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Abstract 
This paper is devoted to find the numerical solutions of one dimensional 
general nonlinear system of third-order boundary value problems (BVPs) for 
the pair of functions using Galerkin weighted residual method. We derive 
mathematical formulations in matrix form, in detail, by exploiting Bernstein 
polynomials as basis functions. A reasonable accuracy is found when the 
proposed method is used on few examples. At the end of the study, a com-
parison is made between the approximate and exact solutions, and also with 
the solutions of the existing methods. Our results converge monotonically to 
the exact solutions. In addition, we show that the derived formulations may 
be applicable by reducing higher order complicated BVP into a lower order 
system of BVPs, and the performance of the numerical solutions is satisfac-
tory.  
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1. Introduction 

Ordinary differential systems have received a lot of interest in studies as a result 
of their frequent occurrence in numerous applications. Second-order ordinary 
differential systems can simulate a number of natural phenomena. For instance, 
while studying chemically reacting systems, fluid mechanics, relativistic mechan-
ics, gas dynamics, and nuclear physics, the known Emden-Fowler equations ap-
pear. Numerous authors have made an effort to increase accuracy in the litera-
ture on numerical analysis. Linear second-order boundary value problems can 
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be effectively solved using the finite difference approach. However, when it comes 
to deal with nonlinear equations, solving the corresponding boundary value prob-
lems can be quite challenging. The Galerkin method [1] has been used to solve 
the two point BVP by the authors Bhatti and Bracken [2]. Bernoulli polynomials 
[3] have been used to solve second-order both linear and nonlinear BVPs with 
Dirichlet, Neumann and Robin boundary conditions. Spline functions [4] [5] 
have been extensively researched, because piece-wise polynomials [6] can be dif-
ferentiated, integrated, and approximate to any function with any desired accu-
racy.  

Second order ordinary differential systems are used to describe a variety of 
problems in biology, engineering, and physics. A lot of works have been done for 
obtaining numerical solutions for the linear system of second-order boundary val-
ue problems, for example, Geng and Cui [7] represented the approximate solutions 
of system of second-order linear and nonlinear BVP in the form of series in the re-
producing kernel space. For solving a nonlinear system of second-order BVP, the 
variational iteration technique [8] was introduced. A nonlinear system of second 
order BVPs was solved by Dehghan and Saadatmandi using the sinc-collocation 
method [9]. The exact and approximate solutions were expressed in the repro-
ducing kernel space by Du and Cui [10]. A novel strategy to solve the nonlinear 
systems of second order BVPs is provided, depending on the homotopy pertur-
bation method and the reproducing kernel method. The advantages of both of 
these techniques are combined in the homotopy perturbation-reproducing ker-
nel method [11], which can be utilised to effectively handle systems of nonlinear 
boundary value problems. A few examples of linear and nonlinear systems were 
solved using the Galerkin weighted residual technique [6]. In order to solve sys-
tems of second-order BVPs, a family of boundary value methods was used in 
[12], as a block unification approach. In order to solve systems of singular boun-
dary value problems, an optimization approach [13] was presented and then solved 
via continuous genetic algorithm [14]. 

Recently, Galerkin finite element method [15] has been used to determine the 
approximate solutions of a coupled second-order BVPs. In recent years, coupled 
Lane-Emden [16] [17] boundary value problems have received a lot of attention. 
The singularity is the primary barrier to solutions, and many authors are work-
ing to solve it. In order to efficiently solve the system of Lane-Emden type equa-
tions that arise in physics, star structure, and astrophysics, Ala’yed, Saadeh and 
Qazza [18] proposed a collocation approach based on cubic B-spline functions. 

While second-order BVPs are well-studied, third-order BVPs present unique 
challenges due to their complexity. The study of third-order BVPs is crucial to 
understanding more complex physical systems and phenomena. For instance, 
third-order BVPs arise in Nano boundary layer fluid flows over a stretching sur-
face [19]. Third-order BVPs are used at resonance on the half-line [20]. 

Solving a nonlinear system of third-order boundary value problems is quite dif-
ficult. Consequently, a few researchers have attempted to solve numerically. Ezzati 
and Aqhamohamadi [21] used He’s Homotopy Perturbation method to solve the 
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nonlinear system of third-order BVPs. Block method [22] was used to solve the 
nonlinear system of third-order boundary value problems. We observe that a little 
attention has been given for solving third-order system of boundary value prob-
lems. Thus, we are motivated to solve the system of third-order boundary value 
problems by Modified Galerkin weighted residual method with Bernstein poly-
nomials as trial functions. However, we organize this research work as follows. 

First of all, we give basic idea on Bernstein polynomials in Section 2. Mathe-
matical formulations are described elaborately, in matrix form, in Section 3. Sec-
tion 4 is devoted to numerical experiments and the discussion of the obtained 
results in tabular form and graphically. Then in Section 5, we provide an appli-
cation that sixth order BVP may be modeled into a system of third order BVPs 
which can be solved by the proposed technique. Finally, conclusions and refer-
ences are amended. 

2. Bernstein Polynomials 

The general form of the Bernstein polynomials of degree n over the interval 
[ ],a b  is defined by [3] [6] [23] 

( ) ( ) ( )
( ), ,       0,1,2, ,

i n i

i n n

n x a b x
x a x b i n

i b a
φ

−− − 
= ≤ ≤ = 

− 


 
It is important to observe that each of these 1n +  polynomials, with a degree 

of n, fulfills the following properties: 
(i) ( ), 0i n xφ =  if 0i <  or i n>  
(ii) ( ),=0 1n

i ni xφ =∑  
(iii) ( ) ( ), , 0i n i na bφ φ= = , 1 i n≤ <  
For simplification, we denote ( ),i n xφ  by ( )i xφ . The Bernstein polynomials 

of degree 3, 4 and 5 are given below, respectively 

Degree 3: ( ) ( )3
0 1x xφ = −    ( ) ( )2

1 3 1x x xφ = −     ( ) ( )2
2 3 1x x xφ = −  

( ) 3
3 x xφ =  

Degree 4: ( ) ( )4
0 1x xφ = −    ( ) ( )3

1 4 1x x xφ = −     ( ) ( )22
2 6 1x x xφ = −  

( ) ( )3
3 4 1x x xφ = −   ( ) 4

4 x xφ =  

Degree 5: ( ) ( )5
0 1x xφ = −    ( ) ( )4

1 5 1x x xφ = −     ( ) ( )32
2 10 1x x xφ = −  

( ) ( )23
3 10 1x x xφ = −   ( ) ( )4

4 5 1x x xφ = −     ( ) 5
5 x xφ =  

To solve a BVP using the Galerkin method, it is required that each of these 
polynomials satisfies the homogeneous representation of the essential boundary 
conditions. Here, ( )0 xφ  and ( )n xφ  do not satisfy the homogeneous boun-
dary conditions. Therefore, in order to satisfy the homogeneous boundary con-
ditions, we use only ( )i xφ  for ( )1 1i n≤ ≤ − . We use Bernstein polynomials of 
degree 3, 4 and 5 throughout this paper. 

3. Mathematical Formulation of System of Third-Order BVPs 

In recent times, the interest in boundary value problems of a system of ordinary 
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differential equations has been sparked among researchers in mathematics, phys-
ics, engineering, biology, and other fields. 

The general linear system of two third order differential equations in two un-
known functions ( )p x  and ( )q x  of the form below is taking into considera-
tion [6] 

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 2 3 4 5 6

7 8 1

1 2 3 4 5 6

7 8 2

a x p a x p a x p a x p a x q a x q

a x q a x q g x

b x p b x p b x p b x p b x q b x q

b x q b x q g x

′′′ ′′ ′ ′′′ ′′+ + + + +


′+ + =
 ′′′ ′′ ′ ′′′ ′′+ + + + +
 ′+ + =

 (1) 

where ( )ja x , ( )jb x , ( )1g x , ( )2g x  are given functions, and ( )ja x , ( )jb x  
are continuous for 1,2, ,8j =  . 

Let’s have a look into system of third-order linear ordinary boundary value 
problems in one dimension for the pair of functions ( )p x  and ( )q x  in the 
following form [15] 

 

( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( )

1 2 3 4 5

6

1 2 3 4 5

6

,

, .

p a x p a x p a x p a x q a x q

a x q f x a x b

q b x q b x q b x q b x p b x p

b x p g x a x b

′′′ ′′ ′ ′′ ′+ + + + +


+ = ≤ ≤
 ′′′ ′′ ′ ′′ ′+ + + + +
 + = ≤ ≤

 (2) 

Here, both of the equations are of third-order, therefore three boundary con-
ditions are needed for both ( )p x  and ( )q x . Let us assume the boundary con-
ditions at the ends, i.e. 
 ( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 2, , , , , .p a p a p b q a q a q bα γ β α γ β′ ′ ′ ′= = = = = =  (3) 

The terms ( )ia x  and ( )ib x  are continuous functions for 1,2, ,i n=   and, 
( )f x  and ( )g x  are non-homogeneous. 
The trial solutions for the two functions ( )p x  and ( )q x  of system (2) can 

be written as 

 
( ) ( )

( ) ( )

1

1
1

1

, 1

, 1

n

i i
i

n

i i
i

p x a x n

q x b x n

φ

φ

−

=

−

=

 = ≥

 = ≥


∑

∑





 (4) 

where ia , ib  are unknown parameters and ( )i xφ  are basis functions which 
must satisfy the boundary conditions (3). 

Using these approximations, we can define two residual functions ( )p xε  
and ( )q xε : 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 3 4 5 6

1 2 3 4 5 6 .
p

q

x p a x p a x p a x p a x q a x q a x q f x

x q b x q b x q b x q b x p b x p b x p g x

ε

ε

′′′ ′′ ′ ′′ ′= + + + + + + −
 ′′′ ′′ ′ ′′ ′= + + + + + + −

      

      

 (5) 

Now applying the Galerkin method, we get weighted residual system of equations 

 
( ) ( )

( ) ( )

d 0

d 0.

b
p ia

b
q ia

x x x

x x x

ε φ

ε φ

 =

 =

∫

∫
 (6) 
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Substituting ( )p xε  and ( )q xε , we get 

 

( ) ( ) ( ) ( )(
( ) ( ) ) ( ) ( ) ( )

( ) ( ) ( ) ( )(
( ) ( ) ) ( ) ( ) ( )

1 2 3 4

5 6

1 2 3 4

5 6

d d

d d .

b

a
b

i ia
b

a
b

i ia

p a x p a x p a x p a x q

a x q a x q x x f x x x

q b x q b x q b x q b x p

b x p b x p x x g x x x

φ φ

φ φ

 ′′′ ′′ ′ ′′+ + + +

 ′+ + =


′′′ ′′ ′ ′′ + + + +

 ′+ + =

∫

∫

∫

∫

    

 

    

 

 (7) 

Applying integration by parts in the first term of (7) and setting ( ) 0i xφ =  at 
the boundary x a=  and x b= , we obtain 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

3

3

2

2

2

2

dd d dd d
d d dd

dd d d d
d d d d

d d d d d
d d dd

d d d d d d( ) d
d d d d dd

b
b b i

i ia a
a

b i
i i a

b
b

i ia
a

b
i i ia

x b x a

p p px x x x
x x xx

p p px b b x a a x
x x x x

p px x x
x x xx

p p px x x x
x x x x xx

φ
φ φ

φ
φ φ

φ φ

φ φ φ
= =

 = −  

= = − = −

 = − +  

   = − + +      

∫ ∫

∫

∫

∫

  

  

 

  

 

( ) ( ) ( )

( )

3

3

2

2

d d d d dd
d d d dd
d d                         d .

dd

b
i i ia

x b x a

b
ia

q q qx x x x
x x x xx

qx x
xx

φ φ φ

φ

= =

   = − +      

+

∫

∫

  



 

Substituting these in (7), the system of weighted simultaneous residual equa-
tions is obtained 

 
( ) ( ) ( ) ( )(

( ) ( ) ( ) ( ) ) ( ) ( ) ( )

1 2

3 4 5 6

d dd d d
d d d d

d d

b bi i
ia a

x b x a
b

i ia

p p x p x x a x p a x p
x x x x

a x p a x q a x q a x q x x f x x x

φ φ
φ

φ φ

= =

    ′′ ′ ′′ ′− + + + +      

′′ ′+ + + + =

∫ ∫

∫

 

  

   

 (8a) 

 
( ) ( ) ( ) ( )(

( ) ( ) ( ) ( ) ) ( ) ( ) ( )

1 2

3 4 5 6

d dd d d
d d d d

d d

b bi i
ia a

x b x a
b

i ia

q q x q x x b x q b x q
x x x x

b x q b x p b x p b x p x x g x x x

φ φ
φ

φ φ

= =

    ′′ ′ ′′ ′− + + + +      

′′ ′+ + + + =

∫ ∫

∫

 

  

   

 (8b) 

Applying the boundary conditions (3) in (8a) and (8b), we have respectively 

 
( ) ( ) ( ) ( )(

( ) ( ) ( ) ( ) ) ( ) ( ) ( )

1 1 1 2

3 4 5 6

d d
d

d d

d d

b bi i
ia a

x b x a
b

i ia

x p x x a x p a x p
x x

a x p a x q a x q a x q x x f x x x

φ φ
β γ φ

φ φ

= =

    ′′ ′ ′′ ′− + + + +      

′′ ′+ + + + =

∫ ∫

∫

  

   

 (9a) 

 
( ) ( ) ( ) ( )(

( ) ( ) ( ) ( ) ) ( ) ( ) ( )

2 2 1 2

3 4 5 6

d d
d

d d

d d

b bi i
ia a

x b x a
b

i ia

x q x x b x q b x q
x x

b x q b x p b x p b x p x x g x x x

φ φ
β γ φ

φ φ

= =

    ′′ ′ ′′ ′− + + + +      

′′ ′+ + + + =

∫ ∫

∫

  

   

 (9b) 

Now putting trial solutions (4) into (9a) and (9b), and simplifying these for 
1,2, ,i n=  , we obtain 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )

( ) ( )

1

1 2 3
1

1

4 5 6
1

1 1

d

d

d d
d ,

d d

n b
i j j j j i ja

j

n b
j j j i ja

j

b i i
ia

x b x a

x x a x x a x x a x x x x a

a x x a x x a x x x x b

f x x x
x x

φ φ φ φ φ φ

φ φ φ φ

φ φ
φ β γ

−

=

−

=

= =

 ′′ ′ ′′ ′+ + + 

′′ ′+ + +

   = + −      

∑ ∫

∑ ∫

∫

 (10a) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )

( ) ( )

1

1 2 3
1

1

4 5 6
1

2 2

d

d

d d
d .

d d

n b
i j j j j i ja

j

n b
j j j i ja

j

b i i
ia

x b x a

x x b x x b x x b x x x x b

b x x b x x b x x x x a

g x x x
x x

φ φ φ φ φ φ

φ φ φ φ

φ φ
φ β γ

−

=

−

=

= =

 ′′ ′ ′′ ′+ + + 

′′ ′+ + +

   = + −      

∑ ∫

∑ ∫

∫

 (10b) 

The matrix form is equivalent to the previously mentioned equations 

 
( )

( )

1

, ,
1

1

, ,
1

n

j i j j i j i
j

n

j i j j i j i
j

A a H b F

C b D a G

−

=

−

=

 + =


 + =


∑

∑
 (11) 

where, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ), 1 2 3 d
b

j i i j j j j ia
A x x a x x a x x a x x x xφ φ φ φ φ φ ′′ ′ ′′ ′= + + + ∫  

( ) ( ) ( ) ( ) ( ) ( )( ) ( ), 4 5 6 d
b

j i j j j ia
H a x x a x x a x x x xφ φ φ φ′′ ′= + +∫  

( ) ( ) 1 1
d dd
d d

b i i
i ia

x b x a

F f x x x
x x
φ φ

φ β γ
= =

   = + −      ∫
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ), 1 2 3 d
b

j i i j j j j ia
C x x b x x b x x b x x x xφ φ φ φ φ φ ′′ ′ ′′ ′= + + + ∫  

( ) ( ) ( ) ( ) ( ) ( )( ) ( ), 4 5 6 d
b

j i j j j ia
D b x x b x x b x x x xφ φ φ φ′′ ′= + +∫  

( ) ( ) 2 2
d dd
d d

b i i
i ia

x b x a

G g x x x
x x
φ φ

φ β γ
= =

   = + −      ∫
 

, 1,2, ,i j n=   
Now, we are going to solve nonlinear system of two third order differential 

equations in two unknown functions ( )p x  and ( )q x  of the form below is 
taking into consideration [8] 

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 3 4 5 6

7 8 1 1

1 2 3 4 5 6

7 8 2 2

,

,

a x p a x p a x p a x p a x q a x q

a x q a x q M p q g x

b x p b x p b x p b x p b x q b x q

b x q b x q M p q g x

′′′ ′′ ′ ′′′ ′′+ + + + +


′+ + + =
 ′′′ ′′ ′ ′′′ ′′+ + + + +
 ′+ + + =

 (12) 

where ( )ja x , ( )jb x , ( )1g x , ( )2g x  are given functions, 1M , 2M  represent 
nonlinear functions and ( )ja x , ( )jb x  are continuous for 1,2, ,8j =  . Since 
the system of third-order boundary value problems consist of nonlinear terms, 
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then we can’t solve the system directly. In this case, mathematical formulation 
depends on the problem. In order to get the initial values of the parameters, we 
must neglect the nonlinear terms and solve the linear system. After getting the 
initial values of the parameters we will be able to solve the system. Then putting 
the parameters into the trial solutions, we will obtain the approximate solutions 
for the functions ( )p x  and ( )q x . The details are described in the following 
section. 

4. Numerical Results & Discussions 

In this study, we use four systems; one linear and three nonlinear, which are 
available in the existing literature. To verify the effectiveness of the derived for-
mulations, Dirichlet and Neumann boundary conditions are considered. For 
each case we find the approximate solutions using different number of parame-
ters with Bernstein polynomials, and we compare these solutions with the exact 
solutions, and graphically which are shown in the same figures. Since the con-
vergence of linear BVP is calculated by 

( ) ( )1 1n nE p x p x δ+= − < 

 

where ( )np x  denotes the approximate solution using n polynomials and 1δ  
depends on the problem. In this case, 8

1 10δ −< . In addition, the convergence of 
nonlinear BVP is assumed when the absolute error of two consecutive iterations, 

2δ  satisfies 

( ) ( )1
2

N N
n nE p x p x δ+= − < 

 

and, in this case, 10
2 10δ −< . 

Example 1. Consider the following system of third-order nonlinear boundary 
value problem [21] [22] 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 , 0 1

, 0 1
6

0 0 0,  1 1 0,  0 0 0

p x p x xq x f x x

p x q x
q x g x x

p q p q p q

′′′ ′+ + = < <


′′ ′′ ′′′ + = < <

 ′ ′= = = = = =


 (13) 

where 

( ) 5 3 218 12 18f x x x x x= − − + −  

( ) 3 236 12 30 2g x x x x= − + + −  

The exact solutions are ( ) 2 33 3p x x x= −  and ( ) 4 2q x x x= − . 
Here, we use Bernstein polynomials as trial approximate solution to solve the 

system (13). Let us consider the trial solution of the form 

 
( ) ( ) ( )

( ) ( ) ( )

1

0
1
1

0
1

n

i i
i

n

i i
i

p x x a x

q x x b x

θ φ

φ φ

−

=

−

=

 = +

 = +


∑

∑





 (14) 
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where ia  and ib  are parameters and ( )i xφ  are trial functions (Bernstein poly-
nomials) which satisfy the boundary conditions. Here, we can choose ( )0 0xθ =  
and ( )0 0xφ =  because the boundary conditions are homogeneous. 

Now applying the Galerkin method, we get weighted residual system of equations 

 
( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1

0 0

1 1

0 0

2 d d

d d
6

i i

i i

p x p x xq x x x f x x x

p x q x
q x x x g x x x

φ φ

φ φ

 ′′′ ′+ + =

 ′′ ′′ 

′′′ + =  
  

∫ ∫

∫ ∫

  

 



 (15) 

Applying integration by parts in the first term of (26), we obtain 

( )

( ) ( ) ( ) ( )

( ) ( )

131 1

30 0
0

1

0

1 21

20
0

dd d dd ( ) d
d d dd

dd d d1 1 0 0 d
d d d d

d d d d d
d d dd

i
i i

i
i i

i i

p p px x x x
x x xx

p p px x x
x x x x

p px x x
x x xx

φ
φ φ

φ
φ φ

φ φ

 = −  

= = − = −

 = − +  

∫ ∫

∫

∫

  

  

 

 

( ) ( ) ( )
13 21 1

3 20 0
0

d d d d dd d
d d dd di i i

q q qx x x x x
x x xx x

φ φ φ = − +  ∫ ∫
  

 
This system can be converted into modified Galerkin form in the usual sense, 

and using (14) to obtain 

 
( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )

1 1

0 1
1

1 1 1

0 0
1

2 d

d d , 1,2, ,

n

j i j i j i jx
j

n

j i j i
j

x x x x x x x a

x x x x b f x x x i n

φ φ φ φ φ φ

φ φ φ

−

=
=

−

=

′ ′′ ′ ′ ′   + −   

+ = =

∑ ∫

∑ ∫ ∫ 

 (16a) 

 

 
Figure 1. Exact and approximate solutions of ( )p x  for Example 1. 
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Table 1. Absolute errors ( ) ( )p x p x−   for Example 1. 

x 
Present Method (GWRM) 

HPM [21] 
Degree 3 Degree 4 Degree 5 

0.1 3.010565 × 10−5 8.406867 × 10−10 1.680418 × 10−9 8.74250 × 10−8 

0.2 1.976596 × 10−5 3.596601 × 10−8 2.284382 × 10−9 3.41082 × 10−5 

0.3 1.836086 × 10−5 9.477548 × 10−8 5.387116 × 10−9 7.35812 × 10−5 

0.4 7.161663 × 10−5 1.653393 × 10−7 1.220891 × 10−8 1.23210 × 10−4 

0.5 1.273431 × 10−4 2.343983 × 10−7 2.200062 × 10−8 6.24822 × 10−1 

0.6 1.728822 × 10−4 2.873641 × 10−7 3.242916 × 10−8 2.31537 × 10−4 

0.7 1.955756 × 10−4 3.083190 × 10−7 3.996300 × 10−8 2.75507 × 10−5 

0.8 1.827652 × 10−4 2.800157 × 10−7 4.025768 × 10−8 2.92801 × 10−4 

0.9 1.217927 × 10−4 1.838780 × 10−7 2.854130 × 10−8 2.39684 × 10−4 
 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )

1 1

0 1
1

1 11 1

0 0
1 1

d

1 d d , 1,2, ,
6

n

j i j i jx
j

n n

k k k k i i
k k

x x x x x b

a x b x x x g x x x i n

φ φ φ φ

φ φ φ φ

−

=
=

− −

= =

′ ′′ ′ ′ −  

  ′′ ′′+ = =  
  

∑ ∫

∑ ∑∫ ∫ 

 (16b) 

The above equations are equivalent to the matrix form 

 ( )
1

, ,
1

, 1, 2, ,
n

j i j j i j i
j

A a H b F i n
−

=

+ = =∑   (17a) 

 
1

,
1

, 1, 2, ,
n

j i j i i
j

C b G N i n
−

=

= + =∑   (17b) 

in which 

( ) ( ) ( ) ( )( ) ( ) ( )1
, 0 1

2 dj i j i j i j i x
A x x x x x x xφ φ φ φ φ φ

=
′ ′′ ′ ′ ′ = + −  ∫  

( ) ( )1
, 0

dj i j iH x x x xφ φ= ∫  

( ) ( )1 5 3 2
0

18 12 18 di iF x x x x x xφ= − − + −∫  

( ) ( ) ( ) ( )1
, 0 1

dj i j i j i x
C x x x x xφ φ φ φ

=
′ ′′ ′ ′ = −  ∫  

( ) ( )1 3 2
0

36 12 30 2 di iG x x x x xφ= − + + −∫  

( ) ( ) ( )1

0
1 1

1 d
6

n n

i k k k k i
k k

N a x b x x xφ φ φ
= =

  ′′ ′′= −   
  
∑ ∑∫

 
, 1,2, ,i j n=   

Neglecting the nonlinear term iN  in (17b), the initial values of ja  and jb  
are obtained. Therefore, we obtain initial values solving the system 

 
( )

1

, ,
1

1

,
1

, 1, 2, ,

, 1, 2, ,

n

j i j j i j i
j

n

j i j i
j

A a H b F i n

C b G i n

−

=

−

=

 + = =


 = =


∑

∑





 (18) 
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Table 2. Absolute errors ( ) ( )q x q x−   for Example 1. 

x 
Present Method (GWRM) 

HPM [21] 
Degree 3 Degree 4 Degree 5 

0.1 2.305211 × 10−2 1.390676 × 10−8 3.551924 × 10−7 1.34169 × 10−5 

0.2 2.226453 × 10−2 7.162991 × 10−6 1.658188 × 10−6 5.22346 × 10−5 

0.3 8.856149 × 10−3 1.724459 × 10−5 2.285279 × 10−6 1.12022 × 10−4 

0.4 8.354171 × 10−3 2.692795 × 10−5 4.263502 × 10−7 9.61854 × 10−2 

0.5 2.294756 × 10−2 3.375417 × 10−5 3.196644 × 10−6 2.00026 × 10−1 

0.6 3.090514 × 10−2 3.613628 × 10−5 6.873504 × 10−6 3.30775 × 10−4 

0.7 3.060805 × 10−2 3.335918 × 10−5 8.739233 × 10−6 3.78034 × 10−4 

0.8 2.283741 × 10−2 2.557966 × 10−5 7.607479 × 10−6 3.86227 × 10−4 

0.9 1.077435 × 10−2 1.382641 × 10−5 3.803978 × 10−6 3.11011 × 10−4 

 
Then we substitute these values into (17a) and (17b) and obtain the new val-

ues of ja  and jb . The iterative process keeps going till the converged estimates 
of the unknown coefficients are achieved. We have an approximation to the BVP 
(13) by replacing the final quantities in (14). 

Satisfying the homogeneous boundary conditions and using degree of polynomi-
al 3, we may obtain the approximate solutions of ( )p x  and ( )q x  are 

( ) ( ) ( )2 20.00054548 1 2.99843577 1p x x x x x= − + −  and 

( ) ( ) ( )2 20.39311569 1 2.07669616 1q x x x x x= − − − , respectively. 

Table 1 shows the numerical outcomes for the given problem. Here we have 
used 2, 3 and 4 Bernstein polynomials in column 2, 3 and 4 respectively. Con-
sider the fact that we iterate four times in order to achieve the approximations. 

Here, we see that the maximum absolute error of ( )p x  using 3, 4 and 5 de-
gree polynomials are 1.955756 × 10−4, 3.083190 × 10−7 and 4.025768 × 10−8, re-
spectively whereas the maximum absolute errors using Homotopy Perturbation 
Method (HPM) in [21] and Block method in [22] are 6.24822 × 10−1 and 6.25 × 
10−4, respectively. On the other hand, Table 2 shows that the maximum absolute 
error of ( )q x  using 3, 4 and 5 degree polynomials are 3.090514 × 10−2, 
3.613628 × 10−5 and 8.739233 × 10−6, respectively. The maximum absolute errors 
using HPM in [21] and Block method in [22] are 2.00026 × 10−1 and 1.48 × 10−2, 
respectively. Thus, our proposed method reflects the better results than the pre-
vious results. In Figure 1 and Figure 2, we compare the exact solutions with the 
approximate solutions for ( )p x  and ( )q x , respectively. What we’ve noticed is 
that when we use polynomials of degree 5, the results show very good agreement 
between exact and approximate solutions. 

Example 2. Consider the following nonlinear system of third-order boundary 
value problem [21] [22] 
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Figure 2. Exact and approximate solutions of ( )q x  for Example 1. 

 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

4 , 0 1

4 , 0 1

0 0 0,  1 1 1,  0 0 0

p x q x p x q x f x x

q x q x p x p x q x g x x

p q p q p q

′′′ ′′ ′′ ′− + = < <

′′′ ′ ′′ ′ ′′+ − + = < <

 ′ ′= = = = = =

 (19) 

where 

( ) ( )4 436 and 24 6f x x g x x= = +  
The exact solutions are ( ) 4p x x=  and ( ) 3q x x= . 
Let us consider the trial solution of the form 

 
( ) ( ) ( )

( ) ( ) ( )

0
1

0
1

n

i i
i
n

i i
i

p x x a x

q x x b x

θ φ

φ φ

=

=

 = +

 = +


∑

∑





 (20) 

where ia  and ib  are parameters and ( )i xφ  are trial functions (Bernstein poly-
nomials) which satisfy the boundary conditions. Here, we can choose ( ) 2

0 x xθ =  
and ( ) 2

0 x xφ =  in order to satisfy the boundary conditions. 
Now applying the Galerkin method, we get weighted residual system of equa-

tions 

 
( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

1 1

0 0
1 1

0 0

4 d d

4 d d

i i

i i

p x q x p x q x x x f x x x

q x q x p x p x q x x x g x x x

φ φ

φ φ

 ′′′ ′′ ′′ ′− + =


′′′ ′ ′′ ′ ′′ + − + =

∫ ∫

∫ ∫

   

    

 (21) 

This system can be converted to modified Galerkin form in the usual way and 
using (20) we finally obtain the matrix form 
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 ( ), ,
1

, 1, 2, ,
n

j i j j i j i i
j

A a H b F N i n
=

+ = + =∑   (22a) 

 ( ), ,
1

, 1, 2, ,
n

j i j j i j i i
j

C b D a G M i n
=

+ = + =∑   (22b) 

where 

( ) ( ) ( ) ( ) ( ) ( )1
, 0 1

2 dj i j i j i j i x
A x x x x x x x xφ φ φ φ φ φ

=
′ ′′ ′′ ′ ′   = + −   ∫  

( ) ( ) ( ) ( )( )1
, 0

4 2 dj i j i j iH x x x x xφ φ φ φ′ ′ ′= +∫  

( ) ( ) ( ) ( ) ( )( ) ( )1

10
4 8 2 d 2i i i i i i x

F f x x x x x x x x x x xφ φ φ φ φ
=

′ ′′ ′= − − − +   ∫  

( ) ( ) ( )1

0
1 1

d
n n

i k k k k i
k k

N a x b x x xφ φ φ
= =

  ′′ ′= −   
  
∑ ∑∫

 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )1
, 0 1

4 2 dj i j i j i j i j i x
C x x x x x x x x x xφ φ φ φ φ φ φ φ

=
′ ′′ ′ ′′ ′ ′ = + + −  ∫  

( ) ( ) ( ) ( )( )1
, 0

4 2 dj i j i j iD x x x x xφ φ φ φ′ ′ ′= +∫  

( ) ( ) ( ) ( ) ( )( ) ( )1

10
12 2 2 d 2i i i i i i x

G g x x x x x x x x x x xφ φ φ φ φ
=

′ ′′ ′= − − − +   ∫  

( ) ( ) ( )1

0
1 1

d
n n

i k k k k i
k k

M a x b x x xφ φ φ
= =

  ′ ′′= −   
  
∑ ∑∫

 
, 1,2, ,i j n=   

Neglecting the nonlinear terms iN  and iM  in (22a) and (22b) respectively, 
the initial values of ja  and jb  are obtained. Therefore, we obtain the initial 
values solving the following system 

 
( )

( )

, ,
1

, ,
1

, 1, 2, ,

, 1, 2, ,

n

j i j j i j i
j

n

j i j j i j i
j

A a H b F i n

C b D a G i n

=

=

 + = =


 + = =


∑

∑





 (23) 

Then we substitute these values in (22a) and (22b) and obtain the new values 
of ja  and jb . The iterative process keeps going till the converged estimates of 
the unknown coefficients are achieved. We have an approximation to the BVP 
(19) by replacing the final quantities in (20). The approximate solutions of ( )p x  
and ( )q x  using two parameters with polynomial degree 3 are: 

( ) 3 22.36893939 1.77969288 0.41075348p x x x x= − + , and 

( ) 3 21.03113495 0.05887466 0.02773971q x x x x= − + , respectively. 

We’ve compared exact and approximate solutions for ( )p x  and ( )q x  in 
Figure 3 and Figure 4, respectively for Example 2. In Figure 3, it’s evident that 
employing fifth-degree polynomials yields better outcomes for the function 
( )p x  when compared to third and fourth-degree polynomials. Table 3 and Table 

4 show the numerical outcomes for the given problem. Here we have used 2, 3 
and 4 Bernstein polynomials in column 2, 3 and 4 respectively. Consider the  
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Figure 3. Exact and approximate solutions of ( )p x  for Example 2. 

 

 
Figure 4. Exact and approximate solutions of ( )q x  for Example 2. 

 
fact that we iterate four times in order to achieve the approximations. Here, we 
see that the maximum absolute error of ( )p x  in Table 3 using 2, 3 and 4 po-
lynomials are 2.831450 × 10−2, 1.616954 × 10−7 and 8.469325 × 10−8, respectively  
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Table 3. Absolute errors for ( ) ( )p x p x−   for Example 2. 

x 
Present Method (GWRM) 

HPM [21] 
Degree 3 Degree 4 Degree 5 

0.1 2.554736 × 10−2 1.060524 × 10−7 7.896618 × 10−8 8.74250 × 10−8 

0.2 2.831450 × 10−2 6.744158 × 10−8 1.381743 × 10−8 1.08399 × 10−3 

0.3 1.891505 × 10−2 2.037354 × 10−8 2.377000 × 10−8 4.71442 × 10−3 

0.4 5.562655 × 10−3 9.053284 × 10−8 3.918424 × 10−8 1.14828 × 10−2 

0.5 5.929053 × 10−3 1.047750 × 10−7 5.790583 × 10−8 2.18865 × 10−2 

0.6 1.214644 × 10−2 5.343750 × 10−8 7.518965 × 10−8 3.5986 × 10−2 

0.7 1.207586 × 10−2 4.454330 × 10−8 8.469325 × 10−8 6.87692 × 10−2 

0.8 7.103685 × 10−3 1.416323 × 10−7 7.947025 × 10−8 7.66527 × 10−2 

0.9 1.016277 × 10−3 1.616954 × 10−7 5.296380 × 10−8 6.20685 × 10−2 

 
Table 4. Absolute errors for ( ) ( )q x q x−   for Example 2. 

x 
Present Method (GWRM) 

HPM [21] 
Degree 3 Degree 4 Degree 5 

0.1 2.216359 × 10−3 8.201831 × 10−8 5.335278 × 10−9 6.73806 × 10−4 

0.2 3.442034 × 10−3 7.169045 × 10−8 1.268373 × 10−9 2.82326 × 10−3 

0.3 3.863836 × 10−3 3.608265 × 10−8 7.607422 × 10−9 6.61192 × 10−3 

0.4 3.668574 × 10−3 1.982045 × 10−8 1.026833 × 10−8 1.21045 × 10−3 

0.5 3.043057 × 10−3 4.508859 × 10−8 1.119354 × 10−8 1.91209 × 10−2 

0.6 2.174096 × 10−3 1.116311 × 10−7 1.424742 × 10−8 2.69597 × 10−2 

0.7 1.248500 × 10−3 1.967514 × 10−7 2.178228 × 10−8 3.39306 × 10−2 

0.8 4.530788 × 10−4 2.553118 × 10−7 3.120430 × 10−8 6.57775 × 10−2 

0.9 2.535774 × 10−5 2.197343 × 10−7 3.153957 × 10−8 2.88236 × 10−2 

 
whereas the maximum absolute errors using Homotopy Perturbation Method 
(HPM) in [21] and Block method in [22] are 7.66527 × 10−2 and 5.50 × 10−3, re-
spectively. 

On the other hand, Table 4 shows that the maximum absolute error of ( )q x  
using 2, 3 and 4 polynomials are 3.863836 × 10−3, 2.553118 × 10−7 and 3.153957 × 
10−8, respectively. The maximum absolute errors using HPM in [21] and Block 
method in [22] are 6.57775 × 10−2 and 2.39 × 10−2, respectively. In this example, 
we show that the proposed method is far better than the existing methods in [21] 
and in [22]. 

5. Applications 

Although in [24], Agarwal has extensively covered the theorems of the criteria 
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for the existence and uniqueness of solutions of the sixth-order BVPs in a book, 
it does not include any numerical techniques. Islam and Hossain [23] solved the 
sixth-order BVPs using Galerkin method. Modified decomposition method was 
used in [25] to find the solution of the sixth-order BVPs by Wazwaz. Aasma 
Khalid et al. used Cubic B-spline in [26] and [27] in order to solve the linear and 
nonlinear sixth-order BVPs, respectively. Cubic-nonpolynomial spline (CNPS) 
and cubic-polynomial spline (CPS) were used to obtain the solutions of BVPs in 
[28] arising in hydrodynamic and magnetohydro-dynamic stability theory. Noor 
and Mohyud-Din [29] solved the sixth-order BVP using homotopy perturbation 
method. However, in this section, we show that higher even order BVP may be 
solved, in the alternative way, by the method of reduction order into system of 
lower order BVPs. For this, we experiment the proposed method to sixth order 
BVP. 

Example 3 Consider the linear sixth-order boundary value problem [23] [26] 
[29] 

 
6

6

d 6 ,   0 1
d

xp p e x
x

− = − ≤ ≤  (24) 

Subject to the boundary conditions 

( ) ( ) ( ) ( ) ( ) ( )0 1,  1 0,  0 0,  1 ,  0 1,  1 2p p p p e p p e′ ′ ′′ ′′= = = = − = − = −  
The analytic solution of the above problem is, ( ) ( )1 xp x x e= − . 
If we introduce a new function, say, ( )q x  such that 

 
3

3

d
d

pq
x

=  (25) 

then (28) is clearly equivalent to two third-order differential equations 

 

3

3

3

3

d 6
d
d 0
d

xq p e
x
p q

x


− = −


 − =

 (26) 

with boundary conditions 

 ( ) ( ) ( ) ( ) ( ) ( )0 1,  1 0,  0 0,  0 2,  1 3 ,  0 3p p p q q e q′ ′= = = = − = − = −  (27) 

Table 5 shows the numerical outcomes for the given problem. We have used 4 
Bernstein polynomials of degree 5. Here, we see that the maximum absolute er-
ror of ( )p x  in Table 5 is 1.84 × 10−5 whereas the maximum absolute errors 
using Cubic B-Spline method in [26] and Homotopy Perturbation Method (HPM) 
in [29] are 1.67 × 10−4 and 1.32 × 10−3, respectively. 

Using the method illustrated in the previous section and for different number 
of polynomials, the maximum absolute errors and the previous results available 
in the literature are summarized in Table 6. The accuracy of the present method 
is remarkable.  

Example 4. Consider the nonlinear sixth-order boundary value problem [25] 
[27] [28] [29] 
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Table 5. Exact, approximate and absolute errors of Example 3. 

x 
Present Method (GWRM) Cubic 

B-Spline [26] 
HPM [29] 

Exact Approximate Abs Error 

0.1 0.99465383 0.99464299 1.08 × 10−5 1.18 × 10−5 4.09 × 10−4 

0.2 0.97712221 0.97713362 1.14 × 10−5 4.29 × 10−5 7.78 × 10−4 

0.3 0.94490117 0.94491960 1.84 × 10−5 8.53 × 10−5 1.07 × 10−3 

0.4 0.89509482 0.89510135 6.53 × 10−6 1.28 × 10−4 1.26 × 10−3 

0.5 0.82436064 0.82435116 9.48 × 10−6 1.59 × 10−4 1.32 × 10−3 

0.6 0.72884752 0.72883236 1.52 × 10−5 1.67 × 10−4 1.26 × 10−3 

0.7 0.60412581 0.60411856 7.26 × 10−6 1.45 × 10−4 1.07 × 10−3 

0.8 0.44510819 0.44511280 4.61 × 10−6 9.47 × 10−5 7.78 × 10−4 

0.9 0.24596031 0.24596678 6.46 × 10−6 3.33 × 10−5 4.09 × 10−4 

 
Table 6. Absolute errors for ( ) ( )p x p x−   for Example 3. 

Number of Polynomial used Present Method (GWRM) In [23] 

10 1.165 × 10−14 1.126 × 10−13 

11 1.986 × 10−16 2.311 × 10−15 

12 4.771 × 10−18 2.220 × 10−16 

13 7.228 × 10−20 2.220 × 10−16 

 

 ( )
6

2
6

d ,   0 1
d

xp e p x x
x

−= ≤ ≤  (28) 

Subject to the boundary conditions 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 1,  1 1 1iv ivp p p p p p e′′ ′′= = = = = =  
The analytic solution of the above problem is, ( ) xp x e= . 
Introducing a new function, ( )q x , Equation (28) is equivalent to two third- 

order differential equations 

 

3
2

3

3

3

d
d
d 0
d

xq e p
x
p q

x

−
=


 − =

 (29) 

with boundary conditions 

 ( ) ( ) ( ) ( ) ( ) ( )0 1,  1 ,  0 1,  0 1,  1 ,  0 1p p e p q q e q′ ′= = = = = =  (30) 

Table 7 shows the numerical outcomes for the given problem. We have used 4 
Bernstein polynomials of degree 5. Here, we see that the maximum absolute er-
ror of ( )p x  in Table 7 is 5.04 × 10−5 whereas the maximum absolute errors 
using Modified Decomposition Method (MPM) in [25], Cubic B-Spline method 
in [27], Cubic Polynomial Spline (CPS) in [28] and Homotopy Perturbation  
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Table 7. Exact, approximate and absolute errors of Example 4. 

x GWRM MDM [25] 
Cubic 

B-Spline [27] 
CPS [28] HPM [29] 

0.1 1.00 × 10−5 1.23 × 10−4 3.95 × 10−6 5.05 × 10−5 1.23 × 10−4 

0.2 1.41 × 10−5 2.35 × 10−4 1.43 × 10−5 9.23 × 10−5 2.35 × 10−4 

0.3 3.97 × 10−5 3.25 × 10−4 2.79 × 10−5 1.25 × 10−4 3.25 × 10−4 

0.4 5.04 × 10−5 3.85 × 10−4 4.07 × 10−5 1.47 × 10−4 3.85 × 10−4 

0.5 4.35 × 10−5 4.08 × 10−4 4.88 × 10−5 1.59 × 10−4 4.08 × 10−4 

0.6 2.63 × 10−5 3.91 × 10−4 4.92 × 10−5 1.58 × 10−4 3.92 × 10−4 

0.7 1.04 × 10−5 3.36 × 10−4 4.09 × 10−5 1.44 × 10−4 3.36 × 10−4 

0.8 5.42 × 10−6 2.45 × 10−4 2.56 × 10−5 1.14 × 10−4 2.46 × 10−4 

0.9 9.77 × 10−6 1.29 × 10−4 8.63 × 10−6 6.70 × 10−5 1.29 × 10−4 

 
Method in [29] are 4.08 × 10−4, 4.92 × 10−5, 1.59 × 10−4 and 4.08 × 10−4, respec-
tively. We may observe that the solutions converge monotonically from below. 
This concludes that the present method may be exploited with considerable ac-
curacy. 

6. Conclusion 

We have deduced the formulation of the Galerkin weighted residual method for 
system of third-order boundary value problems in detail. We can determine the 
solutions at each point within the problem’s domain by using this method. Bernstein 
polynomials have been used in this method as the trial functions in the approx-
imation. The focus has been on the formulations as well as on the performance 
of the accuracy. Some examples are tested to verify the effectiveness of the de-
sired formulations. A good agreement has been established when comparing the 
approximate solutions with the exact solutions. Unlike finite difference or finite 
element methods, which rely on specific mesh structures, the Galerkin method 
operates directly in the function space, making it applicable to problems defined 
on irregular domains or with discontinuous coefficients. We have shown that 
this method may be applied to higher-order systems and/or single BVPs to get 
the desired accuracy. 
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