improves their effi-
ciency and determination of sealing parameters has an important scientific value 
[1]-[9]. A major problem with these studies arises from the ignoring influence of 
edge effects and heredity and also, mechanism of achieving tightness was not 
studied enough. The mechanism of achieving tightness was touched upon in the 
works [1] [2] [3]. As the experience of using sealing elements shows, the edge 
effects and heredity have a significant influence on their sealing ability [10] [11] 
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[12] [13]. Therefore, study of sealing ability of cylindrical sealing elements with 
regard to edge effects and heredity and development on this basis effective 
measure to improve their efficiency has both a practical and scientific value. 

In this paper, based on theoretical investigations, we determine the character 
of contact pressure distribution between the outside surface of the sealing ele-
ment and rigid cylinder wall depending on geometrical sizes and mechanical 
properties of the sealer under its unilateral compression. 

The magnitude of the axial load for achieving tightness with regard to differ-
ences of strain state before and after contact of outside surface of the sealing 
element with cylinder wall, is defined. The dependence between the magnitude 
of the axial load necessary for tightness and geometrical sizes under unilateral 
compression of the sealing element, is established. It is shown that with decrease 
in the height of the sealing element the axial load necessary for achieving tight-
ness, greatly increases. Furthermore, the limiting value of the height of the seal-
ing element under unilateral compression, above which contact pressure de-
pends a little on the magnitude of the axial load, is defined. 

In this paper, the first section is exposed to research background of this pa-
per’s work and the structure of this paper. Section 2 introduces the elastic state-
ment of problem, and the dependence between the axial load necessary for the 
first contact of the outer surface of the sealing element with the rigid cylinder 
wall and its physic-mechanical properties and geometrical sizes is established. In 
Section 3, the analytic formula allowing to determine the axial load necessary for 
full contact and tightness of the surface of the sealing element and cylinder wall 
depending on its physic-mechanical properties and geometrical sizes is found. 
Section 4 introduces the character of contract pressure distribution between the 
outside surface of the sealing material and rigid cylinder wall depending on 
geometrical sizes and mechanical properties of a sealer under its unilateral com-
pression. In Section 5, based on linear laws of heredity the influence of visc-
ous-elastic properties of the cylindrical sealing element on its sealing ability is 
determined. In Section 6, numerical calculations are conducted under different 
conditions, and the results of numerical calculations are represented in the form 
of graphs of contact pressure and external forces necessary achieving sightless 
and discussed. In Section 7, some conclusions are reached. 

2. Statement and Solution of the Problem Elastic Solution 

First, some parameters are given in Table 1.  
Let us consider a sealing element tightly put on the stock and with a gap δ  

between its outside surface and rigid cylinder wall (Figure 1). 
The tightness of the surface of the sealing element and cylinder wall is achieved 

by unilateral axial compression (Figure 1). The solution of the problem is per-
formed in two stages. The first step is compression of the sealing element to the 
first contact of its outside surface with cylinder wall, the second state is to 
achieve tightness. 
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Table 1. Nomenclature. 

parameter symbol parameter symbol 

deformation of the sealing element in the axial direction w instantaneous modulus of elasticity ME  

deformation of the sealing element in the radial direction u elasticity modulus 2E  
radial, tangential, axial and shear deformations rε , θε , zε , rzγ  shear modulus of the sealing material G 

radial, axial and tangential stress rσ , zσ , rzτ  friction coefficient between the washer  
and the end of the sealer 

µ  

hydrostatic pressure function s 
dynamical viscosity of the material  

of the sealing element 
η  

gap between its outside surface and rigid cylinder wall δ  bed ratio 0k  

height of the sealer H 
axial loads necessary for first and full  

contact of the outer surface of the sealing  
element with the cylinder wall 

Q, P 

inner and outer radii of the sealer 0R , 1R  medium’s pressure P∗  

outer radius of the rigid cylinder 2R  Kronecker’s symbol
 ijδ  

 

 
Figure 1. Calculation scheme. 

 
Let us consider the first stage. As the material of the sealing element is homo-

geneous, we accept its deformation as axially-symmetric. Then we can use the 
hypothesis of plane sections and assuming that the axial deformation of the 
sealing element depends only on the coordinate z in the axial direction. 

We locate the origin of the coordinate system in the center of the lower sec-
tion of the sealing element, direct the coordinate axis z vertically-upwards, the 
axis r to the direction of increasing the radius (see Figure 1). 

Allowing for above assumptions, we accept the deformation of the sealing 
element 1w  in the axial direction in the form [1] [2] [3] 
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( )1 1w f z= ,                            (2.1) 

where ( )1f z  is an unknown function dependent on z and to be determined. 
Accepting the sealing element material as incompressible [3] [14] we have the 

equality 

( )1 11 0
u r w

r r z
∂ ∂

+ =
∂ ∂

,                        (2.2) 

where ( )1 ,u r z  is deformation of the sealing element in the radial direction. 
Allowing for formula (2.1), from expression (2.1) we get 

( ) ( )1
1

1 u r
f z

r r
∂

′= −
∂

.                        (2.3) 

Integrating expression (2.3), we have the equality 

( ) ( ) 0
1 1

1,
2

cu r z rf z
r

′= − + ,                     (2.4) 

where 0c  is an integration constant. 
The boundary condition has the form: 

( )
0

1 , 0
r R

u r z
=

= .                         (2.5) 

Then, allowing for condition (2.5), from expression (2.4) we get 

( ) ( )
2
0

1 1
1,
2

Ru r z r f z
r

 
′= − 

 
.                   (2.6) 

For the potential energy of the sealing element, after its deformation with re-
gard to axisymmetry, we have the equality [3] [6] 

( )
1

0

* 2 2 2 2
1

0 0

14 d d d
2

RH H

r z rz
R

G r r z Q f z zθε ε ε γ  ′Π = π + + + − ⋅ 
 ∫ ∫ ∫ ,      (2.7) 

where H is height; 0R , 1R  are inner and outer radii of the sealer; rε , θε , zε  
and rzγ  are radial, tangential, axial and shear deformations, respectively [5] 
[14]: 

r
u
r

ε ∂
=
∂

; u
rθε = ; z

w
z

ε ∂
=
∂

; 1
2rz

u w
z r

γ ∂ ∂ = + ∂ ∂ 
.        (2.8) 

Then allowing for formulas (2.1), (2.6) and (2.8), from expression (2.7) we get 

( )

( ) ( )

4
* 2 2 20

1 02
10

4 2 2 4 4 21
0 0 1 1 0 *

0

1 32
2 2

1 1 32 ln 2 d
32 2 2 2

H RG R R f z
R

R QR R R R R f z f z z
R G

  ′Π = π − + − 
 

  ′′ ′+ − + + −   π   

∫

 

(2.9) 

where G is a shear modulus of the sealing material. 
Based on the Euler equation [15] [16] from the functional (2.9) we have 

( ) ( ) ( )
4

2 20
2 21 02
1 01

1 1
4 2 2 4 4 4 2 2 4 41 1
0 0 1 1 0 0 0 1 1 0

0 0

16 3 2 8
01 3 1 32 ln 2 2 ln 2

2 2 2 2

R R R q R RR
z zR RR R R R R R R R R R

R R

ϕ ϕ

 
− + −  − ′′ − + =
− + + − + +

, (2.10) 
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where ( )* 2 2
1 0

Qq
G R R

=
π −

, ( ) ( )1 1z f zϕ ′= . 

Integrating differential Equation (2.10) accepting ( ) ( )1z f zϕ ′= , we get the 
equation 

( ) ( ) ( )1 2 1
1 1 1 32

1 1 1

cosh sinhc c Af z k z k z q z c
k k k

= + + ⋅ +           (2.11) 

( )
4

2 20
2 21 02
1 01

1 1
4 2 2 4 4 4 2 2 4 41 1
0 0 1 1 0 0 0 1 1 0

0 0

3 2 8
4 ;1 3 1 32 ln 2 2 ln 2

2 2 2 2

R R R R RRk AR RR R R R R R R R R R
R R

 
− + − − = = 
− + + − + + 

  

. 

1c , 2c , 3c  are integration constants determined from the boundary conditions 

( )
1

0

*2 , d
R

zrz H
R

Q G r H r rµ γ
=

= − π ∫ ; 1 0 0zw
=
= ; ( )

1
01 , z

r R
u r z δ=

=
= ,   (2.12) 

where µ  is a friction coefficient between the washer and the end of the sealer. 
Allowing for boundary conditions (2.12), from the expression (2.11) we get 

( )
( )

( )
( )

2 2
1 0 11

1 2
1 1 1 1 1

sinh
cosh cosh

q R R k HAc q
B k k H k k H
µ δ

λ

−  
= − − 

 
; 1

2 2
1

Ac q
k

δ
λ

= − ; 

( )
( )

( )
( )

2 2
1 0 11 1

3 2 2
1 1 1 1 1 1 1

sinh
cosh cosh

q R R k Hc Ac q
k B k k H k k k H

µ δ
λ

−  
= − = − + − 

 
        (2.13) 

2
3 2 3 0

1 0 0 1 1 1
1

1 1 1 1;
3 2 6 2

RB R R R R R
R

λ
  

= − + = −  
  

. 

The radial stress at any point of the sealer, with regard to its compressibility 
can be defined by the formula [3] [14] [17]  

( )*
12r rG sσ ε= + ,                      (2.14) 

where s is a hydrostatic pressure function. 
s can be determined from the boundary condition 

( ) 0r r R zσ
=

=  ( ) ( )
1

1 1 ,
r R

R z R u r z
=

 = +
 

.            (2.15) 

Then, allowing for expression (2.6) and (2.14), from condition (2.15) we get 

( ) ( )
2
0

1 12 1Rs f z
R z

 
′= +  

 
.                     (2.16) 

We define the axial load Q for repressing the scalar by the formula  

( )2 2
1 0 z z H

R R Qσ
=

π − = ,                     (2.17) 

on the other hand, we have the equality 

( )*
12z zG sσ ε= + .                       (2.18) 

Allowing for expressions (2.11), (2.13)-(2.16) and (2.18), from expression (2.17) 
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we get 

( ) ( )
2
0

2 3RQ f H
R H

 
′= +  

 
.                  (2.19) 

From expression (2.19) we define q in the explicit form 

2 33 3 2
3

2 33 3 2
3

1 2 1 2
2 27 3 4 27 3 9 3

1 2 1 2
2 27 3 4 27 3 9 3 3

a ab a ab a bq c c

a ab a ab a b ac c


     = − − + + − + + − +           




      + − − + − − + + − + −            


  (2.20) 

( ) ( ) ( ) ( )1
1 1

1 32 3 1
3 1 cosh cosh

Ca C R
C C k H k H

δ δ
λ

   
= − + +     −   

; 

( ) ( ) ( ) ( ) ( )

2

2
0 1 12 2

1 1 1

1 63 1
3 1 cosh cosh cosh

Cb R C C R R
C C k H k H k H

δ δ δ
λ

    
 = + − + + +      −      

; 

( )
( ) ( )

2
2
0 1

1
3 2

1

3
cosh

3 1 cosh

R R
k H

c
C C k H

δ

δ
λ

 
+ + 

 =
−

; 
( ) ( )

( )
( )

( )

2 2
1 0 1 11

2
1 1 1 1 1

sinh 1 cosh
cosh cosh

R R k H k HAC
B k k H k k H

µ − −
= +


. 

3. Determining Axial Load until the Outer Surface of the Seal  
Is Completely in Contact with the Cylinder Wall 

Now let us define the magnitude of the axial load necessary for complete contact 
of the outer surface of the sealing element with rigid cylinder wall. We locate the 
origin of the coordinate system at the center of the lower section of the sealing 
element and direct the axis z vertically upwards, the axis r to the side increasing 
of the radius as was shown in Figure 2. 

Using the hypothesis of plane sections and assuming that the axial deforma-
tion of the sealing element depends only on the coordinate in the axial direction 
z, we can accept 

( )2 2w f z= ,                           (3.1) 

where 2w  is axial deformation of sections of the sealing element, ( )2f z  is an 
unknown function dependent only on z. 

Then allowing for formula (3.1), from the incompressibility condition (2.2) we 
have  

( ) ( ) 4
2 2

1,
2

cu r z rf z
r

′= − + ,                    (3.2) 

where 4c  is an integration constant. 
The boundary condition has the form 

( )
0

2 , 0
r R

u r z
=

= .                       (3.3) 
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Figure 2. Calculation scheme. 

 
Then allowing for the boundary condition, from expression (3.2) we get 

( ) ( )
2
0

2 2
1,
2

Ru r z r f z
r

 
′= − 

 
.                   (3.4) 

For the potential energy of the sealing element, after its deformation, with regard 
to axisymmetry of the problem we have the equality [9] [18]. 

( )
2

0

* 2 2 2 2
2

0 0

14 d d d
2

Rh h

r z rz
R

G r r z P f z zθε ε ε γ  ′Π = π + + + − ⋅ 
 ∫ ∫ ∫ , ( )1h H f H = −  .(3.5) 

Substituting expression (3.4) in formula (2.8), the obtained results in expres-
sion (3.5) and then integrating it with respect to r, based on the Euler equation 
[15] from the obtained functional we obtain the equality 

( ) ( )2
2 2 2 2 0z k z A pϕ ϕ′′ − + =                    (3.6) 

( ) ( ) ( )2 2 * 2 2
2 0

, Pz f z p
G R R

ϕ
 

′ = =
π −  

, 

( )
4

2 20
2 22 02
2 02

2 2
4 2 2 4 4 4 2 2 4 42 2
0 0 2 2 0 0 0 2 2 0

0 0

3 2 8
4 ;1 3 1 32 ln 2 2 ln 2

2 2 2 2

R R R R RRk AR RR R R R R R R R R R
R R

 
− + − − = = 
− + + − + + 

  

. 
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The solution of differential Equation (3.6) will have the form 

( ) ( ) ( ) 2
2 5 2 6 2 2

2

cosh sinh Az c k z c k z p
k

ϕ = + + ,           (3.7) 

where 5c  and 6c  are integration constants. 
Allowing for ( ) ( )2 2z f zϕ ′=  from expression (3.7) we get 

( ) ( ) ( )5 6 2
2 2 2 72

2 2 2

sinh coshc c Af z k z k z p z c
k k k

= + + ⋅ + .       (3.8) 

We define the integration constants 5c , 6c  and 7c  from the boundary condi-
tions 

2

0

*2 d
R

zrz h
R

P G r rµ γ
=
= − π ∫ ;                     (3.9) 

( ) ( ) ( )2 , r R h
z h

u r z hδ=
=

= ;                     (3.10) 

2 0 0zw
=
= ;                           (3.11) 

( ) ( ) ( ) ( )
1 1

1 1 1, ; ,
r R r R

R z R u r z z u r zδ δ
= =

 = + = −  
. 

Then allowing for boundary conditions (3.9)-(3.11), from expression (3.8) we 
have 

( )
( )

( )
( )

2 2
2 0 2

5 6
2 2 2 2

sinh
cosh cosh
R R k h

c p c
B k k h k h
µ −

= − ; 

( ) ( ) ( )
( )

( ) ( ) ( )2 2
2 0 22 2 2

6 22 2
2 2 22

sinh2 cosh cosh
( )

R R k hR h h k h A k h
c p

B k kR R h

µδ −
= − −

−
; 7 5

2

1c c
k

= −  

3 3
20 2

2 0 2
1

3 2 6
R RB R R

 
= − + 

 
. 

The axial force, necessary for deformation of the sealing element to its 
complete contact of its outer surface with cylinder wall, can be determined by 
the formulas 

( )2 2
2 0 z z h

R R Pσ
=

π − = ,                    (3.12) 

where zσ  is axial stress in any cross section of the scaling element.  
After complete contact of the outer surface of the sealing element with rigid 

cylinder wall, the boundary condition in the upper section has the form  

2 0r Rr
z h

σ =
=

= .                         (3.13) 

Then allowing for boundary condition (3.13), from expression (2.14) we get 

( )
2
0

2 22
2

1Rs f h
R

 
′= + 

 
,                     (3.14) 

And allowing for expressions (2.18) and (3.14) the expression (3.12) takes the 
form 
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( )
2
0

22
2

3Rp f h
R

 
′= + 

 
.                    (3.15) 

Then allowing for formula (3.8), and expressions of 5c , 6c  and 7c  from ex-
pression (3.15) we get 

( ) ( )
( )

2
0

2 2 2
2 2

2 3
R h h Rp
R R h R

δ  
= + −  

.                (3.16) 

4. Contact Pressure between the Surface of the Sealer and  
Cylinder Wall 

The contact pressure between the outside surface of the sealing element and cy-
linder wall after their complete contact can be determined (by the analogy with a 
beam on an elastic foundation) by the formula 

( ) ( )0 0r z k u zσ = ⋅                        (4.1) 

( ) ( )
1

0 0 1is a bed ratio; ,
r R

k u z u r zδ
=

 = −
 

. 

If this time the tightness of the wall is not provided, then we continue to 
compress the sealing element. To determine the stress-strain state, at the dis-
tance z from the lower basis of the sealer we distinguish an annular element of 
height dz and compose for it the equilibrium equation 

( ) ( )2 2
2 0 2 0

d2 d d
d

z
rz R R z R R z

z
στπ ⋅ + = −π − ,           (4.2) 

where rzτ  is tangential stress. 
On the other hand, with regard to incompressibility of the sealing material, we 

have [2] [3] 

1rz z
µντ σ
ν

=
−

,                          (4.3) 

where µ  is a friction coefficient, ν  is Poisson’s ratio. 
Substituting the expression (4.3) in Equation (4.2) and having integrated the 

obtained expression with regard to the boundary condition 0z z hσ σ
=
= , we get 

( )
( )( )0

2 0

2
exp

1z
h z
R R

µν
σ σ

ν
 −

= ⋅   − − 
,                 (4.4) 

where 0σ  is axial stress in the section of the sealing element, where the com-
pression force is applied. 

The contact pressure distribution between the outer surface of the sealer and 
rigid cylinder wall can be determined from the expression (4.1) and (4.4) as follows: 

1r z
νσ σ
ν

=
−

.                          (4.5) 

Then allowing for formula (4.4), from the expression (4.5) we get 

( )
( )( ) ( )0

0 0
2 0

2
exp

1 1r
h z

k u z
R R

µννσσ
ν ν

 −
= + ⋅  − − − 

.         (4.6) 
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The value of 0σ  maybe determined from the tightness condition 

( )( ) ( )0
0 0

2 0

2exp 0
1 1

h k u P
R R

νσ µν
ν ν

∗ 
+ ⋅ ≥  − − −   

is medium's pressureP∗   . 

5. Heredity Accounting 

Accounting of viscous-elastic properties of the material of the sealing element on 
sealing ability may be realized based on the hypothesis of elastic analogy [3] [13]. 
By this hypothesis when passing from elastic calculation to viscous-elastic one, 
only dependence between the stresses and strains changes. 

It should be noted that at elastic analogy, all stress components satisfy the de-
pendence between stresses and strain obtained on the basis of the chosen model 
for a uniaxial stress-strain state. 

The dependence between the stress-strain components for an arbitrary case of 
loading of a model that describes best the viscoelastic behavior of the material of 
a sealing element, is of the form [3] [10] [11] 

( ) ( )2ij ij ij ij ijG s sτ λτ ε νε δ ν + = + + +   ,              (5.1) 

where 1 ME E= , 1 2E Eλ
η
+

= , 2Eν
η

= , η  is dynamical viscosity of the material  

of the sealing element, ME  is instantaneous modulus of elasticity, 2E  is an 
elasticity modulus, ijτ  are stress components, ijε  are relative strain compo-
nents, ijδ  is Kronecker’s symbol, ijτ  and ijε  is a time derivative from stress 
and strain components. 

Based on elastic analogy we represent 

( ) ( ) ( ),x t x tε ε ε= .                      (5.2) 

Substituting expression (5.2) in formula (5.1), we get 

( ) ( )( ) ( ) ( )( )2ij ij ij ij ij ijG x s x t tτ λτ ε δ ε νε+ = + + .         (5.3) 

Integrating expression (4.3) with the initial condition  
( ) ( ) ( )( ),0 2ij ij ijx G x s xτ ε δ= +  we get 

( ) ( )( ) ( ) ( )( ) ( )

0

2 e e d
t

tt
ij ij ijx s x G λ ξλτ ε δ ε ξ νε ξ ξ− −− 
= + + + 

 
∫  .    (5.4) 

Introducing the denotation 

( ) ( )( ) ( )

0

e e d
t

ttG G λ ξλ ε ξ νε ξ ξ− −− 
= + + 

 
∫  ,             (5.5) 

we can represent the expression (5.4) in the form 

( ) ( )2ij ij ijG x s xτ ε δ = +  .                    (5.6) 

For the considered case, when the sealing element at initial moment of deforma-
tion ( ) ( )*

0
,

t
w z t w z

=
= .  
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( ) ( ) ( )*,w z t w z w t= , ( ) 1w t = .                 (5.7) 

Then allowing for (5.7), from expression (5.5) we get 

( )** *
* *

*
* *

0

e e d 1 e
t

tt tG G Gλ ξλ λν νν ξ
λ λ

− −− −    
= + = − +   

    
∫ .        (5.8) 

Allowing for the expression (5.8), from the expression (2.20) we get 

( ) *
* *

2 2
1 0 * *

2 33 3 2
3

2 33 3 2
3

1 e

1 2 1 2
2 27 3 4 27 3 9 3

1 2 1 2
2 27 3 4 27 3 9 3 3

tQ G R R

a ab a ab a bc c

a ab a ab a b ac c

λν ν
λ λ

−  
= π − − +  

  


     × − − + + − + + − +           



      + − − + − − + + − + −            



  (5.9) 

Allowing for the expression (5.8), from the expression (3.16) we get 

( ) ( )
( ) ( ) *

2 * *
2 2 0
2 02 2 2 * *

2 2

2 3 1 e tR h h RP G R R
R R h R

λδ ν ν
λ λ

−    
= π − + − +     −     

.    (5.10)

 

 

We now consider the case when the sealing element deforms uniformly. Based 
on the elastic analogy [3] [13] accepting the deformation of cross sections of the 
sealer in the form (Figure 3) 

( ) ( ) ( )1 1 1,z t z tε ε ε= ⋅ ,                      (5.11) 

( ) ( ) ( ) ( ) ( )1 1 1 1
1

tt w t H t H t T H t T
T

ε = = − − + −   ,          (5.12) 

where ( )H t  is a Heaviside function, 1T  is time of deformation of the upper 
section of the sealing element to its first contact of the outer surface with the ri-
gid cylinder wall.  
 

 
Figure 3. Graph of time dependence of relative axial deformation of the upper section. 

From formulas (5.5) and (5.12) we get 
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( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )

*

*

1 1 1
1 10

*
1 1

1

1e

e d

t
t

t

G G H H T T T
T T

H H T H T
T

λ

λ ξ

ξξ ξ δ ξ δ ξ δ ξ

ξν ξ ξ ξ ξ

−

− −

 = + − − + − − + − 
 

  + − − + −  
   

∫
(5.13) 

where ( )tδ  is Dirac’s function. 
Integrating formula (5.13), we get 

( ) ( ) ( )( ) ( )( ){
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )}

* * *
1 1 1*2

1

* * * * * * * *
1 1 1 1

* * *2 * * * * *
1

exp

exp

GG H T H t T t T
T

t T H t T T H T

H t T t t H t

ν λ λ
λ

λ ν λ ν ν ν λ λ

ν λ λ λ ν ν λ λ

= − − − − − −

 + − − − + − + − − + −  
+ − + − + − + +

 (5.14)

 

Then, allowing for formula (5.14) following from the expression (2.20) we get 

( ) ( ) ( ) ( )( ) ( )( ){
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )}

2 2 * * *
1 0 1 1 1*2

1

* * * * * * * *
1 1 1 1

* * *2 * * * * *
1

2 33 3 2
3

3

exp

exp

1 2 1 2
2 27 3 4 27 3 9 3

1 2
2 27 3

GQ R R H T H t T t T
T

t T H t T T H T

H t T t t H t

a ab a ab a bc c

a ab

ν λ λ
λ

λ ν λ ν ν ν λ λ

ν λ λ λ ν ν λ λ

π
= − − − − − − −

 + − − − + − + − − + −  
+ − + − + − + +


     × − − + + − + + − +           



+ − −
2 33 2

3
1 2
4 27 3 9 3 3

a ab a b ac c


      + − − + + − + −            


 (5.15) 

From the expression (5.15) we define the magnitude of the axial load neces-
sary for recompressing the sealing element to contact of its outer surface with 
the cylinder wall. 

Substituting formulas (5.14) in expression (3.16) for the axial load necessary 
for full contact of the outer surface of the sealing element with the cylinder wall 
with regard to heredity, we get 

( ) ( )
( ) ( ) ( ) ( ) ( )( ){

( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )}

2
2 2 * *0
2 0 2 2*2 2 2 2

2 2 2

* * * * *
2 2 2

* * * * * * *2
2 2 2

* * * * *

2 3

exp

exp

R h hG RP R R H T H t T
T R R h R

t T t T H t T

T H T H t T

t t H t

δ
ν λ

λ

λ λ ν λ ν

ν ν λ λ ν λ λ

λ ν ν λ λ

 π
= − + − − − − −  

 × − − + − − − + − 
 + − − + − + − + 

× − + − + +

 (5.16) 

The axial load necessary for achieving tightness 
*P Q P= + .                          (5.17) 

6. Numerical Calculation  

Thus, based on theoretical investigations, the analytic formulas allowing to de-
termine the contact pressure between the outside surface of the sealing element 
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and rigid cylinder wall and the axial loads necessary for first and full contact of 
these surfaces depending on its physic-mechanical properties and geometrical 
sizes is found. 

The numerical calculation is made by formulas (2.20), (3.16), (4.6), (5.9), 
(5.10), (5.15) and (5.16) for the values of parameters, which are showed in Table 
2. 

The results of numerical calculations are represented in the form of graphs of 
contact pressure and external forces necessary achieving sightless (Figures 4-10).  

As is seen from Figure 4, with increasing the element’s height, the axial load 
necessary for the first contact of its outer surface with the rigid cylinder wall at 
first falls and then (after certain value of height) stabilizes. 

It follows from Figure 5 that the axial load necessary for full contact of the 
outer surface of the sealing element with the wall of the casing also decreases 
with increasing the height, and then (after its certain value) stabilizes. 

The distribution of contact pressure between the outer surface of the sealing 
element and the rigid cylinder wall depending on the coordinate z was depicted 
in Figure 6. As is seen from Figure 6 the greatest value of the contact pressure is 
achieved in the lower section of the sealing element. With increasing the value of 
z the contact pressure decreases and then after certain value of the height of the 
sealing element it disappears. 

 
Table 2. The values of parameters. 

Variable Value 

0R , the radius of the cylinder being sealed, (m)

 
0.073 

1R , the inner radius of the sealer, (m)

 
0.093 

2R , the outer radius of the sealer, (m)

 

0.1 

δ , the size of the gap between its outside surface and rigid cylinder wall, (m) 0.003 

H, the height of the sealer, (m) 0.005 

G, the shear modulus of the sealing material, (Pa) 1.3·108

 µ , the friction coefficient between the washer and the end of the sealer, (-)
 

0.5
 

ν , the Poisson’s ratio, (-) 
0.25 

P∗ , the medium’s pressure, (Pa) 2·107 

0k , the bed ratio, (Pa/m) 6.7·109 

ν ∗ , * 2Eν
η

= , (-)

 

0.01
 

λ∗

, 
* 1 2E Eλ

η
+

= , (-) 0.1
 

1T , the time of deformation of the upper section of the sealing element to its 

first contact of the outer surface with the cylinder wall, (s) 
10, 20, 30, 40, 50, 60

 

2T , the time of deformation of the upper section of the sealing element to its 

complete contact of the outer surface with the cylinder wall, (s) 
10, 20, 30, 40, 50, 60 
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Figure 4. The graph of dependence of axial load necessary for the contact of the outer 
surface of the sealing element with the rigid cylinder wall on its height. 
 

 
Figure 5. The graph of dependence of the axial load necessary for full contact of the outer 
surface of the sealer with the rigid cylinder wall on its height. 
 

 
Figure 6. The graph of dependence of the character of contact pressure distribution de-
pending on coordinate z. 
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Figure 7. The graph of dependence of the axial load Q necessary for precompressing the 
sealing element to the first contact of its outer surface with the rigid cylinder wall with 
regard to heredity. 
 

 
Figure 8. The graph of dependence of the axial load P necessary for recompressing the 
sealing element to full contact of its outer surface with the rigid cylinder wall. 
 

 
Figure 9. The graph relaxation of axial stress of the upper section of the sealer to the first 
contact of its outer surface with the rigid cylinder wall. 1— 1 10 sT = , 2— 1 20 sT = , 3—

1 30 sT = , 4— 1 40 sT = , 5— 1 50 sT = , 6— 1 60 sT = . 
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Figure 10. The graph of relaxation of the axial stress of the upper section of the sealer af-
ter full contact of its outer surface with the rigid cylinder wall. 1— 1 10 sT = , 2— 1 20 sT = , 
3— 1 30 sT = , 4— 1 40 sT = , 5— 1 50 sT = , 6— 1 60 sT = . 

 
As is seen from Figure 7 and Figure 8, for constant value of axial deformation 

in the section of application of external force with regard to heredity the stress 
greatly relaxes. For 40 s. its value at the point of application of the external force 
decreases about 5 times, and then stabilizes. This may cause violation of tightness 
of the sealer. 

The same picture is observed when deformation of the sealer happens un-
iformly. This time axial stress relaxation for different velocities of deformation 
occurs differently (Figure 9 and Figure 10). 

7. Conclusions 

In this article, we determine stress-strain state of the sealing element in the form 
of a hollow cylinder based on theoretical investigations. Influence of viscous-elastic 
properties of the material of the sealing element on its sealing ability is realized 
based on the hypothesis of elastic analogy. 

1) The dependence between the magnitude of the axial load necessary for 
tightness and geometrical sizes under unilateral compression of the sealing 
element, is established. It is shown that, with decrease in the height of the sealing 
element the axial load necessary for achieving tightness, greatly increases. Fur-
thermore, the limiting value of the height of the sealing element under unilateral 
compression, above of which contact pressure depends a little on the magnitude 
of the axial load, is defined. 

2) The obtained expression allows to determine the character of contact pres-
sure distribution between the surface of the sealer and the rigid cylinder wall 
depending on its physical-mechanical characteristics and geometrical sizes.  

3) Based on linear laws of heredity the analytic formula allowing to determine 
the axial load necessary for tightness of the surface of the sealing element and 
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cylinder wall depending on its physic-mechanical properties and geometrical 
sizes is found. The current work demonstrates that viscous elastic properties of 
the sealing material greatly influence on its sealing ability and their ignorance 
may lead to incorrect conclusions. 

4) The results of numerical calculations are represented in the form of graphs 
of external force necessary for achieving sightless. It is shown that, visc-
ous-elastic properties of sealer’s material greatly influence on its sealing ability. 
Because of heredity of the sealer’s material, the values of external forces in some 
cases drop about four times. 
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