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1. Introduction

Let u be a positive Radon measures on R? satisfying only the growth condi-
tion, that is, there exists a constant C >0 and ne (O,d ] such that

u(0)=ci(oy 1)

for any cube Q c R’ with sides parallel to the coordinate axes. Q(x,l(Q))
will be the cube centered at x with side length /(Q). For r >0, rQwill denote
the cube with the same center as Qand with /(rQ)=r/(Q). The set of all cubes
O cRY, satisfying (Q)>0 is denoted by £(u). In this note, we do not as-
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sume that x is doubling.

Nazarov, Treil and Volberg developed the theory of the singular integrals for
the measures with growth condition to investigate the analytic capacity on the
complex plane [1] [2]. Tolsa showed that the analytic capacity is subadditive and
that it is bi-Lipschitz invariant [3] [4] and defined for the growth measures
RBMO (regular bounded mean oscillation) space, the Hardy space H, (x) and
the Littlewood-Paley decomposition [5] [6]. He also gave his H, (u) space in
terms of the grand maximal operator [7]. Recently many people paid attention
to the measure with growth condition because of recovering the Calderén-
Zygmund theory and solving the long-standing open Painlevé problem.

The boundedness of fractional integral operators on the classical Morrey spaces
was studied by Adams [8], Chiarenza et al [9]. In [9], by establishing a pointwise
estimate of fractional integrals in terms of the Hardy-Littlewood maximal func-
tion, they showed the boundedness of fractional integral operators on the Mor-
rey spaces. In 2005, Sawano and Tanaka [10] gave a natural definition of Morrey
spaces for Radon measures which might be non-doubling but satisfied the growth
condition, and they investigated the boundedness in these spaces of some clas-
sical operators in harmonic analysis. Later on, Sawano [11] defined the genera-
lized Morrey spaces on R" for non-doubling measure and showed the proper-
ties of maximal operators, fractional integral operators and singular operators in
this space.

A classical result of commutator is due to Coifman, Rochberg and Weiss [12],
if »e BMO and Tis a Calderén-Zygmund operator, then the commutator
[6,T] isbounded on L’ spaces for 1< p <oo.The same result for the multi-
linear commutator was obtained by Pérez and Trujillo-Gonzalez [13]. Tolsa
[5] developed the theory of Calderén-Zygmund operators and their commu-
tators with RBMO functions in the setting of non-doubling measures. Hu, Meng
and Yang [14] considered the multilinear commutator on Lebesgue spaces
with non-doubling measures. Chen and Sawyer [15] modified the definition
of RBMO to investigate the commutators of the potential operators and RBMO
functions.

In the last decade, multilinear singular integrals of Calderén-Zygmund type
have attracted great attentions. Some interesting results refer to [16] [17] [18]
[19] [20] in the text of Lebesgue measures. It points out that Perez and Pradolini
[21] introduced a said iterated commutators generated by the multilinear singu-
lar integral operators with Calderédn-Zygmund type and vector function
b € RBMO" and obtained the boundedness from L x---x L’ to I’ with
I/p=1/p +--+1/p, for 1<p,--,p, <o (in fact, they considered the wei-
ghted case). Xu [22] extended the result to the case of the non-doubling meas-
ures. Very recently, Tao and He [23] obtained the boundedness of the multili-
near Calderén-Zygmund operators on the generalized Morrey spaces over the
quasi-metric space of non-homogeneoustype. The aim of this paper is to study

the iterated commutators of multilinear singular integral operators on Morrey
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spaces with non-doubling measures.

Before stating our result, we recall some definitions and notation. Given
B, >2%" large enough but depending only on the dimension d, we say that a
cube O <R’ is doubling if 4 (20)< B,u(Q). For any fixed cube Q=R’,
let N be the smallest nonnegative integer such that 2VQ is doubling. We de-
note this cube by Q.

For two cubes QR in R?, we suppose

“20)
I(2"0)"

where N, . is the first positive integer & such that / (ZkQ) >[(R). This was
introduced by Tolsa in [5].

=1+

(2)

Let m,[ be the mean value of fon Q namely, m,f =%®jgf(x)du
i

The regularity bounded mean oscillations function spaces were introduced by
Tolsa [5].

Definition 1.1. Let 17>1 be a fixed constant. We say that f € L, (u) isin
RBMO if there exists a constant A such that

y)—mgf‘d#(y) <A, (3)

for any cube Q, and
|me—me|S.AKQ!R, (4)
for any two doubling cubes O < R . The mininal constant A is the RBMO(u)
norm of £ and it will be denoted by | £, .
The definition of the Morrey space with non-doubling measure is given in the
following [10].
Definition 1.2. Let k>1 and 1<q<p<o, the Morrey space M} (k,,u)

is defined as
M ( ) {f €L IaC ):”f"M{(k,,u) < OO} ’

where
"f"M;(k,/,) = qu(p H kQ v (I /[ d/“) ®)

It is easy to observe that L” ( ,u) =M (k, ,u), and Hoélder’s inequality tells us
||f||Mp (60 < ||f||M,,(k,ﬂ) forall 1<g, <q, < p, then we have
2 qa
L (u)=M} (k,pu)c M} (k,u) = M (k, ). The space M/ (k,u) is a Ba-
nach space with its norm | /], , (1. 2nd the parameter & >1 appearing in the

definition does not affect it. The Morrey space norm reflects local regularity of £
more precisely than the Lebesgue space norm. See [10] [11] [24] for details. We

will denote M (2,,u) by M/ (,u)
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Denoting by f = (/s fos"" [ ) » we consider the multilinear singular integral
operator T, as follows,

T, (f)(x)

[ Ko ) (0 £ () 0u,) forxes,
whenever f,,---, f, are C” -functions with compact support and
X¢ ﬂ;’,’zlsupp /; - Moreover,
|K(yo,y.,---,ym)|ﬁA(gmlolyk—yllj (7)
and, for some € >0,
‘K(yo,y“...,yj,...,ym)_K(yoyy],...,y;’...’ym)S A|yj—y} (8)

(ka,l:0|yk -0

)mn+e

. 1
provided that 0<j<m and |yi —y‘;.| < o MK o<y

Y _yk| .
Let b, e RBMO(u) for i=1,2,-~-,m and let b=(b,b,,,b,), then the
iterated commutator (7, )HE is formally defined as
s (D)= Jaop T (=0 () K i)
=
< fi(3) £ () du(3)---du(y,,).

Suppose | u|=cc the main result in this paper can be stated as follow.
Theorem 1.1. Let (T, )H]; as in (9) and satistying conditions (7) and (8). Let

1 1 1 1 1 1
l<q,<p, <o with —=—+-+— and —=—+---+—_ Suppose
p p] pm q ql qm
b, € RBMO(u) for i=1,2,-—-,m.If T, maps L'(u)x---xL(u) to L' (u),

then the commutators (T

”’)HE are bounded from M (p)x---x M} (u) to

M?(u), that is,

q

(s (7)), =TTl

More generally, denote by C" the family of all subsets o ={0,,0,,,0,}
of i different elements of {1,2,---,m},andlet o'={1,2,---,m}\o and
b, = {bcr] b, ="'»ba,.} .Forany o e(", we define

(T ), (F)() :I(Rd)”}:[g(bq ()=t (3, ))K (vo31-53,.)
xSy () fy (v du(1)--du(,,)-

Incase o={1,2,--,m}, one sees that (T )

£l

f,-IIM;,»(,,) : (10)

(11)

_ is just the commutator
[Tt

(T, )HE . So we have a more generalization version of the theorem as following.

m

Theorem 1.2. Let (7, )1‘1127 as in (11) and satistying conditions (7) and (8).
1 1 1 1 1 1
Let 1<q;<p, <o with —=—+:+— and —=—+---+— . Suppose
V2 2 P q9 4 9
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b, e RBMO(p) for i=1,2,--,m.If T, maps L (p)x--xL(u) to

Lme (,u) , then for all o = {1,2,---,m} , the commutators (T, )HE are bounded

from M (p)x---xM!"(u) to M[ (1), thatis,
T, (D)@, = T LTI Ly (12
Jjeo i= !

2. Proof of Main Results

Before proving our theorem, we recall the following maximal operator,

M, f(x)= sup kQ _f |f | (»). (13)

erC“ ,u

we will use the sharp maximal estimates. Let £be a function in L, (u), the

sharp maximal function of fis defined by

1 mo | —my f
M#f(x)zsup—J‘ ‘f(y)—mg.f‘dlu(y)-}— Sup M (14)
03x (3 j 0 R50>x KQ R
H E 0 0.R doubling ,
The non-centered doubling maximal operator is defined by
Nf(x)= sup I |f | (15)

03x, Q doubling /,l

By the Lebesgue differential theorem, it is easy to see that | f (x)| < Nf(x) for
any felL, (#) and g—aexeR. Define the non-centered maximal opera-

)}T . (16)

for 7>1 and 7 >1, where the supremum is taking over all the cubes Q con-

tor,

0 )=l 1)

taining the point x.

To prove Theorem 1.2 is reduced to the following lemmas.

Lemma 2.1. Let 7>1ls >1,b € RBMO(u) and f, el (u),i=1,2,---,m
and o < {1,2,---,m}. If T, maps L' (u)x---xL(u) to L' () and satis-
tying conditions (7) and (8). Then we have

M (1), (7)) ()
ﬁc[nnb,wL M,,g(fm (f))m

+

i (7)) a7

o1Uoy=0 jeo;
o 20, 0y #D

LT, o1 >}

jeo

We postpone the proof of Lemma 2.1 after of Theorem 1.2.
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Lemma 2.2. [10] Let ¢>7>1,n>1, and 1<q< p<o, then the operator
M., isboundedon M (u) and

N

M., (1)

g = C1 g

with the constant Cindependent of £
Lemma 2.3. [24] Suppose that 1< q< p <o, and there exists an increasing

sequence of concentric doubling cubes, I, c 1, c---c I, <, such that

limm, (f)=0 and OIk =R’

k—o Prs

Then there exist a constant C >0 independent on fsuch that

[y, < €[M*

M (k)
1 1 1
Lemma 2.4. [25] Let 1< p, <o and —=—+--+—_If T maps
p p] pm

L (u)x--xL(u) to m (#) and satistying conditions (7) and (8). Then

there exists a constant C independent of f; such that

7.(7)

17 () < Cg"ﬁ”yqua :

Remark 2.1. If T, maps L'(u)x--xL(u) to L' (u) and satistying
1 1 1
conditions (7) and (8), with 1<q,<p, <o, —=—+--+— and
p pl pm
1 1 1 . . .
—=—+---+— From Corollary 1.8 in [23], we can easily get that T, is bounded
q ql qm
from M} (u)x---xM" (u) to M/ (u).
Proof of Theorem 1.2. Using Lemma 2.1, Lemma 2.2, Lemma 2.3 and Lem-

ma 2.4, we get that

‘(Zn )b[ (J?)”M;(/‘)
<clv((r), (7))

o =<br (@), (7)

e v (1)
<Clof M (7, (7)))+TIM o/,

2 = g
<Clol v (. (7)) +Clel M o

e M (1) I
<Clplir (7),,,, * oL T

<C|p,

« EI["J(;"M:]/(;:)

Applying the inequality (17) in Lemma 2.1, for o < {1,2,---,m} , we have
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H(T’” s, (/) v (1)

sc¥ (@ (7)., =P (@ (D)),

j||*M,,§(Tm<f))+ E Il (@), (7)

o'1¢®o'2¢
LI, .,
jeo j=1 g MP ()
<UL Tl ¢ 2 TTBL| (0, (7)
a]¢®0'2¢ Mé)(#)
<CH||b ) ”)+C Z U"b l'lbaz (j) M (1)
al¢®a2¢®‘

where o, and o, are two nonempty subsets of o and o, o, =J. Hence,

we can make use of inductionon o c {1,2,-~~,m} to get that
“(Tm )Hl;(y (]7) ME (4) < Cg”b/”* H"f’"M,,p,'(ﬂ) ’ (18)

This completes the proof of Theorem 1.2.[]
For simplicity of the notation, we only show the special case o ={1,---,m} of

Lemma 2.1. The similar process with minor modification will be to able prove
Lemma 2.1 for the general case.

Lemma 2.5. Let 7>1,s, >1,b, e RBMO(u) and f, e L' (p),i=12,---,m . If
T, maps L (u)x---xL(u) to Lyme () and satistying conditions (7) and (8),
then there exists a constant C >0 independentof b, and f, such that

M ((T,)5 (7)) (%)
<c|[Tlnl.w 1. (7)o
3 LM () (7)) "

i=lgeCl" jeo

+ 1_:1["191‘ . M%gfi (x)}

In order to prove Lemma 2. 5 we have the following decomposition for the

commutators (7). Forany A =(4, A, 4, ) €R", writing

’5()

I;( ) (I;( ) /1) (b ( ) A ),thusitisclearthat
( ) ( f ).Moreover,

(Z.)n (f)()
i@( T, 004 ey L0 (0)-2,) 20

XK (x, 30503, ) S (1) o (9,) e (1) -+ da(,,)-
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O'kEO'

- (B, (9) =0, () TT (b, (x)=4,);
o-(l)Uo-(z):a" o, EO'“) avecr(z)
ane® =z

hence we can obtain from the equality (20) that

(T, (7))
T2 (@ T ((B-2) 7)) en

m—=1

+Z;42CWHH( ( ) ) (T'n)l'[l;Uv(f)(x)
i=l geC o;e0
where C, . are constants depending only on mand i

Proof of Lemma 2.5. For simplicity, we denote by R(b, f )(x) the quanti-
ties on the right hand side of the inequality (19). Recall the definition of the
sharp maximal operator M”, and use the standard technique, see [15] for ex-

ample, we only need to prove that

[Ty (7)) hofdua(z) < CR (5.7) () (22)

@Q

Ity ~hy| < C (Ko )" R(B.7)(x) (23)

and

with the absolute constant C independent of b, f,Q and R, where R is any
doubling cube with Q < R . In fact, we take

b= 1. 018, ). s, ] 29
and clearly

hy =(=1)" my [Tm ((mﬁ( )=b) 4 (m (bm)—bm)fmsz\4RD (25)

\=R
3

Recall the equality (21), for any z € O, we have that
(7. s (7)(2) =
L1 (5 (9= 5,)) 7. (7))

J=

<

m—1

2 3 G T1 (b, (2)=m, (82, )T )y, (7)(2)

i=l oeC" oj€0

+‘( '"(( —mg (b )) ) ‘
)-

=1(z)+ 1 (z)+ 1z

N (26)
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In order to show the inequality (22), we will calculate the integrals for the

three functions above, respectively. Firstly, for 7 >1, by the Hoélder inequality
one sees that

1

[ z)

3 0

o 3e)

<fT| AL b () -my () au(=) | | ] [ (F) au(z) | @)
e ZEn

ﬁC”b] . [1b2 *"bm *Mr’g(Tm (f))(x)

2

where we have choose 7, >1 such that i-i—L-i----+L—i-l—l.

oo T T
Similarly, for 7 >1, by the Holder inequality, we also deduce that
1
m[g“](zﬂ d,u(z)
"2 28)
m—=1 _
<cx X T | M, (), (7)))-
1= o'eC{” oj€0 2
To estimate the integral related to the function 1//(z), we split f; as
fi=f"+ 17, where f’= f;(4Q and f” = f, — £, this yields
m 3
[150)= X () (o)
" a;az’m’amE{ “ i (29)
:Hfj()(yj)-i-zjrlal (yl)fn‘fm (ym)+l_!fj°° (yj),
Jj= * Jj=
where each termin | satisfies that « ,=a, =--=a, =0,for some

1<A<m and some {JisJass iy <{1,2,---,m} . So we can decompose the
function /77(z) further into three parts as follows

11(2) <1, (B, =y (5) 17 (B, ~mg (8,)) £2)(2)
# 3|7 (5 =mg (8) 70 (B = (5) 17 )(2)
N (5= ) b = ) 7))

=11, () + I, (2) + L, ( 2).

(30)

1 1 1 1
For s, >1,wecantake 1< <s, suchthat —=—+—+.---+— and
voouou, u,
1 1 1 ) .
v>1. Let —=—+— for each i=12,---,m, then 1<¢ <. Using Lemma
u, s

2.4, we know that the T, isbounded from L" (u)x L (u)x--xL" (u) to
r ( u) . Hence, by this boundedness and Holder inequality, we have
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1

FJUM (2)]du(z)

2

_u(0)"
ﬂ@QJ |

ol

i=1

T (= (0)) £ (52 =y () £2)(2)

(b= 0)) A1),

< CH||b[||* My, gff (x)
i=1 Sivg
In order to estimate the integral of terms /II,(z) and III,(z) over Q we

will give their point-wise estimates. In fact, for z€Q, since 1<A<m—-1 we

observe that
11y (2) = 2T (= mg () £ (b =1 (8.)) £ )(2)
< CZ]_E{HMEQ b, (v,)=m (8, |7, (2 )| due(,)
gy Bl ntoli)
’ (Zfe{fl,---m ) (32)
<cx I [plv .7

* jeljiasiin

xkiz—un I1 }||bj||*(k+1)MS‘gfj(x)
= 2

JE1 2

du())

Z_yj

<l v, or )
Jj= 7’8

where we have used the fact (see[5]) that, there is an absolute constant C such
that, for any b € RBMO , integer k>0 and cubes Q,

m;@é(b)_mg ()

3 0.2° 20

<Clpl.x 5
3

< C"b"* KQlk 4 (33)

3

<ckfp..

On the other hand, for 1/, (z), we note forany z,y€(Q that
T (B =y (0)) 17 (= mg (82) £7)(2)
(5 mg () 7B = ()£ ) )

SJ.[Rd\ggjm|K(Z,y1’...,ym)—K(y’yl’...’ym)|

X

lﬂ[(b,- (3:)=mg (b ))f,-‘”‘dy(yl)d#(yz)---du(ym)

i=1

DOI: 10.4236/jamp.2020.81005 62 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2020.81005

T.Lietal

i-1 (bi (yi)_m' (bi))fiOC

du(yy)--du(y,)

kl o|yk i )””’*‘
) [ i
<CTTS Loty 2B )y (1)) o)
l(Z"ZQJ ! (34)

<CH22 " (k+1)|5], M 9f x)

i=1 k=1

M7 (),

where we have use the inequation (33) again.
Taking the mean over y € 0, we can obtain that

1

—— (|1H2 (2)|+ |11, () |)
3 0
(3¢)

Mof) 09

2

Combing the inequalities (26) (27), (28), (30), (31) and (33), we see from the
estimates of [,/I,1l1,,Ill, and I, that the desired inequality (22) holds.
Next we turn to estimate the inequality (23). For any cubes Q c R with

x €0, where Ris doubling. We denote N, , +2 by N, then 20 520 and

2V 0 5 2R . We recall the equality (29) and let f° = ﬁZzNQ\ig and
i =fi7(2NQ\iR ,andlet f” =fl.;(Rd\2NQ. Then we can write
|y =y | = mg{yk((mg( )= )fl "”(mé(bm)_l%)f;lkﬁ4gJ}
—my Tm((m ( ) )fle\ 2 (mR( ) )f”’le\ RJ:I
< mQ[Tm ((mQ(bl)—b,>f,°°,-~ ,(mQ(bm)—bm)f,Z"ﬂ
“ma [T (g ()= mg (5 )-0.) 17
ol [7, (s ()-8 £ (my (5,)-8,) 52 )]

—my |:Tm ((mR (bl)_bl)flw’m’(mR (b’”)_b"’)f'f)]
+ X

1,0 .0 €{0,00}
at least one ; #0

+

1,0,y €{ R 0}
at least one o; #0o

= A +A4,+4,+A4,.

For the term 4, noting
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4

my (b;)=mg (b, )‘ <Clb. Ko (37)
and the similar argument as that for the estimate of III;, we can obtain that

4 =T lbLM 7 ()< C(k, ) TILM 1) G9)
i= ivg i=1 i3

To estimate 4,, we recall the notations and note that, for any sequences ¢,
and ¢,

m

H(§/+§j):iZH§jH§j'- (39)

Jj=1 i=0geCl" jeo j'eo’

Using this equality and expanding
my (bj)—bj (y) = [mé (bj)—bj (z)} +[bj (z)—bj (y)} , we observe that

5 Tl (0)-0 )y (P ))
Similarly, |

T, ((my (5)=b) 7 (me () ~,) £ )(2)

=33 1)1, (), (7)) “h
Thus |

7, ((mg () =) 7 (mg (8,) -8, ) £ )(2)

=T, (e (B)=8) 17w+ (e (B,) =8, ) £7)(2)

Spal (CTOYRACICANNEFRNATE B

823 1 (8) =1, () Ty, (72400, 2)

=:Bl(z)—;32(z).
To estimate the integrals above, we recall that f* = f .z and let

RrRY\2V 0
ij =fj;(2NQ, then we can write that f_].°° =fj—ij and f; =f_].°°+ij, and
thus we have

Hff(yj)zgfj(yj)+

m
J=1

M=

(-1 217 () T (o)

peCl' jep J'ep’

m

o I EACAED IS (43)

Jj=1 A=1 {jisjo iz ye{1,2,0m}

XCj by an (yfl )”"Jf (yu )f;ol (ym )""’f.;: (yjm )

3

where C. are constant independent of /7 and Q. From the equality (43),

T2 adm
we can deduce that
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(Tm )1‘[175 (jlmd\zNQ)(z)
- (44)
:(Tm)ngo,f(z)-{— Z }leajz,"'sjme (glF;’g2F‘2"“’ngm)(Z)

A=l {/l J2 s dm }C{l’z"”’m

3

where
b, (z)-b,(y), if jeo'
—J7 J
gj(y) {l, if jeo

and
F 0 et

! f;?o(y)s ifje{jl""aj/l}

Along the same lines as that of the pointwise estimates of I/, (z),we can ob-

tain that, for x,ze Rc2""'Q andif 1<1<m,

T;n (glF;’g2F‘2’.”’ngm)(Z)|

<C H ;},‘J‘zl\’g gj(yj)fj(yf)

Jeliisinraint l(2N Q)

z 1
x 2fkln v
kz; jeug--,m 1(22" )’ LAZNQ

1<j<m

d”(yj) (45)

&; (y,-)fj (yj) d”(yf)‘

Let (gj);S} =1 if jeo;and

i dﬂ(y)\J s ifjeo-,n{jlajzn'”ajﬁ}

1
l(2k+N Q)”

b,(2)=b,(»)

J.ZIH»N 0

¥
K d/v‘()’)} , if jEO"\{jl,jz,"',jl}

thusfor jeo’,
(8))yy =€)+l (0,)-5,(2)

Hence we get from (45) that, for 7>1,

+ c\mZMQ(bj)—bj (z)‘.

[ﬁ [T (& F P g, )] dﬂ(z)]T

T

I1 (gj )k;j

jeo'

R I u(R)

<C[TIM, o1, ()| S TT[o ] (1K g+ K )
j= jeo

j=1  Sig

<M o1 (0) izmx[ Lp d,u(z)}r

(46)

<C HM _gfj(x) H"bj
Jj=1 ‘Y/’g jeo'

>
s

where we have used the fact that the cubes Rand 2V (Q are comparable, which
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implies K, Wo S C and K R2FV g
and the 1dent1ty (44), we obtain that, for 7 >1,

1
4, < WIRGB] (Z)| +|B2 (Z)|)d,u(z)

<C(1+k). Using the inequality (46) above

<5 % Mkl

i=lgec

. dﬂ(z)]l

(Tm )nﬁar (]ZR”\QNQ)

(i
<5 3 [ Taalp i (00 ()00

+ CHKQ!R &1 M o f ().
Jj=1 778

The estimates of 4, and 4, is very similar to the one used in the estimate
of 4,.In fact, repeating the similar procedures used in (45) and (46) for 7 >1,
and noting that K, vy Ko + K o, < C(1+k)+K,, since

2" Q0 2R 2V Q by the definition of N, we can deduce that

o Z [T (o8- 57 g 8) -0 )]

at least one ¢; #0
and one a; #0

L)

1,8y 0y €{R 0}
at least one a; #o0

< Clﬂ[KQ,R |2, M, f,(x):
Jj=1 )

mp |:Tm ((mR (bl)_bl)flal =""(mR (bm)_bm)fr:tzm )]‘ (47)

It is left to estimate the term in 4; ofthecase o, =a,=--=¢, =0. A small

modification is needed to estimate this term. For z€Q and x €, one sees

T, ((mé(b] )_bl)flo"“’(mé (bj)_bj)ﬁ"“’(mg (bm)_bm)fn?)(z)

ZH Lk‘}*Q (mQ (b/.)—b_,. (yz))f/ (yj)
Q

dﬂ(y/)

This and the inequality (47) follows

A +4,<C(K H||b |, of;(x

Moreover, combing the estimates of 4,,4,,4, and 4,, we obtain the de-
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sired inequality (23).
Finally, let us show how to acquire the inequality (19) from the two inequali-
ties (22) and (23). Fix the point x and let Q be any cube that x e Q. notice
K,s< < C, hence we see from the inequalities (22) and (23) that

s (7)) (7 ) (7) )

1 - 1
< (s (7)(2) = o due(2) + =2 [, o = | dta(2)
( QJ e ‘ ’”‘GQJ (48)

*TJQ"”Q ((1)s (7 ))—h@\dﬂ(Z)
{3¢]

< CR(E,f)(x).
On the other hand for all doubling cubes QO c R with x e Q such that
K,z < F,where £ isthe constant in Lemma 6 in [15], using (23), we have
| = he| < CK (B R (B, F) (x) (49)

and moreover the inequality (49) holds for any doubling cubes Q, R with
O c R . Therefore,

( Hb ) ( f”))l
‘mQ (17 ‘ my ((Tm )i (f))‘ +|hQ —hR| (50)
<CK, R(* 7)(x)

According to the estimates (48) (50) and the definition of the sharp maximal
function, we deduce the inequality (19) and so finish the proof of the Lemma
2.5.0

3. Conclusions

The proof of Lemma 2.5 can be slightly modified to prove the conclusion of
Lemma 2.1. Therefore we show that the iterated commutators generated by mul-
tilinear singular integrals operators (7,,) . are bounded from

MM (p)x--xM]" (1) to M](u). Suppose |lu]=co, the detailed conclusion
can be described as follows: Let (Tm )HE as in (9) and satisfying conditions (7)

1 1 1 1 1
and (8). Let 1<q,<p <o with —=—+--+— and —=—+-+—.
P b P q9 4 qn

Suppose b, € RBMO(u) for i=1,2,---,m. If T, maps L'(u)x---xL' () to
L™ (u), then the commutators (7, )H ; are bounded from

My (p)-x My (1) to qu(,u),thatis,

“(Tm s (/;) *

More generally, let (Tm )HE as in (11) and satlsfying conditions (7) and (8).

Ay
ME () ' M‘ii‘(‘u)
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1 1 1 1 1 1
Let 1<gq, <p, <o with ;:?+---+p— and ;:q—+---+q—.8uppose
1 m 1 m

b, € RBMO(y) for i=1,2,---,m.If T, maps L'(p)x---xL(u) to
[ime (u),then for all ac{l,z’...,m},the commutators (T'")Hi?a are bounded

from M (u)x---x M (1) to M7 (u), thatis,

“(Tm )1‘[56 (f)(x) (x) < Cg "b/'”* lfl["ﬁ"M;’"(#)'

P
My
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