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Abstract 
The Kadison-Singer problem has variants in different branches of the sciences 
and one of these variants was proved in 2013. Based on the idea of “sparsifi-
cation” and with its origins in quantum physics, at the sixtieth anniversary of 
the problem, we revisit the problem in its original formulation and also ex-
plore its transition to a result with wide ranging applications. We also de-
scribe how the notion of “sparsification” transcended various fields and how 
this notion led to resolution of the problem. 
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1. Introduction and History 

The word “sparsification” has great relevance in modern society. In data min-
ing, data scientists constantly strive to construct synopsis of data such that re-
levant features of the data are retained. In another sense, the endeavor is to 
“sparsify” data without losing its most important characteristics. In network-
ing and graph theory, mathematicians and computer scientists strive to “spar-
sify” complex networks while trying to retain essential properties of the origi-
nal network. In other words, the endeavor is to remove suitable vertices and 
edges to construct a subgraph which can “decently” approximate the original 
network. The words synopsis and approximation used in each of the above 
categories are synonyms but to be more mathematically relevant it is impor-
tant to mention that the idea of approximation is based on comparing the spec-
trum of the graph/network and see if they are the same. It is clear that, this 
idea of “sparsification” will have implications in multitude of applied problems 
including networks involving the Traveling salesman problem. It might be in-
teresting to note that the idea of “sparsification” was of great interest decades 
back and one of the greatest mathematical conjectures “The Kadison-Singer 
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Problem” was an outcome of this idea. This problem was resolved by Marcus, 
Spielman and Srivastava in 2013 [1]. The resolution provided scientists with 
tools necessary to implement the idea of “sparsification” in various applied 
fields. We talk a bit about the history of this problem and how the problem by 
itself had different formulations in applied fields of mathematics. Finally, we 
study and understand the problem in its most original formulation. We also 
discuss completion of the proof from the original paper after resolution of the 
conjecture. The history and the mathematics of this problem including its 
transition from a problem from physics to one in the engineering sciences and 
computer science is very interesting and has implications for other longstand-
ing problems in these fields like the asymmetrical traveling salesman problem 
[2]. Next, we talk a bit about the history of the problem. The problem was 
posed by Kadison and Singer in 1959 in [3] and was motivated by Dirac’s work 
in quantum mechanics and the intent was to provide a mathematical frame-
work for characterizing quantum systems and study if states of compatible ob-
servables have unique extensions to all observables in the quantum system. 
The problem is a query: Does every pure state on the diagonal subalgebra of 
the C*-algebra of all bounded linear operators on ( )2�   i.e. ( )( )2B �   ex-
tend uniquely to a pure state on all of ( )( )2B �  ? Kadison and Singer were of 
the opinion that the conjecture was possibly negative. In other words, their be-
lief was that there are pure states ,f g  on ( )( )2B �   such that f g≠  but 
f g=  on the diagonal subalgebra D of ( )( )2B �  . In 1970’s, Joel Anderson 

sparked interest in this problem through his equivalent formulation in Frame 
theory. Frame theory has applications in engineering, particularly in signal 
processing and so this equivalent formulation generated lot of interest. In the 
year 2004, Nick Weaver reformulated the problem as a discrepancy problem 
involving vectors in nC . These equivalent formulations with relevant proofs 
can be found in [4] and [5]. Using Nick Weaver’s combinatorial formulation 
of the Kadison-Singer problem, Marcus, Spielman and Srivastava eventually 
proved the theorem in 2013. Interestingly, their research in graph theory and 
computer science led them to the Kadison-Singer problem and it was not the 
other way around. It is also worth mentioning that their original study in-
volved researching conditions to “sparsify” networks with appropriate edge 
and vertex removals without changing fundamental properties of the original 
network. The most surprising aspect of their resolution was that, contrary to 
the belief of Kadison and Singer and many other researchers, the conjecture 
was proved to be true. Recently, methods of this proof have been implemented 
in algorithmic complexities involving the Traveling Salesman problem and al-
so in computational complexity theory [2] [6]. The Kadison-Singer problem 
whose journey originated from Quantum Mechanics and whose resolution has 
implications involving computational complexities of the Traveling Salesman 
problem has been fascinating. In this spirit, it might be worthy to revisit and 
understand the problem in its original formulation. 
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2. Understanding the Kadison-Singer Problem 

The Kadison-Singer Problem was one of the major long standing unresolved 
problems in functional analysis. In order to understand this original problem of 
“sparsification”, we discuss some preliminaries. We will begin by defining a Hil-
bert space. 

Definition 1. A Hilbert space H is a vector space having an inner product 
such that every Cauchy sequence in H has a limit in H. 

Definition 2. A separable Hilbert space is a Hilbert space H that has a count-
able dense subset. 

A relevant example of a separable Hilbert-space is ( )2 2=� �  . 
Example 1. ( )2 2=� � �  is a separable Hilbert space with the orthonormal 

basis { } ( )i i
e

∈  , where ( ) ( ) 2
2 1 2

1
, , : ;i i

i
z z z C z

∞

=

 = ∈ < ∞ 
 

∑� � � . Note that   

forms the indexing set. For ( )1 2, ,z z z= �  and ( )1 2, ,z z z′ ′ ′= �  in ( )2�  ; the 

inner product is defined as follows: 
1

, i i
i

z z z z
∞

=

′ ′= ∑ . 

The elements of ( )2 2=� � �  can be expressed as functions from the set of 
natural numbers N to the set of complex numbers C. We consider the set of all 
bounded linear operators on ( )2�   i.e. ( ) ( )2 2:T →� �   and denote it by 

( )( )2B �  . Next, we define a C*-algebra. One may refer to [7] for a detailed in-
troduction to C*-algebras and to [4], [8] and [9] for relevant examples. 

Definition 3. A C*-algebra A is a norm closed self-adjoint subalgebra of the 
operator algebra ( )B H , for some Hilbert space H. 

In other words, A is: 
1) Closed in the norm topology of operators. 
2) Closed under the operation of taking adjoints of operators. 
Looking at the problem that originated in quantum mechanics, the obser-

vables of a quantum mechanical system are represented by ( )B H . 
Next, we will try to understand the notion of pure states on a C*-algebra. We 

will start by describing a linear functional. 
Definition 4. A linear functional on a C*-algebra A is a linear map, say f from 

A to C. 
The space consisting of linear functionals on a C*-algebra A is called the dual 

space of A and is denoted by A’. We look at an example of linear functional on 

( )2�  . 

Example 2. Fix ( ) ( )1 2 2, ,z z z N= ∈� �  and consider ( )
1

i i
i

f a z a
∞

=

= ∑ , where 

( ) ( )1 2 2, ,a a a= ∈� � � . 

An example of a bounded linear operator on the infinite dimensional separa-
ble Hilbert space ( )2 2=� � �  will be an infinite dimensional matrix with com-
plex entries but for the sake of simplicity, let us look at the two dimensional ver-
sion of ( )2 2=� � �  and let us call it 

22l . The algebra of bounded operators on  
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22l  is ( )2

11 12
2

21 22

: ; ,1 , 2ij

a a
B l A A a C i j

a a
   = = ∈ ≤ ≤  
   

. A linear functional on  

( )22B l  is then in the form 
2

1
ij ij

i
aα

=
∑ , ij Cα ∈ , i.e.  

11 11 12 12 21 21 22 22a a a aα α α α+ + + . If we define the matrix 11 12

21 22

K
α α
α α
 

=  
 

, then 

this linear functional can be expressed in the form of trace of AK i.e. ( )tr AK . 

Also as mentioned previously, the observables of a quantum mechanical sys-
tem are represented by ( )B H  and a state of this system is a linear functional 
on ( )B H . 

Definition 5. A positive linear functional on a C*-algebra is a linear functional 
f such that ( ) 0f x ≥  whenever 0x ≥ . A state is defined to be a positive linear 
functional of norm 1. 

Definition 6. A pure state is a state which is an extreme point of the set of all 
states of the C*-algebra. 

Here is an example of a pure state. 
Example 3. For a unit element vector ( )2z l∈  , a pure state on ( )( )2B l   

is in the form ( ) ,zf T Tz z= . 
Continuing with the example from above, if A is the identity matrix I, then 
( ) 1tr IK =  provided ( ) 1tr K = . So a state on ( )22B l  should satisfy  
( ) 1tr K = . In addition, for a state on ( )22B l , the additional condition on the 

state is that the matrix K is self-adjoint i.e. the conjugate transpose of the matrix 
K is itself and all its principal minors are non-negative. For example, this hap-
pens in a situation where the matrix K has non-negative real entries. Consider  

the subalgebra 11

22

0
: ; ,1 , 2

0 ij

a
S A A a C i j

a
   = = ∈ ≤ ≤  
   

 of ( )22B l  and con- 

sider the pure state on S given by 11a . We need to find states on ( )22B l  that is 

an extension of this pure state on S. These states will be in the form ( )tr AK  

with 12

21

1
0

a
K

a
 

=  
 

; and satisfying 12 21a a= . For the condition that all prin-

cipal minors be non-negative, this happens if 12 21 0a a ≥  i.e. 12 12 0a a ≥ . If  

12a x iy= + , 12 12 0a a ≥  implies ( )( ) 0x iy x iy+ − ≥  i.e. 2 2 0x y+ ≥ . So  

0x y= = . In other words 
1 0
0 0

K  
=  
 

; and ( ) 11tr AK a= . Thus the state on S 

given by 11a  has unique extension to all of ( )22B l . As seen for this example, 

the Kadison-Singer problem as resolved is true. 
Next, we state the Krein-Milman theorem, see [10]. A general statement of the 

theorem is given below: 
Theorem 1. If C is a compact convex subset of a locally convex topological 

vector space A, then C is the closed convex hull of its extreme points. 
Recall that, a pure state is a state which is an extreme point of the set of all 

states of the C*-algebra. The existence of pure states is guaranteed by the follow-
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ing observations: 
1) The set of states of the C*-algebra A is a convex subset of the dual space of 

A(A’). It is also compact in the weak*-topology on A’, where the weak*-topology 
is defined by the semi-norms ( )f x  on the dual space A’. 

2) By Krein-Milman theorem, the set of states is the closed convex hull of its 
extreme points. 

These extreme points are the pure states. 

3. Extension of States 

Hahn-Banach theorem is one of the profound theorems in functional analysis 
which has far reaching applications in the sciences, for example thermodynamics 
[11]. 

Theorem 2. If C is a subspace of the normed linear space A and if f is a 
bounded linear functional on C then f can be extended to a bounded linear func-
tional F on A such that |F C f= , and F f= . 

Thus, by Hahn-Banach theorem, a state on a C*-subalgebra C of A is extended 
to A. The above observation in conjunction with the Krein-Milman theorem 
suggests that a pure state on the diagonal subalgebra of ( )( )2B l   extends to at 
least one pure state of ( )( )2B l  . Is this extension unique? Recall that this was 
the Kadison-Singer conjecture. 

4. Identification of the Diagonal Subalgebra of ( )( )2B l   

(via Stone-Cech Compactification of  : ( )β ) 

The diagonal subalgebra of ( )( )2B l   with respect to the natural basis is 

( )l∞  , where ( )l∞   is defined as follows: 
Definition 7. ( )l∞   is the space of all bounded sequences with respect to 

the supnorm i.e. sup n nx x
∞ ∈
=

�
 

We observe below that ( )l∞   can be characterized using ( )β   via the Stone- 
Cech compactification [12]. The Stone-Cech compactification of a space X that 
is not compact is a technique for constructing a compact Hausdorff space  

( )Xβ  which in layman’s terms is very similar to X. In technical terms, we con-
struct a homeomorphism k from X to a subspace of ( )Xβ  such that ( )k X  is 
dense in ( )Xβ . The set of natural numbers   is not compact. Implementing 
the above procedure for  , every bounded function from   i.e. elements of 

( )l∞   extends to continuous functions on ( )β  . 
Let ( )( )C β   represent the space of continuous functions on ( )β  . 
1) As seen before, we are able to identify ( )l∞   with ( )( )C β  . 
2) Pure states on ( )l∞   correspond to homeomorphisms induced by evalu-

ations at points in ( )β  . 
Kadison and Singer have already proved in [3] that the pure states corres-

ponding to points in   with the canonical basis vectors have unique pure state 
extensions. So the focus is on the pure states in ( )β −  . In other words, do 
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pure states corresponding to ( )β −   have unique extensions to pure states 
on all of ( )( )2B l  ? This was proved to be true in the equivalent formulation 
by Marcus, Spielman and Srivastava. These outstanding researchers were 
awarded the Polya prize in 2014 for their work. 

5. Equivalent Formulations of the Kadison Singer Problem 

Although the purpose of this paper is to provide a gentle introduction to the no-
tion of sparsification with Kadison-Singer problem as foundational, it is impor-
tant to state equivalent formulations of the problem for the benefit of the reader. 
This problem has equivalent formulations in Frame theory. In linear algebra, a 
frame of an inner product space is a generalization of a basis of a vector space to 
sets that may be linearly dependent [13]. Also, a sequence of vectors ( )nx  in a 
Hilbert space H is called a Reisz sequence if there exists constants 0 c C< ≤ < ∞   

such that 
2

2 2
n n n n

n n n
c a a x C a   ≤ ≤   
   
∑ ∑ ∑  for all sequences ( ) ( )2na l N∈ .  

The equivalent formulations with relevant proofs can be found in [4] but is out-
lined below for the reader’s benefit. 

1) Paving Conjecture: For 0ε > , there is a natural number r so that for every 
natural number n and for every linear operator T on 2

nl  whose matrix has zero 
diagonal, we can find a partition (i.e. a paving) { } 1

r
j j

A
=

 of { }1,2, , n� , so that 

j jA AQ TQ Tε≤  for all 1,2, ,j r= � . 
2) Bourgain-Tzafriri Conjecture: There is a universal constant 0A >  so that 

for every 1B >  there is a natural number ( )r r B=  satisfying: For every nat-
ural number n if 2 2: n nT l l→  is a linear operator with T B≤  and 1iTe =   

for all 1,2, ,i n= � , then there is a partition { } 1

r
j j

A
=

 of { }1,2, , n�  so that for  

all 1,2, ,j r= � . And for all choices of scalars all { }
ji i A

a
∈

 we have  
2

2

j j
i i i

i A i A
a Te A a

∈ ∈

≤∑ ∑ . 

3) Feichtinger conjecture: Every bounded frame can be written as a finite un-
ion of Riesz basic sequences. 

More recently, the resolution of Kadison-Singer Problem has generated lot of in-
terest in computational complexity. Please refer to [2] and [6] for more information. 

6. Conclusion 

The notion of sparsification has been of great relevance in history and in mod-
ern society. The Kadison-Singer problem based on this notion is one of those 
unique problems that transcends various scientific disciplines, bridges the gap 
between pure and applied, instills in us the beauty of the nature of mathematics 
and its wholesomeness. 
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