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Abstract 
In this paper, we consider the generalized Korteweg-de-Vries (KdV) equa-
tions which are remarkable models of the water waves mechanics, the shallow 
water waves, the quantum mechanics, the ion acoustic waves in plasma, the 
electro-hydro-dynamical model for local electric field, signal processing 
waves through optical fibers, etc. We determine the useful and further general 
exact traveling wave solutions of the above mentioned NLDEs by applying the 

( )( )exp τ ξ− -expansion method by aid of traveling wave transformations. 

Furthermore, we explain the physical significance of the obtained solutions 
of its definite values of the involved parameters with graphic representa-
tions in order to know the physical phenomena. Finally, we show that the 

( )( )exp τ ξ− -expansion method is convenient, powerful, straightforward and 

provide more general solutions and can be helping to examine vast amount of 
travelling wave solutions to the other different kinds of NLDEs. 
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1. Introduction 

Differential equations are very important branch of modern mathematics. Dif-
ferential equations are basically two kinds, such as, ordinary differential equa-
tion and partial differential equation for classical mechanics. But in generaliza-
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tion, fractional differential equations are an important part of differential equa-
tions. Nonlinear differential equations (NLDEs) and fractional nonlinear diffe-
rential equations (FNLDEs) are important through the applications in integer 
and fractional calculus and also gained much importance to the researchers in 
different branches of sciences and engineering, for instance, in mathematical 
physics, engineering and also it arises in signal processing, control theory, fractal 
dynamics, optical fibers, chemical kinematics, physics, applied physics, medicine, 
aerodynamics, hydrology, pharmacy, material science, the modeling of earth-
quake, electricity, biological science, fractal dynamics, population model of the 
motion of a projectile, rocket, planet or satellite, the charge or current in an 
electric circuit, the reactions of chemicals, the rate of growth of a population, 
spring mass systems, bending of beams condition of heat in a rod or in a slap, 
etc. The mathematical formulations of all of the above problems give rise to dif-
ferential equations and fractional differential equations. Basically, most of the 
differential equations involving physical phenomena are nonlinear. It is simple 
to solve the differential equations which are linear, but the solutions of nonlinear 
equations are laborious, and, in some cases, it is impossible to solve them ana-
lytically. In such critical situation ( )( )exp τ ξ− -expansion processes the investi-
gators attempt to solve the nonlinear differential equations. Nonlinear wave phe-
nomena appear in various scientific and engineering fields, such as, fluid me-
chanics, plasma physics, high energy physics, condensed matter physics, quan-
tum mechanics, elastic media, biology, solid state physics, chemical kinematics 
optical fibers, biophysics, geochemistry, electricity, propagation of shallow water 
waves, chemical physics and so on. To understand better the nonlinear pheno-
mena as well as further application in practical life, it is important to seek their 
more exact travelling wave solutions. The fundamental equations in physical 
sciences are nonlinear and in general NLPDEs are often very complicated to 
solve explicitly exact solutions of NLPDEs that play an important role in the 
study of nonlinear physical phenomena. Therefore, in the past three decades, 
many significant methods have been enhanced and developed to get exact solu-
tions of NLPDEs, such as, integer and fractional types NLDEs [1] [2] [3]. Most 
of these methods are the homogeneous balance method, likely, the Kudryashov 
method [4], the generalized Kudryashov method [5], the Modified Kudryashov 
Method [6], the first integral method [7], the improved modified extended tanh- 
function method [3] [8], the (G'/G,1/G)-expansion technique [9] [10], advanced 

( )( )exp φ ξ− -expansion method [1] [11] [12], the modified extended tanh- 
function method [13] [14] [15], the Jacobi elliptic function method [16], the 
(G'/G2)-expansion technique [17] [18], the sine-cosine methods [19] [20], the 
tanh-coth method [21], the simplified Hirota’s method [22], the Hirota bili-
near method [23] [24] [25], Soret and Dufour effects [26], the modified sim-
ple equation method [27], the exp function method [28], the sine-Gordon 
expansion method [29], the rational sine-Gordon expansion method [2] [30], 
Wang’s Bäcklund transformation-based method [31], the variational iteration 

https://doi.org/10.4236/jamp.2024.126126


M. M. Miah et al. 
 

 

DOI: 10.4236/jamp.2024.126126 2071 Journal of Applied Mathematics and Physics 
 

method [32] [33] [34], the new auxiliary equation method [35], Variational 
method [36], Deep Learning approach [37], the method of characteristics 
[38], Dixon resultant method [39], the three-dimensional molecular structure 
model [40], etc. 

The obtained solutions are the remarkable mathematical model of the turbu-
lent motion, the electro-hydro-dynamical model for the local electric field, the 
ion acoustic waves in plasma, the fluid flow of motion in shallow water waves 
under gravity, the propagation waves, the waves particle duality that is notewor-
thy, the signal processing waves through optical fibers, the variation over time of 
a physical structure on the fractional fluid mechanics system, ion acoustic waves, 
the varies in temperature from one place to another, the conservation of mass 
and acceleration due to gravity, the viscoelasticity waves, the traffic flow model, 
etc.. We have discussed the physical consequence of the attained solutions by 
setting definite values of the involved parameters by depicting figures. We also 
have established that the ( )( )exp τ ξ− -expansion method is potential, efficient, 
straightforward, further general, and rising method to search huge amounts of 
traveling wave solutions to the NLDEs and FNLDEs. 

1.1. Research Objectives 

• The main goal is to get closed-form solutions for the generalized KdV prob-
lem, which is a significant nonlinear partial differential equation in mathe-
matical physics. 

• To create or employ analytical techniques to acquire precise results. 
• The objective is to categorize the many forms of wave solutions, such as soli-

tons, periodic waves, and breathers, and analyze their characteristics and sig-
nificance within the framework of the generalized KdV equation. 

• The resulting solutions may be used to mimic real-world phenomena, such as 
shallow water waves, plasma waves, or other physical systems defined by the 
generalized KdV equation. 

• This aims to explore the wider consequences of these answers in the realm of 
mathematical physics, encompassing possible practical uses and avenues for 
future investigation. 

1.2. Research Gaps or Limitations 

It is conceivable that certain types of nonlinear problems may not be solvable 
using this method. While it may not have the capability to solve solutions for 
complex and diverse nonlinear systems, it operates efficiently for specific types 
of equations. Employ other methodologies to verify the obtained solutions, such 
as asymptotic analysis, numerical simulations, or, if accessible, comparison with 
empirical data. This enhances the reliability and accuracy of the generated solu-
tions. Utilize the logical Sine-Gordon expansion strategy as part of a broader set 
of tools. Integrate further perturbation, analytical, or numerical methods to mi-
tigate its limitations and enhance its strengths. 
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2. Description of the ( )( )exp −τ ξ -Expansion Method 

The ( )( )exp τ ξ− -expansion method is a powerful analytical technique used to 
find exact solutions to nonlinear differential equations (NLDEs). This method is 
particularly useful for obtaining traveling wave solutions of various forms, such 
as solitary waves, periodic waves, and other types of wave structures. The 

( )( )exp τ ξ− -expansion method provides a systematic approach to derive exact 
solutions for NLDEs. By transforming the NLDE into an ODE, assuming an ap-
propriate ansatz, and solving the resulting algebraic equations, this method can 
uncover a variety of exact wave solutions, enhancing our understanding of non-
linear phenomena in mathematical physics. Here’s a detailed overview of the 
theoretical framework and mathematical principles underlying this method: 

Here we briefly discuss the major characteristics of the ( )( )exp τ ξ− -expansion 
method. Let us suppose the general nonlinear partial differential equation of the 
form: 

 ( ), , , , , , , 0,x y z t xx xyH u u u u u u u =  (2.1) 

where ( ), , ,u u x y z t=  is an unknown function, H is a polynomial in 
( ), , ,u x y z t  and its derivatives in which highest order derivatives and nonlinear 

terms are occupied and the subscripts indicate partial derivatives. 
Also, we consider the general nonlinear fractional partial differential equation 

of the form: 

 ( )2 2, , , , , , , 0,t x y z t xH u D u D u D u D u D u D uα β γ ε α β =  (2.2) 

where ( ), , ,u u x y z t=  is an unidentified function, H is a polynomial in 
( ), , ,u x y z t  and its fractional derivatives, which include the highest order de-

rivative and nonlinear terms of the highest order where in , , ,α β γ ε  are 
non-integer and the subscripts denote the partial derivatives. 

In order to obtain exact wave solutions of Equation (2.1) or Equation (2.2) by 
applying the ( )( )exp τ ξ− -expansion method, we have to execute the following 
noteworthy steps: 

Step-1. We combine the real variables x, y and t by a compound variable ξ 

 ( ) ( ), , , , ,u x y y t u x y wtξ ξ= = + ±  (2.3) 

where w is the velocity of the traveling wave and we consider the following trav-
eling wave variable, 

 ( ) ( ) ( ) ( ) ( ) ( )
, , , , , , ,

1 1 1 1
kt mx ny lzu x y z y z t u

α α γ ε

ξ ξ
α α γ ε

= = + + +
Γ + Γ + Γ + Γ +

 (2.4) 

for fractional differential equations. 
Now by making use of the traveling wave transformation Equation (3.3) or 

Equation (3.4) the partial differential Equation (2.1) or Equation (2.2) turns into 
ordinary differential equation (ODE) as below: 

 ( ), , , , 0,G u u u u′ ′′ ′′′ =  (2.5) 
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where G is a polynomial of u and its derivatives, and the superscripts refer to the 
ordinary derivatives with respect to ξ. 

Step-2. We advise that the solution of Equation (3.5) can be exposed in the 
form: 

 ( ) ( )( )( )
0

exp ,
N i

i
i

u Aξ τ ξ
=

= −∑  (2.6) 

where ( )0iA i N≤ ≤  are constants to be determined, such that 0NA ≠  and 
( )τ τ ξ=  and satisfied the following ordinary differential equation: 

 ( ) ( )( ) ( )( )exp expτ ξ τ ξ µ τ ξ λ′ = − + +  (2.7) 

Equation (2.7) documented the following solutions: 
Set-1: When 0µ ≠ , 2 4 0λ µ− > , 

 ( )
( )

2
2 4

4 tanh
2

ln
2

c
λ µ

λ µ ξ λ

τ ξ
µ

  −  − − + −
   =  

 
  
 

 (2.8) 

Set-2: When 0µ ≠ , 2 4 0λ µ− < , 

 ( )
( )

2
2 4

4 tan
2

ln
2

c
µ λ

µ λ ξ λ

τ ξ
µ

  −  − + −
   =  

 
  
 

 (2.9) 

Set-3: When 0µ = , 0λ ≠  and 2 4 0λ µ− > , 

 ( )
( )( )

ln
exp 1c

λτ ξ
λ ξ

 
= −   + − 

 (2.10) 

Set-4: When 0µ ≠ , 0λ ≠ , and 2 4 0λ µ− = , 

 ( )
( )( )
( )2

2 2
ln

c
c

λ ξ
τ ξ

λ ξ

 + +
= −  + 

 (2.11) 

Set-5: When 0µ = , 0λ ≠ , and 2 4 0λ µ− = , 

 ( ) ( )ln cτ ξ ξ= +  (2.12) 

Step-3. The positive integer N can be calculated by considering the homoge-
neous balance between the highest order derivatives and the nonlinear terms of 
the highest order appearing in Equation (2.5). 

Step-4. We utilize Equation (2.6) into Equation (2.5) and then we consider 
the function ( )( )exp τ ξ− . Therefore, of this substitution, we attain a polynomi-
al in ( )( )exp τ ξ−  and equalize to zero express a system of algebraic equations 
whichever can be solved to find AN, …, w, λ, μ. The values of AN, …, w, λ, μ in 
company with general solution of Equation (3.7) inclusive the determination of 
the solution of Equation (2.1) or Equation (2.2). 
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3. Application of the Generalized KdV Equation 

In the literature, examined the exact solutions of the Korteweg-de-Vries equa-
tion is of the form 6 0t xxx xu u uu+ − = . So far we know, the general form the 
Korteweg-de-Vries equation which is not solved by applying the ( )( )exp τ ξ−
-expansion method. Therefore, in this sub-section, we have examined the exact 
solutions of the generalized Korteweg-de-Vries equation which arranged below: 

Let us consider the generalized Korteweg-de-Vries equation in the form, 

 0,t x xxxu uu uδ+ + =  (3.1) 

where δ is an arbitrary constant and different values of δ the equation represents 
generalization form of the equation. 

Now, we have applied the traveling wave transformation Equation (2.3) to 
reduce Equation (3.1) into the following ordinary differential equation: 

 0wu uu uδ′ ′ ′′′− + + =  (3.2) 

Integrating Equation (4.2.2) with respect to ξ and choosing the integrating 
constant zero, we have attained 

 21 0
2

wu u uδ ′′− + + =  (3.3) 

Now, balancing between the highest order nonlinear term and linear terms 
occurring in Equation (3.3), yields 2N = . Therefore, the solution of Equation 
(3.3) takes the following form 

 ( ) ( )( ) ( )( )( )2

0 1 2exp exp ,u A A Aξ τ ξ τ ξ= + − + −  (3.4) 

where 0 0 1 2, ,A A A A  are arbitrary constants such that 2 0A ≠ . 
We substitute Equation (3.4) into Equation (3.3) and taking consideration 

Equation (3.4), it generates a polynomial and then setting the coefficients of 
( )( )exp τ ξ−  to zero, yields 

2
20

0 1 22 0,
2
AwA A Aδλµ δµ− + + + =

 
2

1 0 1 1 1 22 6 0,wA A A A A Aδλ δµ δλµ− + + + + =  
2

21
2 0 2 1 2 23 4 8 0,

2
A wA A A A A Aδλ δλ δµ− + + + + =

 

1 2 1 22 10 0,A A A Aδ δλ+ + =  
2
2

26 0.
2
A Aδ+ =

 

Solving the above system of equation, we get two sets of solutions: 
Set-1 

( )2
0 1 212 , 12 , 12 , 4 .A A A wδµ δλ δ δ λ µ= − = − = − = −

 
Set-2 

( ) ( )2 2
0 1 22 2 , 12 , 12 , 4 .A A A wδ λ µ δλ δ δ λ µ= − + = − = − = − −
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where , ,λ µ δ  are arbitrary constants. 
For simplicity we have discussed the solution Set-1 of the mentioned equation. 
Now replacing the value of Set-1 into Equation (3.4) gives the following. 

 ( ) ( )( ) ( )( )( )2
12 12 exp 12 expu ξ δµ δλ τ ξ δ τ ξ= − − − − −  (3.5) 

Now substituting Equations (3.6)-(3.10) into Equation (4.2.12) respectively we 
get the following five traveling wave solution of the nonlinear generalized Kor-
teweg-de-Vries equation. 

While 0µ ≠ , 2 4 0λ µ− > , 

( )
( ) ( )

( ) ( )

1 2
2

2

2
2

212 12
44 tanh

2

212
44 tanh

2

u

c

c

µξ δµ δλ
λ µ

λ µ ξ λ

µδ
λ µ

λ µ ξ λ

 
 
 −

= − −  
  −
 − + +     

 
 
 −

−  
  −
 − + +       

Applying 0µ ≠ , 2 4 0λ µ− < , 

( )
( ) ( )

( ) ( )

2 2
2

2

2
2

212 12
44 tan

2

212
44 tan

2

u

c

c

µξ δµ δλ
µ λ

µ λ ξ λ

µδ
µ λ

µ λ ξ λ

 
 
 

= − −  
  −
 − + −     

 
 
 

−  
  −
 − + −       

When 0µ = , 0λ ≠ , 2 4 0λ µ− > , 

( )
( )( ) ( )( )

2

3
1 112 12 12

exp 1 exp 1
u

c c
ξ δµ δλ δ

λ ξ λ ξ

   
= − − −      + − + −     

Using 0µ ≠ , 0λ ≠ , 2 4 0λ µ− > , 

( ) ( )
( )( )

( )
( )( )

2

4 12 12 12
2 2 2 2

c c
u

c c
λ ξ λ ξ

ξ δµ δλ δ
λ ξ λ ξ

   + +
= − − − − −      + + + +     

When 0µ = , 0λ = , 2 4 0λ µ− = , 

( )
2

5
1 112 12 12u

c c
ξ δµ δλ δ

ξ ξ
   

= − − −   + +     
where c is an arbitrary constant. 
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4. Result and Discussion 
4.1. Graphical Presentation 

In this section, we have delineated the shape of figures of the obtained solutions 
to the generalized Korteweg-de-Vries (KdV) equation, which are given below: 

Figure 1 shows the shape of the figure of the obtained solution ( )1u ξ  for 
3λ = , 1µ = , 2δ = , 1c =  of the parameters is shown below. 

Figure 2 shows the shape of the figure of the obtained solution ( )2u ξ  for 
3λ = , 1µ = , 2δ = , 1c =  of the parameters is shown below. 

Figure 3 shows the shape of the figure of the obtained solution ( )3u ξ  for 
3λ = , 1µ = , 2δ = , 1c =  of the parameters is shown below. 

Figure 4 shows the shape of the figure of the obtained solution ( )4u ξ  for 
3λ = , 1µ = , 2δ = , 1c =  of the parameters is shown below. 

 

 
Figure 1. 3D and 2D plot of solution ( )1u ξ  which is singular periodic within the interval 5 , 5x t− ≤ ≤  for 3D and 0t =  for 

2D. 
 

 
Figure 2. The 3D and 2D plots of solution ( )2u ξ  which is kink type within the interval 5 , 5x t− ≤ ≤  for 3D and 0t =  for 2D. 
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Figure 5 shows the shape of the figure of the obtained solution ( )5u ξ  for 
3λ = , 1µ = , 2δ = , 1c =  of the parameters is shown below. 

 

 
Figure 3. 3D and 2D plot of solution ( )3u ξ  which is a singular kink within the interval 5 , 5x t− ≤ ≤  for 3D and 0t =  for 2D. 
 

 
Figure 4. 3D and 2D plot of solution ( )4u ξ  which is singular kink within the interval 5 , 5x t− ≤ ≤  for 3D and 0t =  for 2D. 

 

 
Figure 5. 3D and 2D plots of solution ( )5u ξ  which is a singular kink within the interval 5 , 5x t− ≤ ≤  for 3D and 0t =  for 2D. 
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4.2. Discussion 

Lee and Kuo (2015) examined the generalized KdV equations, and they found 
four solutions (see Appendix) by applying the simplest equation method. Using 
the ( )( )exp τ ξ− -expansion method, we attained five travelling wave solutions, 
which are not repeated in the simplest equation method. Furthermore, the several 
choices of the integral constant from Equations (3.8)-(3.12) give different types of 
exact wave solutions. Therefore, comparing the solutions obtained and those 
obtained by Lee and Kuo, we might conclude that our attained solutions are 
practically and further general and give many solutions compared to those ob-
tained by Lee and Kuo. 

5. Conclusion 

In this research, we have determined the new, valuable and more general exact 
travelling wave solutions of the generalized Korteweg-de-Vries (KdV) equation 
by applying the ( )( )exp τ ξ− -expansion method by means of the traveling wave 
transformations. Most of the attained solutions are in the form of trigonometry, 
hyperbolic and rational functions. These attained solutions might be useful to 
the physical events related to the fluid motion in shallow water waves, the water 
waves under gravity in the long-wave regime, the ion acoustic waves in plasma, 
the quantum mechanics, the electro-hydro-dynamical model for local electric field, 
the signal processing through optical, etc. We have also discussed the physical sig-
nificance of the obtained solutions by depicting the graphs. Different types of 
well-known shape of solutions are examined, likely, the kink shape wave solutions, 
the singular kink shape wave solutions, the singular periodic shape wave solutions, 
etc. The attained solutions showed that the ( )( )exp τ ξ− -expansion method is 
straightforward, efficient powerful and more general which can be used to ex-
amine exact wave solutions to the different NLDEs and FNLDEs arising in dif-
ferent fields of mathematics and engineering. To obtain these types of solutions, 
sometimes it arises some difficulties to determine balance number, the using 
method and other methods does not keep simple and straightforward and it does 
not give solution straightforwardly to the NLDEs and FNLDEs. Therefore, our 
future work is how we can employ the ( )( )exp τ ξ− -expansion method and the 
other methods to NLDEs and FNLDEs for balance number and how we can em-
ploy the methods to detect these complicated and highly nonlinear DEs for non- 
integer balance number and also without considering another new transforma-
tion (i.e., using directly the balance number). 
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