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Abstract 
The static buckling load of an imperfect circular cylindrical shell is here de-
termined asymptotically with the assumption that the normal displacement 
can be expanded in a double Fourier series. The buckling modes considered 
are the ones that are partly in the shape of imperfection, and partly in the 
shape of some higher buckling mode. Simply-supported boundary conditions 
are considered and the maximum displacement and the static buckling load 
are evaluated nontrivially. The results show, among other things, that gener-
ally the static buckling load, Sλ  decreases with increased imperfection and 
that the displacement in the shape of imperfection gives rise to the least static 
buckling load. 
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1. Introduction 

Cylindrical shells have wide engineering applications such as in the construction 
and study of aircraft, spacecraft and nuclear reactor, tanks for liquid and gas 
storage and pressure vessels, etc. The analyses of the buckling of cylindrical shells 
under various loading conditions have been made in the past years and both 
theoretical and experimental studies have been considered just as in [1] and [2]. 
Earlier studies on the buckling of shells were done by [3] [4] [5] [6] and [7], 
while Amazigo and Frazer [8], studied the buckling under external pressure of 
cylindrical shells with dimple-shaped initial imperfection. It would be recalled 
that Budiansky and Amazigo [9], investigated the buckling of infinitely long im-
perfect cylindrical shells subjected to static loads and Ette and Onwuchekwa [10], 
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equally studied the static buckling of an externally pressurized finite circular cy-
lindrical shell using asymptotic method. In this regard, mention must be made 
of Lockhart and Amazigo [11], who used perturbation method to investigate the 
dynamic buckling of finite circular cylindrical shells with small arbitrary geome-
tric imperfections under external step-loading. In the same way, Bich et al. [12], 
by using analytical approach, investigated the nonlinear static and dynamic buck-
ling behaviour of eccentrically shallow shells and circular cylindrical shells based 
on Donnell shell theory. Relevant studies on the buckling analysis were investi-
gated in [13] [14] [15] and [16] and Ette [17] [18] [19] [20] and [21].  

In this study, we consider a statically loaded imperfect finite circular cylin-
drical shell and aim at determining the maximum displacement and the static 
buckling load for the case where the displacement is partly in the shape of im-
perfection and partly in some other buckling mode. The analysis is purely on the 
use of asymptotic expansions and perturbation procedures.  

This analysis is organised as follows. We shall first write down the governing 
equations as in Amazigo and Frazer [8] and Budiansky and Amazigo [9]. Using 
the techniques of regular perturbation and asymptotics, we shall analytically de-
termine a uniformly valid expression of the displacement which is followed de-
termining by the maximum displacement. Lastly, we shall reverse the series of 
maximum displacement and determine the static buckling load. 

2. Formulation  
As in [11], the general Karman-Donnell equation of motion and the compatibil-
ity equation governing the normal deflection ( ),W X Y  and Airy stress func-

tion ( ),F X Y  for cylindrical shell, of length L, radius R, thickness h, bending 

stiffness 
( )

3

212 1
EhD

υ
=

−
 (where E and υ  are the Young’s modulus and Poisson’s 

ratio respectively), mass per unit area ρ , subjected to external pressure per unit 
area P, are  

4
,

1 1 1,
2XXF W S W W W

Eh R
 ∇ − = − + 
 

                (2.1) 

( ) ( ) ( )4
, , ,

1 1 ,
2XX XX YY

D W F P W W W W S W W F
R

α ∇ + + + + + = +  
   (2.2) 

, , 0 at 0, , 0 , 0 2 .XX XXW W F F X L X Y= = = = = < < π < < π     (2.3) 

where, X and Y are the axial and circumferential coordinates respectively and 

( ),W X Y , is a continuously differentiable stress-free and time independent im-
perfection. In this work, an alphabetic subscript placed after a comma indicates 
partial differentiation while S is the symmetric bi-linear operator in X and Y 
given by  

( ) , , , , , ,, 2XX YY YY XX XY XYS P Q P Q P Q P Q= + −               (2.4a) 

and 4∇ , is the two-dimensional bi-harmonic operator defined by  
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22 2
4

2 2X Y
 ∂ ∂

∇ = + 
∂ ∂ 

                     (2.4b) 

here, we shall neglect both axial and circumferential inertia and shall similarly 
assume simply-supported boundary conditions and neglect boundary layer effect 
by assuming that the pre-buckling deflection is constant.  

As in [11] and [22], we now introduce the following non-dimensional quanti-
ties.  

2 2

2 2 2, , , ,X h W L RP Lx H w
L R h D R

ε λ ξπ
= = = = =

π π
      (2.5a) 

( )
( )

( )2 22

2 2

12 1
, , ,

1

LY W Ay w K A
R h Rh

υ
ξ

ξ

−
= = = − =

π+
    (2.5b) 

where, υ  is Poisson’s ratio and ε  is a small parameter which measures the 
amplitude of the imperfection while L is the length of the cylindrical shell which 
is simply-supported at 0,x = π .  

We shall neglect boundary layer effect by assuming that the pre-buckling def-
lection is constant so that we let  

( )

2 2
2 2

22

1 1
2 2 1

Eh LF PR X Y f
R

α
ξ

    = − + +     π + 
        (2.7a) 

2 11
2

PR
W hw

Eh

αυ − 
 = +                 (2.7b) 

where, P is the applied static load and λ  is the non-dimensional load ampli-
tude. The first terms on the right hand sides of (2.7a) and (2.7b), are pre-buckling 
approximations, while the parameter α , shall take the value 1α = , if pressure 
contributes to axial stress through the ends, otherwise 0α = , if pressure only 
acts laterally.  

Substituting (2.7a) and (2.7b) into (2.1 and (2.2), using (2.5a) and (2.5b), and 
simplifying results to  

( ) ( )2 24
,

11 1 ,
2xxf w H s w w wξ ξ ε ∇ − + = − + + 

 
          (2.8) 

and  

( ) ( ) ( ) ( ) ( )4
, , ,

1 ,
2xx xx yyw K f w w w w HK s w w fξ λ α ε ε ξ ε ∇ − + + + + = − +  

(2.9) 

, , 0 at 0, , 0 , 0 2 , 0 1,xx xxw w f f x x y ε= = = = = π < < π < < π <  (2.10) 

where,  

( )
22 2

4
, , , , , , 2 2, 2 ,xx yy yy xx xy xys P Q P Q P Q P Q

x y
ξ

 ∂ ∂
= + − ∇ = + ∂ ∂ 

   (2.11) 

3. Classical Buckling Load  

The classical buckling load Cλ  is the load that is required to buckle the asso-
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ciated linear perfect structure and its equations, from (2.8) and (2.9) are  

( )24
,1 0xxf wξ∇ − + =                      (3.1) 

and  

( )4
, , ,

1 0
2xx xx yyw K f w wξ λ α ∇ − + + =  

              (3.2) 

, ,0, 0 at 0, .xx xxw w f f x= = = = = π               (3.3) 

The solution to (3.1)-(3.3) is a superposition of the form  

( ) ( ) ( ), , sin sinmk mk mkw f a b ky mxφ= +                (3.4) 

where, ( ) ( ), 0,0mk mka b ≠  and mkφ  is an inconsequential phase.  
On substituting (3.4) into (3.1), using (3.3) and after lengthy simplification, 

we get  

( )
( )

2 2

22 2

1 mk
mk

m a
b

m k

ξ

ξ

+
= −

+
                     (3.5) 

Substituting (3.5) into (3.2) and simplifying, yields  

( ) ( ) ( )
( )
( )

( )

24
22 2

22 2

22 4
2

22 2

1

11
2

K m
m k

m k

k m
m

m k

ξ ξ
ξ

ξ
λ

ξ ξ
α

ξ

+
+ −

+
=

+
+

+

               (3.6) 

Thus, if n is the critical value of k that minimizes λ , then, the value of λ  at 
k n=  was taken as the classical buckling load Cλ . Thus, in this case, we get  

d 0
dk
λ
=                            (3.7) 

Therefore, corresponding to k n= ,we see that (3.6) is now equivalent to  

( ) ( ) ( )
( )
( )

( )

24
22 2

22 2

22 4
2

22 2

1

11
2

K m
m n

m n

n m
m

m n

ξ ξ
ξ

ξ
λ

ξ ξ
α

ξ

+
+ −

+
=

+
+

+

                (3.8) 

Usually, m and n take the values 1,2,3,m =   and 0,1,2,n =    
We recall that [23] had assumed that k varies continuously, and so, minimized 

λ  with respect to k. If 1m =  is the nontrivial values of m and we let 2nζ ξ= , 
then, we have  

( )
( )

2
2

21
1

1
2

C

Aζ
ζ

λ
α ζ

+ +
+

=
+

                (3.9) 

The corresponding displacement and Airy Stress function are  
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( ) ( )
2

1 1
1, 1, sin sin
1 n nw f a ky xξ φ

ζ

   +  = − +  +     
           (3.10) 

4. Static Theory  

In this section, we shall derive the equations satisfied by the displacement and 
Airy stress functions when the static load is applied.  

Similar to (2.8) and (2.9), the structure satisfies the following equations at 
static loading  

( ) ( )2 24
,

11 1 ,
2xxf w H s w w wξ ξ ε ∇ − + = − + + 

 
           (4.1) 

and  

( ) ( ) ( ) ( ) ( )4
, , ,

1 ,
2xx xx yyw K f w w w w HK s w w fξ λ α ε ξ ε ξ ε ∇ − + + + + = − +  

(4.2) 

, , 0 at 0,xx xxw w f f x= = = = = π               (4.3) 

We now assume the following asymptotic expansions  

( )

( )1

i
i

i
i

w w
f f

ε
∞

=

  
=        
∑                       (4.4) 

Substituting (4.4) into (4.1) and (4.2), and equating the coefficients of orders 
of , 1, 2,3,i iε =  , the following equations are obtained  

( )
( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )( )

21 14
,

1 1 1 14
, , ,

1 0.
: 1 0

2

xx

xx xx yy

f w

w K f w w w w

ξ
ε

ξ λ α ξ

∇ − + =

  ∇ − + + + + =   

   (4.5) 

( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )( )

2 22 2 1 1 14
,

2 2 2 22 4
, , ,

1 1 1

11 1 , ,
2

1:
2

, ,

xx

xx xx yy

f w H s w w s w w

w K f w w

HK s w f s w w

ξ ξ

ε ξ λ α ξ

ξ

  ∇ − + = − + +   
  ∇ − + +   
  = − +  


 (4.6) 

( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( ) ( )( )

2 23 3 1 2 24
,

3 3 3 33 4
, , ,

1 2 2 1 2

1 1 , ,

1:
2

, , ,

xx

xx xx yy

f w H s w w s w w

w K f w w

HK s w f s w f s w f

ξ ξ

ε ξ λ α ξ

ξ

  ∇ − + = − + + 
  ∇ − + +   
  = − + +  

  (4.7) 

etc.  
We seek solutions to (4.5)-(4.7) in the form  

( )

( ) ( ) ( )

( )

( )

( )

( )
1 2

1 , 0 1 2

cos sin sin
i ii

i ii
k p

f ff
py py kx

w ww

∞

= =

     
    = +             

∑        (4.8) 
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and now assume  

( ), sin sinw x y a mx ny=                    (4.9) 

As earlier obtained, we shall need the following simplifications  
22 2 4 4 4

4 2
2 2 4 2 2 42

x y x x y y
ξ ξ ξ

   ∂ ∂ ∂ ∂ ∂
∇ = + = + +   

∂ ∂ ∂ ∂ ∂ ∂   
      (4.10a) 

so that, if  
( ) ( )

1

11 cos sinf f py kxΓ=  

then, we have  

( ) ( ) ( )
1

2 114 2 2
1cos sin , 1,2f k p f py kxξ Γ∇ = + Γ =        (4.10b) 

and, if  
( ) ( )

2

22 sin sinf f py kxΓ=  

we get  

( ) ( ) ( )
2

2 224 2 2
2sin sin , 1, 2f k p f py kxξ Γ∇ = + Γ =       (4.10c) 

We shall use the fact that  

( )
( )

2

21
AK ξ
ξ

= −
+

                (4.10d) 

Solution of Equations of First Order Perturbation  
The equations necessary here, from (4.5), are  

( ) ( ) ( )21 14
,1 0xxf wξ∇ − + =                (4.11) 

and  

( ) ( ) ( ) ( )( ) ( )( )1 1 1 14
, , ,

1 0
2xx xx yy

w K f w w w wξ λ α ξ ∇ − + + + + =  
  (4.12) 

Substituting (4.8) and (4.9) into (4.11), using (4.10a), (4.10b) and (4.10c), 
multiplying the resultant equation through by cos sinny mx  and integrating 
with respect to y from 0 to 2π and with respect to x from 0 to π, we note that for 

,p n k m= = , we easily get  

( ) ( ) ( )

( )

2 12
1 1

1 22 2

1m w
f

m n

ξ

ξ

+
= −

+
                 (4.13) 

Similarly, by multiplying the resultant equation through by sin sinny mx , and 
integrating with respect to y from 0 to 2π and with respect to x from 0 to π, and 
for ,p n k m= = , we obtain  

( ) ( ) ( )

( )

2 12
1 2

2 22 2

1m w
f

m n

ξ

ξ

+
= −

+
                 (4.14) 

In the same manner, substituting (4.8) and (4.9) into (4.12), assuming (4.10a), 
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(4.10b) and (4.10c), thereafter multiplying the resultant equation by sin sinny mx  
and integrating with respect to x from 0 to π and y from 0 to 2π, and for 

,p n k m= = , we get  

( ) ( ) ( ) ( )2 1 12 2 2 2 2 2 2
2 2

1 1
2 2

m n m n w K m V a m nξ λ α ξ ξ λ α ξ    + − + + = +        
(4.15) 

On substituting for ( )1
2f  from (4.14) and ( )K ξ  from (4.10d) in (4.15) and 

simplifying, yields  
( )1
2 0w B=                           (4.16) 

where,  

( )

2 2

0 2
0

2222 2 2 2 2
0 2 2

1
2 ,

1
2

a m n
B

m Am n m n
m n

λ α ξ

ϕ

ϕ ξ λ α ξ
ξ

 + 
 =

   = + + − +   +   

         (4.17) 

Next, multiplying the resultant equation by cos cosny mx  and integrating 
with respect to x and y from 0 to π and 0 to 2π, respectively for ,p n k m= = , 
and simplifying, we get  

( )1
1 0w =                         (4.18) 

We therefore expect from (4.8) that for 1i =   

( ) ( ) ( )
( )

22
1 1

0 0 0 0 22 2

1
sin sin ; sin sin ,

m
w B mx ny f B mx ny

m n

ξ

ξ

+
= = −Φ Φ =

+
(4.19) 

Solution of Equations of Second Order Perturbation  
Equations of the second order to be solved are from (4.6), namely  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )2 22 2 1 1 14
,

11 1 , ,
2xxf w H s w w s w wξ ξ  ∇ − + = − + +  

    (4.20) 

and  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )( )

2 2 2 24
, , ,

1 1 1

1
2

, ,

xx xx yyw K f w w

HK s w w s w w

ξ λ α ξ

ξ

 ∇ − + +  
 = − + 

              (4.21) 

Evaluating the symmetric bi-linear functions on the right hand sides of (4.20) 
and (4.21), substituting the same and simplifying, we get (after simplifying tri-
gonometric terms)  

( ) ( ) ( ) ( ) ( ) ( )2 2 22 24 2
, 0 0

11 1 cos 2 cos 2
2xxf w H mn B B a mx nyξ ξ   ∇ − + = − + + +    

(4.22) 

and  

( ) ( ) ( ) ( ) ( )

( )( ) ( )

2 2 2 24
, , ,

2 2
0 0 0

1
2

cos 2 cos 2

xx xx yyw K f w w

HK mn B aB mx ny

ξ λ α ξ

ξ

 ∇ − + +  

 = − Φ + + 

        (4.23) 
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Next we substitute (4.8) and (4.9) into (4.22), assuming (4.10a), (4.10b) and 
(4.10c), for 2i = . Thereafter, we multiply the resultant equation through by 
cos 2 sinny mx  and integrate with respect to x and y, to get  

( ) ( )

( )
( )

( )
( )

2 22
1 1 0 0 2 1

2 22 2

1 22 22 2 2 2

1 ,
2

4 1 1
, ,

4 4

f B B a w

Hmn m
m odd

m n m n

ξ ξ

ξ ξ

 = Φ + −Φ 
 

+ +
Φ = Φ = =

π + π +

     (4.24) 

Similarly, we next multiply the resultant equation by sin sinny mx  and inte-
grate as usual, and for ,p n k m= = , we get  

( ) ( ) ( )

( )

2 22
2 2

2 22 2

1
.

m w
f

m n

ξ

ξ

+
= −

+
                  (4.25) 

Next, we substitute (4.8) and (4.9) into (4.23), using (4.10a), (4.10b) and (4.10c), 
for 2i = , and then multiply the resultant equation through by cos 2 sinny mx  
and integrate, as usual for 2 ,p n k m= =  to get  

( ) ( )2 2 2
1 5 5 3 0 0 0 0 4 0 0

1,
2

w B B a B B a = Φ Φ = Φ Φ + Φ +Φ + 
 

     (4.26) 

( )

( )

2

3 2222 2 2 2
2 2

( )

14 4
24

mn HK

m Am n m n
m n

ξ

ξ λ α ξ
ξ

Φ =
   + + − +   +   

 

( ) ( )

3 2 2

4 222 22 2 2 2 2 2
2 2

4

14 4 4
24

m n A

m Am n m n m n
m n

ξ ξ λ α ξ
ξ

Φ =
     + + + − +   +     

(4.27) 

In the same manner, multiply the resultant equation by sin sinny mx  and in-
tegrate with respect to x and y, for ,p n k m= = , and simplify to get  

( ) ( )2 2
2 20, 0w f= =                     (4.28) 

Therefore, we observe from (4.8), and for 2i = , that  
( ) ( ) ( ) ( )2 2 2 2

1 1cos 2 sin ; cos 2 sin ,w w ny mx f f ny mx= =       (4.29) 

On substitution in (4.29) using (4.24) and in the first part of (4.26), we get  
( ) ( )2 2

5 10

2
10 1 0 0 2 5

cos 2 sin ; cos 2 sin ,

1
2

w ny mx f ny mx

B B a

= Φ = Φ

  Φ = Φ + −Φ Φ    

       (4.30) 

Solution of Equations of Third Order Perturbation  
The actual equations of the third order are from (4.7), namely  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )2 23 3 1 2 24
,1 1 , ,xxf w H s w w s w wξ ξ  ∇ − + = − + +     (4.31) 

and  
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( ) ( )( )

3 3 3 34
, , ,

1 2 2 1 2

1
2

, , ,

xx xx yyw K f w w

HK s w f s w f s w f

ξ λ α ξ

ξ

 ∇ − + +  
 = − + + 

       (4.32) 

Evaluating the symmetric bi-linear functions on the right sides of (4.31) and 
(4.32) and substituting the same and simplifying, yields  

( ) ( ) ( )

( ) ( ) ( )[

]

23 34
,

2 2
5 0 5

1
1 1 9sin 3 sin
4
cos 2 sin 3 9cos 2 sin

xxf w

H mn B a ny ny

mx ny mx ny

ξ

ξ

∇ − +

= − + Φ +Φ −

− +

      (4.33) 

and  

( ) ( ) ( ) ( ) ( )

( )( )

[

]

3 3 3 34
, , ,

2 2
0 5 0 0 1 0 0 2 5

2
1 0 0 2 5

1
2

1 1
4 2

1 9sin 3 sin
2

cos 2 sin 3 9cos 2 sin

xx xx yyw K f w w

HK mn B B B B a

a B B a ny ny

mx ny mx ny

ξ λ α ξ

ξ

 ∇ − + +  
   = − −Φ Φ + Φ + −Φ Φ   

  
  + Φ + −Φ Φ −  

  
− +

  (4.34) 

We observe from the simplifications on the right hand sides of (4.33) and 
(4.34) that there will be four buckling modes generated ( )

( )3
,i r pw  with their re-

spective Airy stress functions ( )
( )3

,i r pf . These buckling modes correspond to the 
following terms on the right hand sides of (4.33) and (4.34) : sin 3 sinny mx , 
sin sinny mx , cos 2 sin 3mx ny  and cos 2 sinmx ny .  

However, of the four modes, it is only the mode in the shape of sin sinny mx  
that is in the shape of the imperfection. We shall consider this mode and the ad-
ditional mode in the shape of sin 3 sinny mx .  

We now substitute (4.8) and (4.9) into (4.33), using (4.10a), (4.10b) and (4.10c), 
for 3i = , and thereafter, multiply the resultant equation through by sin 3 sinny mx  
and integrate and for k m= , 3p n= , to get  

( )
( )

( )
( ) ( ) ( )

( )2 23 32 2
02 ,3 2 ,322 2

1 9 1 1
9

m n m nf H mn A m w
m n

ξ ξ
ξ

 = + − + 
π +

  (4.35) 

In the same way, we multiply the resultant equation by sin sinmx ny , integrate 
and for k m= , p n= , to get  

( )
( )

( )
( ) ( ) ( )

( )2 23 32 2
02 , 2 ,22 2

3
0 0 0 0 5 2 3

0 0

1 1 1 1 ,

1 1,

m n m nf H mn A m w
m n

A B l l a
B B

ξ ξ
ξ

 = + − + 
π +

 
= = Φ + 

 

   (4.36) 

We next substitute (4.8) and (4.9) into (4.34), using (4.10a), (4.10b) and (4.10c), 
for 3i = . Thereafter, we multiply the resultant equation by sin 3 sinny mx , in-
tegrate and note that for, k m= , 3p n= , we get  
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( )
( )

( ) ( )

( )
( )

3 0 0 1 01
2 ,3 2

222 2 2 2
2 2

3 2 2 2
0 122 2

3
01 0 01 01 1 0 5 1 2 52 2

00 0

,
19 9
29

9 9, ,
9

1 1 1 1,
2

m n
A A

w
m Am n m n

m n

Hm n A HK mn
m n

A B l l a
BB B

ξ λ α ξ
ξ

ξ
ξ

Θ −Θ
=

    + + − +  +   

Θ = Θ =
ππ +

= = Φ − Φ Φ + Φ − Φ Φ

  (4.37) 

Similarly, we multiply through by sin sinny mx  and note that for ,k m p k= = , 
we get  

( )
( )

( ) ( )

( )
( )

3 2 01 3 0
2 , 2

222 2 2 2
2 2

3 2 2 2
3 222 2

,
1
2

1 1,

m n
A A

w
m Am n m n

m n

Hm n A HK mn
m n

ξ λ α ξ
ξ

ξ
ξ

Θ −Θ
=

    + + − +  +   

Θ = Θ =
ππ +

    (4.38) 

Thus, of the four non-zero buckling modes of this order and their respective 
Airy stress function, the ones we shall consider are  

( )
( )

( )
( )

( )
( )

( )
( )

3 3
2 ,3 2 ,

3 3
2 ,3 2 ,

sin 3 sin , sin sin ,

sin 3 sin and sin sin

m n m n

m n m n

w ny mx w ny mx

f ny mx f ny mx
          (4.39) 

As a summary so far, we can write the displacement and its respective Airy 
stress functions as  

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

1 2
2 , 1 ,22

1 2
2 , 1 ,2

3 3
2 ,3 2 ,3

3 3
2 ,3 2 ,

sin sin cos sin

sin sin 3 sin sin

m n m n

m n m n

m n m n

m n m n

w ww
mx ny ny mx

f f f

w w
mx ny mx ny

f f

ε ε

ε

        = +          
    
    + + +
    
     



  (4.40) 

Equation (4.40) determines the displacement and the corresponding Airy 
stress functions.  

5. Values of Independent Variables at Maximum  
Displacement  

The analysis henceforth will be concerned with the displacement components that 
are partly in the shape of the imperfection or partly in the shape of sin sin 3mx ny . 
In this respect, we neglect the displacements of order ( )2ε  in (4.40) so that 
the displacement becomes  

( )
( )

( )
( ){

( )
( ) } ( )

1 33
2 , 2 ,

3 4
2 ,3

sin sin sin sin

sin sin 3

m n m n

m n

w w mx ny w mx ny

w mx ny

ε ε

ε

= +

+Ω +
           (5.1) 

where,  
0 or 1Ω =  
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When 0Ω = , we get the exact displacement that is purely in the shape of 
imperfection, but when 1Ω = , we get the resultant displacement incorporating 
the modes sin sin 3mx ny  and sin sinmx ny .  

Since the displacement w in (5.1) depends on x and y then, the conditions for 
maximum displacement are as follows  

, , 0x yw w= =                         (5.2) 

We now let ax  and ay  be critical values of x and y respectively at maxi-
mum displacement.  

From (5.1), using (5.2), we see that for maximum displacement,  

;
2 2a ax y

m n
π π

= =                     (5.3) 

where (5.3) are the least nontrivial values of ax  and ay . 

6. Maximum Displacement  

The maximum displacement is obtained from (5.1) at the critical values of x and 
y where w has a maximum value. Hence, the value of w at these values becomes  

( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ){ }1 3 33

2 , 2 , 2 ,3a m n m n m nw w w wε λ ε λ λ= + −Ω +         (6.1) 

Meanwhile, (6.1) can be recast as  

( )3 4
1 3aw c cε ε ε= + +                     (6.2) 

where,  

( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )1 3 3

1 32 , 2 , 2 ,3,m n m n m nc w c w wλ λ λ= = −Ω           (6.3) 

7. Static Buckling Load  

The static buckling load, Sλ  according to [24] [25] and [26], is obtained from 
the maximization  

d 0
d aw
λ

=                           (7.1) 

The usual procedure (as in [22] [26] and [27]), is to first reverse the series (6.2) 
in the form  

3
1 3a ad w d wε = + +                     (7.2) 

By substituting (6.1) into (7.2) and equating the coefficients of powers of or-
ders of ε , we get  

3
1 3 4

1 1

1 ,
c

d d
c c

= = −                     (7.3) 

The maximization in (7.1) easily follows from (7.2) where aw  is now being 
substituted for w to yield, after some simplifications,  

1

3

2
3 3

c
c

ε =                           (7.4) 

On substituting into (7.4), using (6.3) and simplifying, we get  
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( )

( )

3
2 2222 2 2 2

2 2

2 2
0

1
2

3 3 1
2 2

S

S

m Am n m n
m n

a m n

ξ λ α ξ
ξ

λ ε α ξ

    + + − +    +     

 = + Ψ 
 

           (7.5) 

This determines the static buckling load Sλ  of the circular cylindrical shell 
structure, and the determination is implicit in the load parameter Sλ ,  
where,  

( ) ( )

( ) ( )

2 01 3 002
0 2 01 3 0 01 2

01 0

2220 0 1 01 2 2 2 2 2
02 02 2 2

0

1 , ,

1,
2S

l lQ
l l Q

Q

l l m AQ m n m n
m n

ϕ

ϕ ξ λ α ξ
ϕ ξ

Θ −ΘΩ
Ψ = Θ −Θ − =

 Θ −Θ     = = + + − +   +     

(7.6) 

8. Results and Discussion  

The result (7.5) is asymptotic in nature. The results of the classical buckling load 

Cλ , and that of the cylindrical shell structure are as seen in (3.9), whereas, the 
corresponding displacement and Airy Stress function of the structure are as in 
(3.10). Similarly, the static buckling load Sλ , is as shown in (7.5). A computer 
program in MATLAB gives the relationship between the static buckling load Sλ , 
and the imperfection parameter ε , at 0Ω =  or 1Ω = , and where we have 
fixed the following as 1α = , 0.2A = , 0.2H = , 0.02a = , 0.8ξ = , 1m =  
and 1n =  is as shown in Table 1.  

A careful appraisal of the graph of Figure 1, shows that static buckling load 

Sλ , decreases with increased imperfection parameter ε . This is expected. In 
other words, static buckling load Sλ  increases with less imperfection. The value 
of static buckling load Sλ  is higher when the buckling mode is a combination 
of the modes in the shape of imperfection ( sin sinmx ny ) and shape of other 
geometric form ( sin sin 3mx ny ), i.e. ( 1Ω = ) compared to the case when the 
buckling mode is in the shape of imperfection ( sin sinmx ny ) (i.e. 0Ω = ). 

 
Table 1. Relationship between static buckling load, Sλ  and imperfection parameter, ε  
for some values of Ω  of the circular cylindrical shell structure using Equation (7.5). 

ε  Sλ  

 0Ω =  1Ω =  
0.0100 2.4945 2.4954 

0.0200 2.4944 2.4953 

0.0300 2.4943 2.4952 

0.0400 2.4942 2.4951 

0.0500 2.4941 2.4949 

0.0600 2.4940 2.4948 

0.0700 2.4939 2.4946 

0.0800 2.4937 2.4944 

0.0900 2.4936 2.4942 

0.1000 2.4933 2.4938 
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Figure 1. Graph of Static buckling load Sλ , as a function of imperfection parameter, 
ε  for some values of Ω  of the circular cylindrical shell structure using Table 1. 

9. Conclusion  

This analysis has analytically determined the maximum of the out-of-plane nor-
mal displacement of a finite imperfect cylindrical shell trapped by a static load. 
We have used the techniques of perturbation and asymptotics to derive an im-
plicit formula for determining the static buckling load of the cylindrical shell in-
vestigated. The formulation contains a small parameter depicting the amplitude 
of the imperfection and on which all asymptotic series are expanded. Such an 
analytical approach can be duplicated for other structures including toroidal 
shell segments and plates. 
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