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Abstract 
In the present paper, we have investigated the non Liénard system. We have 
shown that limit cycles may bifurcate at the origin. Bendixons theorem has 
been used in our study to prove non-existence of limit cycles. We have also 
proved that the system has unique limit cycle through change of the parame-
ters. 
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1. Introduction 

In the present investigation, we revisit the problem of bifurcation of limit cycles. 
The problem of limit cycle was studied intensively. For Liénard, we can read 
[1]-[8], and for non Liénard we can read [9]-[19]. 

We give criterion for the non Liénard system to have or not to have limit 
cycles with some parameters. We also demonstrate that the system exhibits a 
Hopf-bifurcation. Now we consider the following Liénard equation 

( ) ( ) 0.x f x x g x+ + =                        (1) 

The above equation may be written in two dimensional autonomous dynami-
cal system 

( ) ( ),x y y g x f x y= = − −  .                    (2) 

Therefore, the above equations can be written in the Liénard plane as  

( )
( )

,

,

x y F x

y g x

= −

= −





                          (3) 

where ( ) ( )
0

d
x

F x f t t= ∫ . 
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Theorem 1.1 [11] Suppose that for system (1.1), there exist 1 1 2 20r a a r< < < <  
such that ( ) ( ) ( )1 20 0F a F F a= = = , ( ) ( ) 0g x F x ≤  for ( )1 2,x a a∈ ,  
( ) 0f x ≥  for ( )1 2,x a a∉ , ( ) 0xg x ≥  for 0x ≠ , and ( ) ( )1 2G a G a= , then 

(1.1) has at most one limit cycle in D, which is simple and stable, if exists. 
Theorem 1.2 [11] If, in system (1.1), ( ) ( ) 0g x F x ≥ (or 0≤ ), and equality 

holds only for at most a finite number of points, then (1.1) has no closed orbits 
in closed region ( ){ }, : ,D x y a x b c y d= ≤ ≤ ≤ ≤ . 

In Section 2, the main system equations results have been presented, the sec-
tion has been divided in two cases. 

The case I considered the conditions that the system has a limit cycle when 
( )0,0O  is an anti saddle. 
Finally, the case of saddle point with limit cycle is presented in theorems and 

lemmas in Section 4 along with the concluding remakes. 

2. The Basic System Equations and Results 

The main part of this paper is devoted to explain the existence and uniqueness of 
limit cycles of the following differential equations system 

2

,

,

x x ay
y bx ay x y
= − +

= − −





                       (4) 

the singular points of the system are 0x =  and x a ab= ± − . 
The Jacobian matrix 

1 a
A

b a
− 

=  − 
 

has the determinant A a ab= −  for 0a ab− ≥  the origin O is anti saddle and 
for 0a ab− <  the origin O is saddle for more details (see [5]). 

The system (2.2) needs to change to the Liénard system (1.1). 
Let z x ay= − +  so z x ay= − +   after simplify and substitute ay x z= +  so 

that we have  

( ) ( )( )2 3

,

1 .

x z

z a x z a ab x x

=

= − + + − − +





              (5) 

After change z to y we can get system (1.1) as follows 

( )

( )( )

3

3

11 ,
3

.

x y a x x

y a ab x x

 = − + + 
 

= − − +





                   (6) 

The system (2.4) is considered in two cases. 
Case I: The Origin is an anti Saddle 
The case under consideration is 0a ab− ≥ , in this case and as above the sys-

tem (2.4) has unique equilibrium point ( )0,0O  which is an anti saddle. 
Lemma 2.1 
For 0a =  system (2.4) has no limit cycle. 
Proof 
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Let 0a = , then ( ) 31
3

F x x x= +  and ( ) 3g x x= . Thus  

( ) ( ) 4 211 0
3

g x F x x x = + ≥ 
 

 and by using theorem (1.2) there is no limit cycle 

so we just look for 0a ≠ . 
In the case of 0a <  O becomes saddle also for 2 4 0a − >  or ( 2a > ) O is 

node in two cases no limit cycles surround O. Thus, in the sequel, we only need 
to consider 0 2a< < . 

Consider the polynomial Liénard system of degree n 

( )
( )

2
1 2

2
1 2

,

.

n
m

k
k

x y a x a x a x

y b x b x b x

= − + + +

= − + + +







                  (7) 

Lemma 2.2 [11] 
For system (2.5) with 1 1b = , the first three focal values at ( )0,0O  are 

( )2 1 4 2 2 3
1,    2 3 ,
8

a a b aη η= − = −  

( )6 0 2 4 4 2 3 3 56 20 15 15 .c a a a b a b aη = + − −  

where 0c  is positive constant. 
By scaling x x a ab→ −  and t t a ab→ −  [where new xx

a ab
=

−
, 

x x=   and y a ab y= −  ], then system (2.4) becomes  

( )

( )

3
3

2
2

1 1 ,
3

11 .

ax y x x
a ab a ab a ab

y x x
a ab

 − = − +
 − − − 
 
 = − +
 − 





              (8) 

Therefore the three focal values of ( )0,0O  and by using Lemma 2.2 namely 
are 

( )2 4
1 1,      ,a
a ab a ab a ab

η η+
= − = −

− − −
 

( )
0

6 2

5
.

c
a ab a ab

η = −
− −

 

If 1a ≠ −  then O, is strong focus which is unstable for 1a < −  and stable if 
1a > − , and for 1a = , then O is weak focus of order one which is stable. 

By using Hopf-bifurcation (by changing of stability), for 1a > −  no limit 
cycle because no change of stability if 1a = − , then O is weak focus of order one 
which is stable. Thus as a decreasing from −1 O becomes unstable and one stable 
limit cycle appears from Hopf-bifurcation. 

Theorem 2.3 
For 1 2a< <  the system (2.4) has a unique stable limit cycle. 
Proof: 
Now we apply theorem (1.1) consider ( ) ( ) 3g x a ab x x= − +  since  
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0a ab− >  So ( )g x  has only one root which is 0x = . For  

( ) ( )31 1
3

F x x a x= + +  the roots are ( ) ( )1 23 1 0 3 1a a a a= − − + < < = − + . 

The roots of ( )f x  are ( ) ( )1 0 1a a− − + < < − +  and ( )f x  has minimum 

at ( )0, 1a + . 

Since we have ( ) ( ) ( ) ( )3 1 1 0 1 3 1a a a a− − + < − − + < < − + < − + , then 
we deduce that ( ) 0f x ≥  for ( )1 2,x a a∉  

( ) ( ) ( )2 2 311
3

g x F x x a ab x a x = − + + + 
 

 since 0a ab− >  then the term 

2 0a ab x− + >  and the value of 311 0
3

a x + + < 
 

 in the interval  

( ) ( )( )3 1 , 3 1a a− − + − +  so ( ) ( ) 0g x F x ≤  for ( )1 2,x a a∈ . Finally since 

1 2a a= −  so we have ( ) ( )1 2G a G a= . 

Case II: The Origin is a saddle 
In this case, we discuss system (2.4) when 0a ab− <  and as above the system 

has three equilibrium points ( )0,0O  and α±  where ab aα = −  trance the 
( ),0α  to the Origin by the relation ( )x x α→ −  

( ) ( )
( )( )

2 3

2

11 ,
3

2 3 .

x y ab x ab a x x

y x ab a ab ax x

 = − + − − + 
 

= − − − − +





             (9) 

Let t τ= − , y y→ − , (2.4) is converted into 

( ) ( )
( )( )

2 3

2

11 ,
3

2 3 .

x y ab x ab a x x

y x ab a ab ax x

 = − − + + − − 
 

= − − − − +





            (10) 

( ) ( )2 4
1 1,     ,

42
ab

ab a a abab a
η η+

= = −
− −−

 

( ) ( )6
5 .

8 2ab a ab a
η = −

− −
 

By using Hopf-bifurcation, for 1 0ab + <  no limit cycle because no change of 
stability if 1 0ab + = , then O becomes weak focus of order one which is stable.  
Thus for fixe b * 1a

b
= −  is bifurcate value so as *a  increasing, O becomes 

unstable and one stable limit cycle appear from Hopf-bifurcation. 
Lemma 3.1 

2 0ab a+ + >  equivalent to 1 0ab + > . 
Proof 
Assume that 1 0ab + <  since 1 0a + < , then we have  

2 1 1 0ab a ab a+ + = + + + <  contradiction. Thus for 2 0ab a+ + >  also we get 
1 0ab + > . 

Lemma 3.2 [10] 
If there exists a constant 0m ≥  such that ( ) ( ) ( ) ( ) 0F x G x mF x g x′ − ≥  for 
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( )0x ≠ , System (2.8) has at most one limit cycle. 
We have by putting 1c ab= + , ab aα = −  and after simplify we have  

( )

( )( )

4 3 2 2 2

3 3 2

1 3 11, 2 3
3 4 2 3 4

12 3 2
2

m cx m x m x c m x

c c m x c

φ α α α α

α α α α α

      = − + − + + − −      
      

+ − + +

. 

Let 3
4

m =  so we have 

2 2 3 23 1 1 1 1 1,
4 2 4 2 4 2

x c x c x cφ α α α α     = − + − +     
     

 

( ) ( )( ) ( ) ( )3 2 21 1 151 1 .
4 4 16

ab a ab ab a ab ab a∆ = − + + − − + −  

Since ( ) 0ab a− > , we can delete from upper equation and for suitable a as 
small enough we have 

( ) ( )( ) ( )2 21 1 151 1 0
4 4 16

ab a ab ab a ab∆ = − + + − − + < . 

3. Conclusion 

A non-Liénard system is studied and analyzed by adapting Hopf-bifurcation 
theory. It has been proved that the system has unique limit cycle under some 
change of parameters under two cases. Bendixons theorem is used to prove 
non-existence of limit cycles. 
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