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Abstract 
In this article, the transmission dynamics of a Hand-Foot-Mouth disease model 
with treatment and vaccination interventions are studied. We calculated the 
basic reproduction number and proved the global stability of disease-free 
equilibrium when R0 < 1, and the disease persistent when R0 > 1. Meanwhile, 
we obtained the optimal control strategies minimizing the cost of interven-
tion and minimizing the infected person. We also give some numerical simu-
lations to verify our theoretical results. 
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1. Introduction 

Hand-Foot-Mouth disease (HFMD) is a common childhood infectious disease, 
which was first reported in New Zealand in 1957 [1]. Since 1997, HFMD epi-
demics caused by EV-71 have been prevalent in the Asia-Pacific region, includ-
ing China, Japan, Singapore, Malaysia, Vietnam, South Korea, Thailand, Cube, 
India and Cambodia. HFMD is caused by more than 20 different enteroviruses, 
such as Coxsackievirus A16 (CAV16), human enterovirus 71 (EV71), Coxsackie 
virus A4-A7, A9, A10, B1-B3, B5, and so on. CAV16 and EV71 are the most 
common aetiological agents, which being account for about 73% of HFMD cases 
[2]. 

Usually, the enterovirus has strong transitivity, high latent infection and 
causing large epidemics in short times. The HFMD transmits from person to 
person easily, mainly through fecal-oral and/or respiratory droplets, or by stool 
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touching, respiratory secretions, herpes solution and polluted staff of patients 
[3]. However, HFMD exhibits a self-limiting illness, not only affects children 
who younger than 10 years of age, but also affects adults. Infected adults are 
asymptomatic to the HFMD due to the antibodies in bodies, although they are 
infected. Many infected children are symptoms of HFMD including fever, intra-
oral vesicales and erosions, and papulovesicles that favor the palms and soles. A 
small proportion children who infected, develop into neurological and systemic 
complications than that can be death.  

As such, HFMD is a growing public health threat that causes a considerable 
disease burden and economic impact. Many HFMD cases are reported to the Chi-
na Center for Disease Control and Prevention (CDC) during 2000-2022. In reac-
tion, CDC imitated a surveillance program to reference HFMD cases with an un-
precedented level of geographic detail. The EV71 vaccine was licensed in China 
in 2016, and other vaccines are still under development [4]. There are three re-
cent phase 3 clinical trials of inactivated monovalent EV71 vaccines manufac-
tured in China which were found to have high efficacy (90% - 97.4%) against 
EV71 associated HFMD in infants and young children [5]. Due to the change of 
HFMD virus, the antibodies against one enterovirus have no cross-protection 
against other enteroviruses. Therefore, the EV71 vaccines only offer high efficacy 
against EV71, and did not provide protection against HFMD caused by the other 
enteroviruses. 

Epidemiological models are important tools to understand the spread and 
control of HFMD. Recently, many studies proposed compartmental models of 
HFMD to investigate the dynamics and to design evidence-based control strate-
gies. Especially, there are fewer scholars established mathematical models to 
study HFMD with vaccination. Urashima et al. and Wang and Sung tried to find 
the relationship between the outbreak of HFMD with the weather patterns in 
Taiwan (China) and Tokyo, respectively [6] [7]. Tan and Cao built a HFMD 
model with treatment and vaccination interventions to study the transmission 
dynamics of HFMD [8]. Zhang and Rui et al. calculated the transmissibility of 
HFMD at county levels in Jiangsu Province and analyzed the differences of 
transmissibility and explored the possible influencing factors of its transmissibility 
[9]. Li and Wang et al. constructed a two stage-structured model to fit the HFMD 
data from 2009-2014 in China and obtain its optimal parameter values [10]. 

Motivated by the above facts, we formulate mathematical modeling to study 
the transmission dynamics of HFMD with treatment and vaccination interven-
tions. The basic structure of this paper is as follows. In next section, we establish 
a HFMD model with vaccination and obtain the basic reproduction number R0. 
In Section 3, we prove the global stability of disease-free equilibrium when R0 < 
1, while persistence of the disease when R0 > 1. In Section 4, we apply the optim-
al control technique to minimize the number of the infected people. In Section 5, 
numerical simulations to demonstrate and support the theoretical results are 
given. Finally, we give the brief discussion of the results. 
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2. Model Formulation 

In this section, we formulate a HFMD transmission model with infected people 
divided into two classes. HFMD caused by different enteroviruses, only EV71 
vaccine was on market could prevent the HFMD induced by EV71. We consider 
the infectious individuals divided into two classes, which are infectious individ-
uals I1 infected by EV71 and infectious individuals I2 infected by CVA16 or other 
enteroviruses serotypes. 

We consider the total number of human population by N(t) at time t, further 
divided into six categories: susceptible individuals S(t), latent individuals E(t), 
infectious individuals I1(t) and I2(t), vaccination individuals V(t), and recovery 
individuals R(t). It is obviously that the human population can be written as 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2N t S t E t I t I t V t R t= + + + + + . The dynamical model for HFMD 
transmission as follows: 

 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 2

1 1 2

1
1 1 1 1 1

2
2 2 2 2 2

1 1

2 2

d
1

d
d

d
d

d
d

(1 )
d

d
d

d
d

S t
p b S t E t I t I t S t R t

t
E t

S t E t I t I t E t E t E t
t

I t
q E t I t d I t I t

t
I t

q E t I t d I t I t
t

V t
pb I t V t

t
R t

E t I t R t R t
t

β µ γ

β α δ µ

α η µ

α η µ

η µ

δ η γ µ

= − − + + − +

= + + − − −

= − − −

= − − − −

= + −

= + − −

 (1) 

where 0b >  is the birth rate of the population; 0p ≥  is the vaccine rate of the 
population; 1 0β >  is the transmission coefficient of the infectious individuals 
infected; 0γ ≥  is loss of immunity rate of recovery individuals; 0µ >  is the 
nature death rate; 0α >  is the per-capita rate of the progression from latent 
individuals to infectious individuals; 0q ≥  is the percentage of individuals in-
fected with EV-A71 from latent individuals to infectious individuals; 0 1 1q≤ − ≤  
is the percentage of individuals infected with CV-A16 or other human enterovi-
ruses; 0δ ≥  is the treatment rate of the latent individuals; 1 2, 0η η ≥  are the 
treatment rate of infectious individuals I1 and I2, respectively; 1 2, 0d d ≥  are the 
death rate induced by infectious individuals I1 and I2, respectively. 

3. Model Analysis 

By using ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2N t S t E t I t I t V t R t= + + + + + , we have 

( ) ( ) ( ) ( ) ( )1 1 2 2

d
d

N t
b d I d I tN b N

t
t t tµ µ= − − − ≤ − . 

Obviously, ( )limsup
t

bN t
µ→+∞

≤ , which implies that ( ) bN t
µ

≤ . 

From biological considerations, the dynamics of system (1) will be studied in 

https://doi.org/10.4236/jamp.2024.126122


J. P. Wang et al. 
 

 

DOI: 10.4236/jamp.2024.126122 2010 Journal of Applied Mathematics and Physics 
 

the following feasible region: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )6
1 12 2, , , , , : 0t t t t t t S t E t I t I t V t RS E I I V R R

b
t µ

+ + + +
 Ω = ∈ ≤ + ≤ 


+

  
where 6R+  represents the non-negative cone of 6R . Then, all the solutions of 
the system (1) starting in Ω remain in the region Ω for all 0t ≥ . Therefore, Ω is 
a positively invariant and bounded. 

According to van den Diessche and Watmough [11] [12], we can obtain the 
basic reproduction number: 

( )
( )

( )1
0

1 1 2 2

1 1
1

b p qqR
d d

β αα
µ α δ µ η µ η µ

− − 
= + + + + + + + + 

, 

which means average new cases generated by a typical infectious member in the 
entire infection period. 

For the system (1) in the absence of vaccination and recovery, means that 
0p = . Then, the basic reproduction number is proportional to the transmission 

coefficient 1β  and is given as 

( )
( )1

0 0
1 1 2 2

1
1p

qb qR
d d

αβ α
µ α δ µ η µ η µ=

− 
= + + + + + + + + 

. 

It is clear that 

( )
( )1

0 0 0
1 1 2 2

1
0p

p qb pqR R p
d d

αβ α
µ α δ µ η µ η µ=

− 
− = − − − ≤ + + + + + +   

which implies that the vaccination have a great contributed to decrease of the 
basic reproduction number 0R . That is, the vaccination is helpful to slow down 
the HFMD spread. 

By directly calculation system (1), we get the disease-free equilibrium  

( )0 0 0 0 0 0
0 1 2, , , , ,P S E I I V R= , where 

( )0 1b p
S

µ
−

= , 0 0 0 0
1 2 0E I I R= = = = ,  

0 pbV
µ

= . 

Using Theorem 2 in [12], we have 
Theorem 1. 0P  of the system (1) is locally asymptotically stable if 0 1R < , 

and unstable if 0 1R > . 
Next, we prove the global stability of the disease-free equilibrium when 

0 1R < . 
Theorem 2. The disease-free equilibrium 0P  of system (1) is global asymp-

totically stable when 0 1R < . 
Proof: By Theorem 1, we only need to prove the disease-free equilibrium 0P  

is a global attractor. Supposed ( )limsup 0
t

E t m
→+∞

= > . For any 0ε > , there exist 

1 0τ >  such that 

 ( )E t m ε≤ + , for all 1t τ≥ . (2) 

From the third equation of system (1) and (2), we have 
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( ) ( ) ( ) ( )1
1 1 1

d
d

I t
q m d I t

t
α ε η µ≤ + − + + , for all 1t τ≥ . 

Then, there exists 2 1τ τ≥ , such that 

 ( ) ( )
1

1 1

q m
I t

d
α ε

ε
η µ
+

≤ +
+ +

, for all 2t τ≥ . (3) 

From the fourth equation of system (1) and (2), we have 

( ) ( ) ( ) ( ) ( )2
2 2 2

d
1

d
I t

q m d I t
t

α ε η µ≤ − + − + + , for all 2t τ≥ . 

Thus, there exists 3 2τ τ≥  such that 

 ( ) ( ) ( )
2

2 2

1 q m
I t

d
α ε

ε
η µ

− +
≤ +

+ +
, for all 3t τ≥ . (4) 

From the sixth equation of system (1), (2) and (4), we have 

( ) ( ) ( ) ( ) ( )2 2

d
d
R t

E t I t R t R t
t

δ η γ µ≤ + − − , for all 3t τ≥ . 

Thus, there exists 4 3τ τ≥  such that 

 ( ) ( ) ( )( )
2

2 2

11 q m
R t m

d
α ε

δ ε η ε
γ µ η µ

 − + 
≤ + + +  

+ + +   
, for all 4t τ≥ . (5) 

Next, substituting (3) and (4) into the second equation of system (1), we have 
that 

( ) ( ) ( ) ( ) ( )

( ) ( )

1
1 1 1 1

d 1 1
d

E t b p q m q m
m

t d d

E t

α ε α ε
β ε ε ε

µ η µ η µ

α δ µ

− + − + 
≤ + + + + + 

+ + + + 
− + +

, for 3t τ≥ . 

Then, there exists 4 3τ τ≥  such that 

 ( ) ( )
( )

( ) ( ) ( )
1

1 1 1 1

1 1b p q m q m
E t m

d d
α ε α ε

β ε ε ε
µ α δ µ η µ η µ

− + − + 
≤ + + + + + 

+ + + + + + 
, (6) 

for all 4t τ≥ . 
Letting 0ε → , the inequality (6) becomes 

( ) ( )
( )

( )

( )
( )

( )

1

1 1 1 1

1

1 1 1 1

0

1 1

1 1
1

b p q mq mE t m
d d

b p qq m
d d

mR

β αα
µ α δ µ η µ η µ

β αα
µ α δ µ η µ η µ

− − 
≤ + + + + + + + + 

− − 
= + + + + + + + + 
=  

From lemma 1, that is 0 1R < . Therefore, ( )limsup
t

E t m
→+∞

< , which is a con-

tradiction. So, we have 0m = . Following (3)-(6) and the non-negativity of the 
solutions, we get that  

( ) ( ) ( ) ( )1 2limsup limsup limsup limsup 0
t t t t

E t I t I t R t
→+∞ →+∞ →+∞ →+∞

= = = = . 

Then, substituting ( ) ( ) ( ) ( )1 2, , ,E t I t I t R t  into the system (1), we obtain the 
limiting system as follows: 
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( ) ( ) ( )

( ) ( )

d
1

d
d

d

S t
p b S t

t
V t

pb V t
t

µ

µ


= − −


 = −

 (7) 

Sloving the equations of the system (7), we can obtain that 

( ) ( )1
limsup

t

b p
S t

µ→+∞

−
= , ( )limsup

t

pbV t
µ→+∞

= . 

By the theory of asymptotically autonomous semiflows [13], we obtain that 
the disease-free equilibrium 0P  is the global attractor of the system (1). 

Theorem 3. If 0 1R > , then the disease is uniformly persistent for system (1). 
That is, there is a positive constant 0 0ε > , such that 

 ( ) 0liminf
t

E t ε
→+∞

> , ( )1 0liminf
t

I t ε
→+∞

> , ( )2 0liminf
t

I t ε
→+∞

> . (8) 

Proof: Define ( ){ }6
1 2, , , , ,K S E I I V R R+= ∈ , 

( ){ }0 1 2 1 2, , , , , : 0, 0, 0, 0, 0, 0K S E I I V R K S E I I V R= ∈ ≥ > > > ≥ ≥ , 

and 0 0\K K K∂ =  . Let ( )0 0, ,x t t x  be the unique solution of system (1) with 
the initial value 

( )0 0 0 10 20 0 0, , , , ,x S E I I V R=  at time 0t . 

Define poincare map :P K K→   associated with system (1) as follows: 

( ) ( )0 0 0 01, ,P x x t x x K= + ∀ ∈  . 

Set ( ){ }0 0 0 0 ,mM x K P x K m Z∂ += ∈∂ ∈∂ ∀ ∈ . 

We claim that ( ){ },0,0,0, , 0, 0, 0M S V R S V R∂ = ≥ ≥ ≥ . 

Clearly, ( ){ },0,0,0, , 0, 0, 0S V R S V R M ∂≥ ≥ ≥ ⊆ . 
Next, we need to demonstrate 

 ( ){ }\ ,0,0,0, , 0, 0, 0M S V R S V R∂ ≥ ≥ ≥ = ∅  (9) 

If (9) does not hold, then there exists a point 

 ( ) ( ){ }0 0 10 20 0 0, , , , , \ ,0,0,0, , 0, 0, 0S E I I V R M S V R S V R∂∈ ≥ ≥ ≥ . (10) 

To show (10) hold, we divided into two cases to discuss for three initial values 

0 10 20, ,E I I . 
(i) One initial value is equal to zero, and the others are larger than zero. 

Without loss of generality, suppose 0 10 200, 0, 0E I I= > > . 
It is obvious that ( ) ( ) ( )1 20, 0, 0S t I t I t> > >  for any 0t t> . By the second 

equation of system (1), we obtain that 

( ) ( )( )
0

1 0 10 20

d
0

d
t t

E t
S t I I

t
β

=

= + > . 

Thus, ( )1 2 0, , , , ,S E I I V R K∉∂ , for 00 1t t< −  . 
This is a contradiction. The other subcases can be similarly proved. 
(ii)Two initial values are equal to zero, and the other one is larger than zero. 
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Without loss of generality, suppose 0 10 200, 0E I I= = > . 
It is obvious that ( ) ( )20, 0S t I t> >  for any 0t t> . By the second equation 

of system (1), we have that 

( ) ( )
0

1 0 20

d
0

d
t t

E t
S t I

t
β

=

= > . 

So, ( ) 0E t >  for 00 1t t< −  . From the third equation of system (1), we 

get that 
( ) ( )

0

1d
0

d
t t

I t
q E t

t
α

=

= > , which means ( )1 0I t >  for 00 1t t< −  . 

Therefore, we have ( )1 2 0, , , , ,S E I I V R K∉∂ , for 00 1t t< −  . This is a contra-
diction. Similarly, the others subcases can be proved. 

Therefore, we proved ( )1 2 0, , , , ,S E I I V R K∉∂ , for 00 1t t< −  . 
In what follows, we use contradiction to prove that there exists for 0ξ > , 

such that 

 ( )( )0
0 0 0limsup , , ,m

m
d p x p x K m Zξ +

→+∞
≥ ∀ ∈ ∈ , (11) 

where ( )0 0 0
0 ,0,0,0, ,p S V R= . 

It follows from Theorem 2 in [12], that 

( ) ( )( )1
0 1 1 exp 1R FV F Vρ ρ−> ⇔ > ⇔ − > . 

Therefore, if 0 1R > , we choose 0ε > , sufficiently small such that 

 ( )( )exp 1F V Mερ − − > , (12) 

where 0 0 0
0 0 0

Mε

ε ε ε 
 =  
 
 

. 

If (11) does not hold, then for any 0ς > , we obtain  

( )( )0 0limsup ,m

m
d p x p ς

→+∞
< , for some 0 0x K∈ . Without loss of generality, we 

suppose that ( )( )0 0, , 0,md p x p m Zς ς +< ∀ > ∀ ∈ . 

By the continuity of the solution with respect to the initial conditions, we get 
that 

 ( )( ) ( ) [ ]0 0 0 0, , , , 1 ,mx t P x x t P t t t m Zε +− ≤ ∀ ∈ + ∀ ∈ . (13) 

For 0t t∀ ≥ , there exists an integer l Z+∈  such that 0
ˆt t l t− = + , where 

[ )ˆ 0,1t ∈ . From (13), we have 

( )( ) ( ) ( )( ) ( )0 0 0 0 0 0
ˆ ˆ, , , ,m m lx t P x x t P x t t P x x t t P ε+− = + − + ≤ . 

Thus, we have 

 ( ) 0S t S ε≥ − , for all 0t t≥ . (14) 

By system (1) and (14), we obtain 
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( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0
1 1 2

1
1 1 1

2
2 2 2

d
d

d
d

d
1

d

E t
S E t I t I t E t

t
I t

q E t d I t
t

I t
q E t d I t

t

β ε α δ µ

α η µ

α η µ

≥ − + + − + +

= − + +

= − − + +

 (15) 

Clearly, system (15) is an irreducible cooperative system. Consider the fol-
lowing auxiliary system 

 
( ) ( ) ( )

ˆd ˆ
d

Z t
F V M Z t

t ε= − − , (16) 

where ( ) ( ) ( ) ( )( )T

1 2
ˆ ˆ ˆ ˆ, ,Z t E t I t I t=  and 

( ) ( ) ( ) ( )
( )

( ) ( )

0 0 0
1 1 1

1 1

2 2

0
1 0

S S S

F V M q d
q d

ε

β ε α δ µ β ε β ε

α η µ
α η µ

 − − + + − −
 
 − − = − + +
 

− − + + 
 

. 

From [13], there exists a positive vector v such that ( ) ( )ˆ expZ t v tη=  is a 
solution of system (16), where ( )( )ln exp F V Mεη ρ= − − . By (12), we have  

0η >  and thus ( )Ẑ t → +∞  as t → +∞ , i.e. ( )Ê t → +∞ , ( )1̂I t → +∞ ,  
( )2̂I t → +∞  as t → +∞ . Applying the comparison principle [14], we get that 

when ( )0 0E > , ( )1 0 0I > , ( )2 0 0I > , then ( )E t → +∞ , ( )1I t → +∞ , 
( )2I t → +∞  as t → +∞ . This is a contradiction. Thus (11) holds and P is 

weakly uniformly persistent with respect to ( )0 0,K K∂ . Therefore,  
( )0 0

sW P K = ∅ . Every solution in M ∂  converges to 0P . According to Zhao 
[15], we know that P is uniformly persistent with respect to ( )0 0,K K∂ . There-
fore, we get ( ) 0liminf

t
E t ε

→+∞
> , ( )1 0liminf

t
I t ε

→+∞
> , ( )2 0liminf

t
I t ε

→+∞
> . This com-

pletes the proof of Theorem 3. 

4. Optimal Control 

The purpose of this section is to controlling HFMD. We introduce the time de-
pendent controls in the model (1) and study the strategies that curtail HFMD 
epidemic. For the optimal control problem of system (1), we add three control 
functions ( ) ( )1 2,u t u t  and ( )3u t . Then, we consider the HFMD model with 
controls is given as follows: 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 2

1 1 2

1
1 1 1 1 1 2 1

2
2 2 2 2 2 3 2

d
1 ,

d
d

,
d

d
,

d
d

1 ,
d

S t
u t b S t E t I t I t R t S t

t
E t

S t E t I t I t E t E t E t
t

I t
q E t d I t I t I t u t I t

t
I t

q E t d I t I t I t u t I t
t

β γ µ

β α δ µ

α η µ

α η µ

= − − + + + −

= + + − − −

= − − − −

= − − − − −
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 2 1

2 2 3 2

d
,

d
d

.
d

V t
u t b I t V t u t I t

t
R t

E t I t R t R t u t I t
t

η µ

δ η γ µ

= + − +

= + − − +

 (17) 

where 
(i) ( )1u t  represents the control variable based on vaccination of EV-A71; 
(ii) ( ) ( )2 3,u t u t  represents the control variable to measure the effectiveness 

of treatment of ( ) ( )1 2,I t I t , respectively. 
We apply control theory [16] as a mathematical tool to make decision involv-

ing complex biological situations. For the system (17), we consider the control 
variables ( ) ( )1 2,u t u t  and ( )3u t  are bounded and measured with 

( ) ( ) ( )( ) ( ) ( ) [ ]{ }1 2 3, , is Lebesgue measurable, 0 1, 0, , 1,2,3i iU u t u t u t u t u t t T i= ≤ ≤ ∈ =
 

where T is the control period. 
From the control problem, the objective functional is given by 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )2 2 231 2
1 2 3 1 1 2 2 1 2 30

, , d
2 2 2

T BB BJ u t u t u t A I t A I t u t u t u t t = + + + + 
 

∫ , (18) 

where the constants 1B , 2B  and 3B  are a measure of the relative cost of the 
interventions associated with the controls ( )1u t , ( )2u t  and ( )3u t , respec-
tively. 1A  and 2A  are the constants represent a measure of the relative cost of 
the interventions over the interval [ ]0,T . 

In order to find the optimal values ( ) ( )* *
1 2u t u t,  and ( )*

3u t  of the controls va-
riables ( )1u t , ( )2u t  and ( )3u t , which are minimizing cost functional (18), i.e. 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ){ }* * *
1 2 3 1 2 3 1 2 3, min , , , ,J u t u t u t J u t u t u t u t u t u t U= ∈, . 

Next, we use Pontryagin’s Maximum Principle [16] to solve this optimal con-
trol problem. 

Using Pontryagin’s Maximum Principle converts the system of (17) and (18) 
into a problem of minimizing a Hamiltonian (H) with respect to ( )1u t , ( )2u t  
and ( )3u t  as follows: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 231 2
1 1 2 2 1 2 3

1
1 2 3

2
4 5 6

, , ,
2 2 2

d d d
d d d

d d d
,

d d d

BB BH t X t u t t A I t A I t u t u t u t

S t E t I t
t t t

t t t
I t V t R t

t t t
t t t

λ

λ λ λ

λ λ λ

= + + + +

+ + +

+ + +

 (19) 

where 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

1 2

1 2 3

1 2 3 4 5 6

, , , , , ,

, , ,

, , , , , .

X t S t E t I t I t V t R t

u t u t u t u t

t t t t t t tλ λ λ λ λ λ λ

 =
 =


=  
The adjoint equations are obtained by 
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( )
d
d

i H
t X t
λ ∂

= −
∂

, 

with transversality condition ( ) 0i Tλ = , where 1, 2,3, 4,5,6i = . 
By Equation (19), we have the adjoint equations 

( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

( )
( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )

( )
( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )

( )
( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )

( )

1
1 2 1 1 2

2
1 2 1 2 3 4

3
1 1 2 1 3 1 1 2 5 1 2

1

4
2 1 2 1 4 2 2 3 6 2 3

2

5

d
d

d
1

d

d
d

d
d

d
d

t H t t E t I t I t
t S t

t H t t S t t E t t q t q
t E t

t H A t t S t t d u t t u t
t I t

t H A t t S t t d u t t u t
t I t

t

λ
λ λ β µ

λ
λ λ β λ α δ µ λ α λ α

λ
λ λ β λ η µ λ η

λ
λ λ β λ η µ λ η

λ

∂
= − = − + + +

∂

∂
= − = − + + + − − −

∂

∂
= − = − + − + + + + − +

∂

∂
= − = − + − + + + + − +

∂

( ) ( )

( )
( ) ( ) ( )( )

5

6
1 6

d
d

H t
t V t

t H t t
t R t

λ µ

λ
λ γ λ γ µ

∂
= − =

∂

∂
= − = − + +

∂

 

(20) 

The optimality of the control problem is obtained by 

( ) ( )
*
i

i

Hu t
u t
∂

=
∂

, 

where 1,2,3, 4,5,6i = . The solution of ( ) ( )* *
1 2u t u t,  and ( )*

3u t  are presented 
in compact form as 

 

( )
( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

1 5*
1

1

3 5* *
2 1

2

4 6* *
3 2

3

max min 1, ,0

max min 1, ,0

max min 1, ,0

b t t
u t

B

t t
u t I

B

t t
u t I

B

λ λ

λ λ

λ λ

  −   =    
    

 −    =    
    

 −    =    
    

 (21) 

5. Numerical Simulations 

In this section, we will make numerical simulations of the optimized control 
measures for HFMD system (17). Forward fourth-order Runge-Kutta scheme is 
used to solve system (17) over the time interval ( ]0,T  and transversality condi-
tions ( ) 0i Tλ = , 1,2,3,4,5,6i = . Then, system (20) is solved by a backward 
fourth-order Runge-Kutta scheme using the current iteration solution of system 
(17). Take the parameter values as follows: 0.2p = ; 16073b = ; 1 0.0353β = ;

53.4458 10γ −×= ; 53.9139 10µ −×= ; 0.185185α = ; 0.117647δ = ; 0.018q = ; 

1 0.0113841d = ; 1 2 0.117643η η= = ; 2 0.0011259d = . 
We numerically examine the effect of the optimal control strategy on the 
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spread of HFMD. In the simulation without control measure is labeled with bold 
line and the control by a dashed line. The weight constant values in the objective 
function are 1 400A = ; 2 800A = ; 1 30B = ; 2 20B = ; 3 150B = . Figure 1 
showed the control strategy resulted in a decrease in the number of latent indi-
viduals E(t), infectious individuals I1(t) and I2(t), and increase the number of 
vaccination individuals V(t). In Figure 2, the optimal control profile for ( )1u t , 

( )2u t  and ( )3u t  are showed. 

6. Conclusion 

In this paper, based on the mechanism and characteristics of HFMD transmis-
sion, we established a Hand-Foot-Mouth disease model with treatment and vac-
cination interventions and studied the effect of intervention strategy in control-
ling the spread of HFMD. The basic reproduction number of system (1) is ob-
tained, and proved the disease would die out when 0 1R < , and the disease 
would be endemic when 0 1R > . By the optimal control theory, we studied the 
intervention strategy to determine the optimal integrated strategy. In addition, 
we use Pontryagin’s Maximum Principle to analyze optimal control problem 
with three control variables. Numerical simulations illustrated the effectiveness 
of the proposed control problem. 

 

 
Figure 1. The plot represents population of E(t), I1(t), I2(t), and V(t) both with control and without control. 
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Figure 2. The plot represents the controls ( )1u t , ( )2u t  and ( )3u t . 
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