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Abstract 
In this paper, the focus is on the boundary stability of a nanolayer in diffu-
sion-reaction systems, taking into account a nonlinear boundary control con-
dition. The authors focus on demonstrating the boundary stability of a nano-
layer using the Lyapunov function approach, while making certain regularity 
assumptions and imposing appropriate control conditions. In addition, the 
stability analysis is extended to more complex systems by studying the limit 
problem with interface conditions using the epi-convergence approach. The 
results obtained in this article are then tested numerically to validate the 
theoretical conclusions.  
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1. Introduction 

A crucial component of physical and biological systems that involve diffusion 
and response phenomena is boundary stability. Lyapunov functions are a crucial 
tool for researchers in applied mathematics and engineering in this situation for 
demonstrating stability. On the other hand, the direct Lyapunov technique was 
developed by Lyapunov in the 19th century and is not limited to a local charac-
ter. It makes use of an energy function to ascertain the stability qualities of a 
nonlinear system [1]. This method uses a Lyapunov function, which is positive 
and decreasing along the trajectories of the system, to establish the stability of 
the system. [2] examines the connections between a system’s asymptotic beha-
viour, the spectral characteristics of its dynamics, and the presence of a Lyapu-
nov functional. The methods employed are based on these connections, the 
Lyapunov function, or the Riccati equation, as in [2]-[8]. While the asymptotic 
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and exponential stabilizability are explored in [2] and [4], respectively, via the 
Riccati equation, the exponential stabilizability is investigated in [3] [9] via a 
suitable decomposition of the state space. The stability of dynamical systems has 
been the subject of numerous studies, with a focus on the use of Lyapunov func-
tions. Through examination of the system trajectories’ convergence to a stable 
equilibrium state, this work has demonstrated how Lyapunov functions can be 
utilized to demonstrate the stability of dynamical systems. 

The majority of previous research on boundary stability, however, has been 
conducted in the context of macroscopic or mesoscopic boundaries, where the 
boundary is a few millimeters or larger. Nanolayer boundary stability has not 
received much attention. To do so, let us considers the problem of quasi-linear 
evolution in a body occupying a domain 3Ω⊂   with a Lipschitz boundary 
∂Ω , a surface Σε which is a part of ∂Ω  and located on the boundary ∂Ω  (see 
Figure 1), the last-mentioned body is subjected to an external temperature f, and 
cooled at the boundary ∂Ω , and given a function f bounded on ( )( )2 10, ;L H −∞ Ω . 
The domain is defined as follows: { }2

3|x xε εΣ = ∈∂Ω ≤  is a surface located at 
a distance of ε2 from the upper and lower boundaries of ∂Ω , with ε being a pa-
rameter intended to tend towards 0. { }2

3|x xε εΓ = ∈∂Ω >  is the remaining 
part of the boundary. 

The system of equations is as follows: 

( )

2

0

in
1 on

0 on
0, on ,

p

z z f
z u u
n

z
z t x z

εα

ε

ε

∞

− ∞

∞

 − ∆ = Ω

∂ = Σ
∂

 = Γ


= = Ω



 

with, [ [0,∞Ω = ∞ ×Ω , [ [0,ε ε
∞Σ = ∞ ×Σ , [ [0,ε ε

∞Γ = ∞ ×Γ . 
 

 
Figure 1. Domain Ω. 
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Where u is a control that stabilizes the z state of the given dynamic system on 
the Σε boundary, given that u belongs to the set of admissible controls  

( )( ) ( ) ( ){ }0, ; : , 0p
p p

ad L
U u L L u t C t

ε
ε Σ

= ∈ ∞ Σ ≤ ∀ ≥ . Here, 2p ≥ , 0α ≥  and 
C is a positive constant. Now, this study focuses on the nonlinear boundary con-
trol condition in diffusion-reaction systems with nanolayer boundary stability. 
We demonstrate how Lyapunov functions can be applied to these systems to 
demonstrate nanolayer boundary stability. We also expand our examination of 
diffusion-reaction systems as more complicated systems for our investigation of 
nanolayer boundary stability. The understanding of nanolayer boundary stability 
in diffusion-reaction systems with a nonlinear boundary control condition is 
significantly advanced by this article. In order to acquire the limit problem and 
arrive at the topic of this article, which is grouped as follows, the aim would be 
to search for another equivalent approximation model to work with the finite 
element method in an exact fashion. 

This study examines the impact of nonlinear boundary control conditions on 
the stability of the nanolayer in diffusion-reaction systems. The paper is struc-
tured as follows: Section 2 addresses the preliminary elements necessary to un-
derstand the rest of the article. These preliminaries are essential for establishing 
the context and laying the groundwork for the problem studied. Section 3 de-
monstrates the stability of the diffusion-reaction system for the approximate 
problem related to the initial problem using the Lyapunov method, such as 
energy estimates or variational techniques, and we present the a priori estimates. 
With the help of the initial findings, definitions, and some properties of the mi-
nimization problem, we proceed to the limit. In order to solve the limit problem 
with interface conditions and acquire a better understanding of the system’s be-
havior near the nanolayer boundary, the method of epi-convergence is taken in-
to account. The results obtained enrich the understanding of the stability of the 
nanolayer in diffusion-reaction systems, with potential practical applications, 
and provide an update on recent results on the Lyapunov function approach for 
nonlinear boundary control. Finally, Section 4 presents a numerical test that il-
lustrates the theoretical results and shows the applicability and accuracy of the 
proposed strategy. 

2. Preliminaries 
2.1. Notations 

 Let us define the operator mε  which transforms functions defined z on Σε 
into functions defined on Σ, like in [10] 

( ) ( )
2

21 2 1 2 3 32
1, , , , , d .

2
m z t x x z t x x x x

εε
εε −

= ∫  

 dσ : represents the surface measure on Σε. 

 ( ) ( )3, , ,t x t x x′= , where ( )1 2,x x x′ = , 
1 2

,
x x

 ∂ ∂′∇ =  ∂ ∂ 
, ( ) 2

0lim α
εη α ε −
→= , 

https://doi.org/10.4236/jamp.2024.125105


T. Boulahrouz et al. 
 

 

DOI: 10.4236/jamp.2024.125105 1685 Journal of Applied Mathematics and Physics 
 

with 0α ≥ . 
In the following, C will denote any constant with respect to ε. 

2.2. Functional Setting 

( ){ }1
,0 | 0 onz H zε ε= ∈ Ω = Γ , sach that ( ) ( )1 1

0 ,0H HεΩ ⊂ ⊂ Ω . 

The demonstration concerns the convergence of Σε to Σ in the Hausdorff 
sense. To do this, we define a family of subvarieties { }2

3|M x xε ε= ∈∂Ω ≤  
and we calculate the Hausdorff distance between Σε and Σ. We find that for all x 
in Σε, the distance to Σ is at most ε2, and for all y in Σ, the distance to Σε is 0. 
Thus, the Hausdorff distance is equal to ε2. Finally, we show that when ε tends to 
0, the Hausdorff distance also tends to 0, demonstrating the convergence of Σε to 
Σ in the Hausdorff sense. 

( ){ }1 | 0 on \z H zΣ = ∈ Ω = ∂Ω Σ  

( ) ( )( ){ }2 2 2
|0, ; : 0, ;z L z L LΣ Σ= ∈ ∞ ∈ ∞ Σ   

] [( ){ }0,z= ∈ ∞ ×Ω   

We know that =  . 

2.3. Functional Framework 

We’ll put out the epi-convergence notion of operator’s sequence conver-
gence; 

Definition 2.1 ([11], Definition 1.9.). Let ( ),X τ  be a reflexive Banach 
space, :F Xε → ∪+∞  a family of convex functionals, and :F X → ∪+∞  
a convex functional. Suppose that 

1) ( ) ( )0lim inf F x F xε ε→ ≥  for all x X∈ . 
2) For any sequence ( )x Xε ⊂  such that x xε   weakly in X, we have 

( ) ( )0limsup F x F xε ε ε→ ≤ . Then, we have epiF Fτ
ε

−→ . 
We present the function spaces used in the study and go over some of 

their fundamental characteristics. 
Remark 2.1. [12] Since the Sobolev space ( )1 2H Ω  is compactly embedded 

in the Lebesgue space ( )pL Ω  for all 
3
2

p< < ∞ , then the space  

( )( )1 20, ;pL H∞ Ω  is also compactly embedded in the space ( )( )0, ;p pL L∞ Ω  

for all 
3
2

p< < ∞ .  

Remark 2.2. [12] Let Ω be a bounded open subset of n  with a boundary of 
class 1C , and let Σε be a part of the boundary of Ω ( εΣ ⊂ ∂Ω ). If ( ) ( )1z t Hε ∈ Ω  
for all 0t ≥ , then: 

1) The Sobolev trace theorem guarantees that the trace of ( )z tε  on Σε is 
well-defined and belongs to the Sobolev space ( )1 2H εΣ . 

2) Furthermore, the normal derivative 
z
n
ε∂

∂
 of zε on Σε belongs to  
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( )( )12 20, ;L H ε
−∞ Σ . This property follows from the fact that the trace of zε on Σε 

is in ( )1 2H εΣ , in accordance with the Neumann condition imposed on Σε, 

which implies that 
z
n
ε∂

∂
 belongs to ( )1 2H ε

− Σ  as a distribution. 

Remark 2.3. [13] Continuous injection of the Sobolev space ( )1 2H ε
− Σ  into 

the space ( )2L εΣ . It asserts that the norm in ( )1 2H ε
− Σ  is equivalent to the 

norm in ( )2L εΣ , up to a constant factor of 2 . 
Indeed, we have the following relation for all ( ) ( )1 2z t Hε ε

−∈ Σ : 

( ) ( ) ( )
( )

( ) ( ) ( )1 2 1 2 1 21 2

1 2

,
1

max , .

H

H H HH
z t z t

ε ε εε

ε

ε ε
φ
φ

φ− −

Σ

Σ Σ Σ∈ Σ
≤

=  

Using the definition of the L2 norm and the trace operator, we can show that:  

( ) ( ) ( )( ) ( )( ) ( ) ( )2 1 2

21 1 22 2 1 1d d .
2 2L H

z t z t s z t z t
ε εε ε

ε ε ε εσ −Σ ΣΣ Σ
= = =∫ ∫  

3. Main Results 
3.1. Stability Study 

We consider the following approximate problem: 

( )

2

0,

in
1 on

0 on
0, on

p

z z f
z

u u
n

z
z t x z

ε ε ε

ε
ε ε εα

ε ε

ε ε

ε

∞

− ∞

∞

 − ∆ = Ω
∂ = Σ
∂

 = Γ
 = = Ω



 

Using the Lyapunov method, stabilize the border ε
∞Σ  with a control uε . 

First, we choose the Lyapunov function ( )V zε  as follows: 

( ) 21 d d
2

V z z x tε ε∞Ω
= ∫  

1) Since 2 0zε ≥  for all ( )( )2 10, ;z L Hε ∈ ∞ Ω , we have: 
21 d d 0

2
z x tε∞Ω

≥∫  

2) If 0zε = , then ( ) 0V zε = . Conversely, if ( ) 0V zε = , then 
2 d d 0z x tε∞Ω

=∫ , 

which implies 0zε =  almost everywhere in ∞Ω  (since ( )( )2 10, ;z L Hε ∈ ∞ Ω ). 

Thus, ( ) 0V zε =  if and only if 0zε = . 

3) Next, we compute the time derivative of ( )V zε  along the solutions of the 
system:  

( ) ( )( )d d d d d d .
d d

V z z z x t z z f z x t
t tε ε ε ε ε ε ε∞ ∞Ω Ω

= ⋅ = ⋅ ∆ +∫ ∫  

Using integration by parts and the boundary conditions, we can simplify the 
above expression as follows: 

( ) ( )

( )1

2 2

2 2 2
3 0

d 1d d d d d d
d

1d d d d d .

p

p

H

V z z x t u u z t z f z x t
t

z x t u u z t M z t

ε

ε

ε ε ε ε ε ε ε εα

ε ε ε ε εα

σ
ε

σ
ε

∞ ∞ ∞

∞ ∞

−

Ω Σ Ω

∞−

ΩΩ Σ

= − ∇ + +

≤ − ∇ + +

∫ ∫ ∫

∫ ∫ ∫
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To achieve this, we used the fact that ( ) ( )1

2

0 H
f zε ε −

∞

Ω∫  is bounded by a con-
stant 3 1M ≤  that is independent of zε .  

The control’s choice must ensure that the Lyapunov function’s derivative is 

negative and that the integral 21 dpu u z
ε

ε ε εα σ
ε

−

Σ∫  is negative and finite. 

Therefore, for 
21

1
p

p
β −

− < ≤
−

, set au z zβ
ε ε εε= − , with 1a ≥  a positive 

constant. 

( )
( ) ( )( ) ( )

( ) ( )

22

2 1 2 2

11

1 1d d d d

1 d d

d d .

pp a a

p pa a

p pa p

u u z t z z z z z t

z z t

z t

ε ε

ε

ε

β β
ε ε ε ε ε ε ε εα α

β β
ε εα

βα
ε

σ ε ε σ
ε ε

ε ε σ
ε

ε σ

∞ ∞

∞

∞

−−

Σ Σ

− + − +

Σ

− +− −

Σ

= − −

= −

= −

∫ ∫

∫

∫

 

By substituting this term in the expression for the time derivative of ( )V zε , 
we obtain:  

( ) ( ) ( ) ( )2 11
3

d 1 d d d d .
d

p pa pV z M z x t z t
t ε

βα
ε ε εε σ∞ ∞

− +− −

Ω Σ
≤ − + ∇ −∫ ∫  

So the time derivative of ( )V zε  is negative, hence ( )V zε  satisfies the as-
sumptions, which implies that ( )V zε  is a Lyapunov function and the system is 
stable. 

3.2. Limit Behavior of Solution 

The set ( )1V H= Ω  is a Banach and reflexive space, with ( )1H Ω  has the 
norm ( )1H Ω

⋅ , according to the separability of V, hence it admits a countable 
basis { }1 2 3, , , , ,nw w w w  , with iw V∈ , m∀  { }1 2 3, , , , nw w w w  is a free 
family, { }1 2 3, , , , ,nH Vect w w w w=    is dense in V. 

Let us consider in the spaces { }1 2 3, , , ,m mV Vect w w w w=   the following ap-
proximate problem; 

We put ( ) ( )
1

.
m

i i m
i

z t h t w Vε ε
=

= ∈∑  

( )

2

0,

in
1 on

0 on
0, on

p

z z f
z u u
n

z
z t x z

ε ε ε

ε
ε ε εα

ε ε

ε ε

ε

∞

− ∞

∞

 − ∆ = Ω

∂ = Σ
∂

 = Γ


= = Ω



 

Existence of the Solution 
To solve this problem, we aim to find a solution by minimizing the energy func-
tional ( )J zε  given by: 

( )
( )( )

2 21 1d d d d d d .
2 1

pJ z z x t f z x t u u z t
p p ε

ε ε ε ε ε ε εα σ
ε β∞ ∞ ∞

−

Ω Ω Σ
= ∇ − −

− +∫ ∫ ∫

(1) 
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To show the existence of critical points for the function J, we need to verify 
the Palais-Smale condition, which states that a bounded sequence with a gra-
dient converging to zero has a convergent sub-sequence in the energy space. 
 Convergence of ,kzε :  

The sequence zε  is sequentially bounded in the reflexive space  
( )( )2 10, ;L H∞ Ω . Consequently, there exists a sub-sequence ,kzε  such that 

,kzε  converges to z in ( )( )2 10, ;L H∞ Ω . 
 Boundedness of ( ),kJ zε :  

Since ,kzε  is bounded in ( )( )2 10, ;L H∞ Ω , we have 
( )( )2 1, 0, ;k L H

z Cε ∞ Ω
≤  for 

some constant 0C >  independent of k. 
Using the boundedness of f in ( )( )2 10, ;L H −∞ Ω , we can estimate the second 

term of ( ),kJ zε  as 

( ) ( )2 1 2 1, , , ,0, ; ( ) 0, ; ( )
d d .k k k kL H L H

f z x t f z Cε ε ε ε−∞ ∞ Ω ∞ ΩΩ
≤ ≤∫  

For the third term, for 
2

1
p

p
β −
≤

−
; 

( )
( ) ( )

1
2 1 1

, , ,
1 d d d d .

a p
p p p a p

k k ku u z t z t C
pp ε ε

α
β α

ε ε ε εα

εσ σ ε
ε ∞ ∞

− −
− − + − −

Σ Σ
= ≤∫ ∫  

Therefore, we can bound ( ),kJ zε  as 

( ) ( )
( )

1

2 1
, ,0

1 .
2

a p
k k H

J z z C Cα
ε ε ε

∞ − −

Ω
≤ + + ≤ +∞∫  

This shows that ( ),kJ zε  is bounded. 
 Convergence of ( ),kJ zε∇ : 

Expanding the expression for J using:  

( )
( )

( )
( )

1
2 1

, , , , ,
1 d d d d d d .
2 1

a p
p p

k k k k kJ z z x t f z x t z t
p p ε

α
β

ε ε ε ε ε
ε σ

β∞ ∞ ∞

− −
− +

Ω Ω Σ
= ∇ − −

− +∫ ∫ ∫  

To demonstrate the Palais-Smale condition, we need to consider the variation 
of the functional J with respect to ,nzε . Let v be a trial function in ( )( )2 10, ;L H∞ Ω  
such that ( ) 0v t =  for t outside a bounded interval. Then, for 0h ≠ , we have:   

( ) ( ) ( ) ( ), ,
, ,0

0

d; lim .
d

k k
k kh

h

J z hv J z
J z v J z hv

h h
ε ε

ε ε→
=

+ −
′ = = +  

Now let’s calculate the derivative terms one by one:  
 Derivative of the first term: 

( )( )
( )

2

,

22
,0

,

d d d
d

1lim 2 d d d d

2 d d .

k

kh

k

z hv x t
h

h z v x t h v x t
h

z v x t

ε

ε

ε

∞

∞ ∞

∞

Ω

Ω Ω→

Ω

∇ +

= ∇ ⋅∇ + ∇

= ∇ ⋅∇

∫

∫ ∫

∫

 

 Derivative of the second term:  

( )( ), , ,
d d d d d .
d k k kf z hv x t f v x t
h ε ε ε∞ ∞Ω Ω
− + = −∫ ∫  
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 Derivative of the third term:  
Let’s correctly compute the derivative of the third term with respect to h and 

evaluate it at 0h = : 

( )( )1
,

0

d d d
d

p p
k

h

z hv t
h ε

β
ε σ∞

− +

Σ
=

+∫  

To evaluate this derivative, we can use the chain rule, we have:  

( )( ) ( )

( )( ) ( ) ( ) ( )

( )( ) ( ) ( )

1 1
, ,

0 0

1 1
, , ,

0

1 1
, ,

d d
d d

d1
d

1 .

p p p p
k k

h h

p p
k k k

h

p p
k k

z hv z hv
h h

p p sign z hv z hv z hv
h

p p sign z z v

β β
ε ε

β
ε ε ε

β
ε ε

β

β

− + − +

= =

− + −

=

− + −

+ = +

= − + + + +

= − +

 

Therefore, the correct expression for the derivative of the third term is 
( )( ) ( ) ( )1 1

, ,1
p p

k kp p sign z z v
β

ε εβ
− + −

− + . 
Using the definition of the derivative of J with respect to h, we have:  

( ) ( )

( )

( ) ( )( ) ( ) ( )

, ,
0

, ,

1
1 1

, ,

d;
d

d d d d

1 d d .
1

k k
h

k k

a p
p p

k k

J z v J z hv
h

z v x t f v x t

p p sign z z v t
p p ε

ε ε

ε ε

α
β

ε ε
ε β σ

β

∞ ∞

∞

=

Ω Ω

− −
− + −

Σ

′ = +

= ∇ ⋅∇ −

− − +
− +

∫ ∫

∫

 

We can rewrite the above expression as: 

( )
( ) ( ) ( )

, , ,

1 11
, ,

d d d d

d d .

k k k

p pa p
k k

J z v z v x t f v x t

sign z z v t
ε

ε ε ε

βα
ε εε σ

∞ ∞

∞

Ω Ω

− + −− −

Σ

∇ ⋅ = ∇ ⋅∇ −

−

∫ ∫

∫
 

Since ( ),kJ zε∇  converges to zero, it implies that: 
( ) ( ) ( )1 11

, , , ,d d d d d d 0,
p pa p

k k k kz v x t f v x t sign z z v t
ε

βα
ε ε ε εε σ∞ ∞ ∞

− + −− −

Ω Ω Σ
∇ ⋅∇ − − →∫ ∫ ∫  

as k → +∞ . This holds for all trial functions v in ( )( )2 10, ;L H∞ Ω . By the de-
finition of weak convergence, when k → +∞ . According to the classical result, 
the diagonalization lemma, there is a function ( ) :k ε + →   increasing to 
+∞  when 0ε → , we can conclude that: 

2
, , , ,

1 0
p

k k k kz f u uε ε ε εαε
−

∆ + − →  

weakly in ( )( )2 10, ;L H −∞ Ω  as k →∞ . 
 The lower semi-continuity of ( ),kJ zε : 

We need to show that for any sequence ,kzε  converging weakly to z in the 
energy space, we have: 

( ) ( ),liminf kk
J z J zε→∞

≥  

We start by considering the first term of the functional: 21 d d
2

z x tε∞Ω
∇∫ . 

Since ,kzε  converges weakly to z, we have ,kz zε∇ ∇
 weakly in  
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] [( )2 0,L ∞ ×Ω . Using Fatou’s lemma; 
22

,
1 1d d liminf d d .
2 2 kk

z x t z x tε∞ ∞Ω Ω→∞
∇ ≤ ∇∫ ∫  

Next, let us analyze the second term of the functional: , , d dk kf z x tε ε∞Ω
−∫ . 

Since ,kfε  is a bounded function, we can use the weak convergence of ,kzε  
to z to obtain: 

, ,d d liminf d d .k kk
fz x t f z x tε ε∞ ∞Ω Ω→∞

− ≤ −∫ ∫  

Finally, let’s consider the third term of the functional: 

( )( )
2

, , ,
1 d d

1
p

k k ku u z t
p p ε

ε ε εα σ
ε β ∞

−

Σ
−

− + ∫ . 

With regard to the third term, we can demonstrate on the basis of the proof of 
the epi-convergence theorem 3.1 that we can establish the inequality in question. 

Combining these inequalities, we obtain: 

( ) ( ),liminf .kk
J z J zε→∞

≤  

 Convergence of ( ),kJ zε  to its infimum: 
We have established that *zε  is a minimizing sequence of ( )J zε . We want 

to show that ( ),kJ zε  converges to 
( )( ) ( )2 10, ;

inf
z L H

J z
∈ ∞ Ω

 as k →∞ . 
To prove this, we can utilize the lower semicontinuity property of J that we 

established earlier. Since *zε  is a minimizing sequence, we have:  

( ) ( )*
,kJ z J zε ε≤  

for all k. Taking the liminf on both sides, we obtain:  

( ) ( )*
,liminf liminf kk k

J z J zε ε→∞ →∞
≤  

Since ( )*J zε  is the infimum of J over ( )( )2 10, ;L H∞ Ω , we have:  

( )
( )( )

( )
2 1

*

0, ;
liminf inf

k z L H
J z J zε→∞ ∈ ∞ Ω

≤  

Combining these inequalities, we obtain:  

( )( )
( ) ( )

2 1 ,
0, ;
inf liminf kkz L H

J z J zε→∞∈ ∞ Ω
≤  

Since we have already shown that J is lower semicontinuous, we can conclude 
that:  

( )
( )( )

( )
2 1,

0, ;
lim inf .kk z L H

J z J zε→∞ ∈ ∞ Ω
=  

Therefore, we have demonstrated the convergence of ( ),kJ zε  towards its in-
fimum, completing the proof. 

These results guarantee the existence of a solution to the initial problem. The 
convergence of the minimizing sequence and the functional to their limit sug-
gests that this solution is stable and indeed represents the energy minimum. In 
addition, we have verified the Palais-Smale conditions that are essential to guar-
antee the existence of minimizing solutions. 
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Lemma 3.1. The family ( ) 0zε ε >
 satisfies:  

 ( )( )2 10, ;L Hz Cε ∞ Ω
≤  (2) 

( )( )0, ;p pL Lu C
εε ∞ Σ

≤  

Proof. Let us consider the approximate problem; we multiply the equations 
defined on ∞Ω  by ( )ih tε  and sum from 1i =  to m for a fixed k. This leads 
to the variational formulation of our problem; 

21d d d d .p
t z v x z v x f v x u u v

ε
ε ε ε ε εα σ

ε
−

Ω Ω Ω Σ
∂ + ∇ ⋅∇ = +∫ ∫ ∫ ∫  

For all ( )( )2 10, ;v L H∈ ∞ Ω . By choosing v zε=  in this formulation, we ob-
tain: 

( ) ( )2 2
2 2 21 d 1d d

2 d
p

L Lz z f z x u u z
t ε

ε ε ε ε ε ε εα σ
ε

−

Ω Ω Ω Σ
+ ∇ = +∫ ∫  

( ) ( )2 2

22 21 d 1d d
2 d

p
a a

L Lz z f z x z z z z z
t ε

β β
ε ε ε ε ε ε ε ε εα ε ε σ

ε

−

Ω Ω Ω Σ
+ ∇ = − −∫ ∫  

( ) ( )
( ) ( )

2 2
2 2 111 d d d .

2 d
p pa p

L Lz z f z x z
t ε

βα
ε ε ε ε εε σ∞

− +− −
Ω Ω Ω Σ
+ ∇ = −∫ ∫  

Using the Holder Inequality, we obtain 

( ) ( ) ( ) ( )2 2 1 1
2 2 2 21 d 1 1

2 d 2 2L L H Hz z f z
t ε ε ε ε−Ω Ω Ω Ω

+ ∇ ≤ +  

By integrating this inequality with respect to time, we obtain the following a 
priori estimate for zε : 

( ) ( ) ( )2 2 1
2 2 2

0 0 0

1 d 1 1
2 d 2 2L L Hz z f

t ε ε ε −

∞ ∞ ∞

Ω Ω Ω
+ ∇ ≤∫ ∫ ∫  

( )2
2

0

1 .
2 Lz Cε

∞

Ω
∇ ≤∫  

Which proves that;  

( )( )2 10, ; .L Hz Cε ∞ Ω
≤  

This a priori estimate shows that the norm of zε  is in the Bochner space 
( )( )2 10, ;L H∞ Ω . 

On the other hand, we seek to obtain an a priori estimate of the control norm 
uε . An admissible control for this problem is a function uε  that satisfies the 
control constraint on εΣ , using Remark 2.3.  

( ) ( ) ( )

( ) ( )

( ) ( )

2 2

2 1 2

1 2 1 2

22 2 2 2 2 2 2

2 22 2

222 2
2

d d

2

1 .
2 2

p p
p p p p

L L

p p

L H

p

H H

u C u C u C u u

CC u u u u

zC Cu u
n

ε ε ε ε

ε ε

ε ε

ε ε ε ε ε

ε ε ε ε

α α
ε

ε εα

σ σ

ε ε
ε

−

−

− −

− − − −

Σ Σ Σ Σ

− −

Σ Σ

−

Σ Σ

≤ = =

= =

∂
= ≤ < ∞

∂

∫ ∫

 

Thus, we have:  

( ) ( )
( )

2 2
1 2

2
2 2 2

0 0 0
d d .p p

p p

L L
H

zu C u t C t
nε ε

ε

α ε
ε ε ε−

−

∞ ∞ ∞−

Σ Σ
Σ

∂
≤ ≤ < ∞

∂∫ ∫ ∫  
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This a priori estimate shows that the norm of uε  in Bochner space  
( )( )0, ;p pL L ε∞ Σ .  

3.3. Proof of Theorem 3.1 

To prove our theorem, we will need to establish the two lemmas 3.2 and 3.3 
and the proposition 3.1. 

Lemma 3.2. The operator mε  is linear and bounded of ( )( )2 20, ;L L ε∞ Σ re-
spectively ( )( )2 10, ;L H ε∞ Σ  in ( )( )2 20, ;L L∞ Σ  (respectively  

( )( )2 10, ;L H∞ Σ , moreover, for all ( )( )2 10, ;z L H ε∈ ∞ Σ , we have  

 
] [( )2

2 22
| 00,

.
L

m z z C z
ε

ε ε
∞

Σ Σ∞ ×Σ
− ≤ ∇∫ ∫  (3) 

Proof. Let ] [( )0,z ε∈ ∞ ×Σ , so that  

( )
( ) ( )

2

22

2
2

| 1 2 3 3 1 2 1 22
1 , , , , , ,0 d d .

2L
m z z z t x x x dx z t x x x x

εε
εεΣ Σ −Σ

 − = − 
 ∫ ∫  

Using the Hölder inequality,  

( )
( ) ( )

( )

( )

2

22

2
3

2

2 2

2 2

2

2

2 2
| 1 2 3 1 2 3 1 22

2

1 2 3 1 22 0
3

2

3 1 2 3 1 22
3

2
2

3
3

1 , , , , , ,0 d d d
2

1 , , , d d d d
2

1 , , , d d d d
2

d

L

x

m z z z t x x x z t x x x x x

z t x x w w x x x
x

zx t x x w w x x x
x

zC x
x

εε
ε

ε

ε

ε ε

ε ε

ε

ε

ε

ε

ε

ε

Σ Σ −Σ

Σ −

Σ − −

Σ −

 − ≤ − 
 
 ∂ ≤
 ∂ 
  ∂  ≤

  ∂  
 ∂≤

∂

∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫
22

1 2d d d .x x C z x
ε

ε
Σ


 ≤ ∇

 


∫

 

By density arguments, we have for all ( )( )2 10, ;z L H ε∈ ∞ Σ   

] [( )2

2 22
| 00,

d d .
L

m z z C z x t
ε

ε ε
∞

Σ Σ∞ ×Σ
− ≤ ∇∫ ∫  

Hence the result.  
Lemma 3.3. Let ( ) ( )( )2 1

0 0, ;z L Hε ε >
⊂ ∞ Ω  which satisfies (2). Then  

 
] [( )2

2

0,
.

L
m z Cε

ε ∞ ×Σ
≤  (4) 

In addition, m zε ε  have a bounded sub-sequence in ] [( )2 0,L ∞ ×Σ .  
Proof. From lemma 3.2, we get  

] [( )2

2 22 2
| 00,

.
L

m z z C z C
ε

ε ε ε
∞

Σ Σ∞ ×Σ
− ≤ ∇ ≤∫ ∫  

zε  is bounded in ( )( )2 10, ;L H∞ Ω , it follows that there exists  
( )( )* 2 10, ;z L H∈ ∞ Ω  and a sub-sequence zε , always noted zε , such as  

*z zε   in ( )( )2 10, ;L H∞ Ω , then |zε Σ  is a bounded sequence in ] [( )2 0,L ∞ ×Σ . 
Since,  

] [( ) ] [( ) ] [( )22 2| | 0,0, 0,
,

LL L
m z m z z zε ε

ε ε ε εΣ Σ ∞ ×Σ∞ ×Σ ∞ ×Σ
≤ − +  

then there exists C such that 
] [( )2

2

0,L
m z Cε

ε ∞ ×Σ
≤ .  
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Proposition 3.1. ( )zε ε
, has a weakly convergent sub-sequence to an element 

*z  in ( )( )2 10, ;L H∞ Ω  satisfactory, ( )( )* 2 20, ;z L L
Σ
∈ ∞ Σ . 

Proof. The sequence zε  is bounded in ( )( )2 10, ;L H∞ Ω , it follows that there 
is an element ( )( )* 2 10, ;z L H∈ ∞ Ω  and a sub-sequence of zε , always desig-
nated by zε  such as *z zε   in ( )( )2 10, ;L H∞ Ω . We have  

] [( ) ] [( )2

2 2 * 2
| | |0,

and in 0, .
L

m z z C z z Lε
ε ε εεΣ Σ Σ∞ ×Σ
− ≤ ∞ ×Σ

 

According to the evaluation (4), as *
|m z zε

ε Σ
 in ( )( )2 20, ;L L∞ Σ . Hence 

( )( )* 2 2
| 0, ;z L LΣ ∈ ∞ Σ . 
Hence the results.  
The prior findings have allowed us to emphasize our core finding (theo-

rem 3.1). 
In this article, we focus on establishing the following main result, which 

demonstrates the limit behavior presented in the theorem below: 
We consider the energy operator 

( )
( )

( )
( )

1
2 11 d d d d

2 1

a p
p pF z z x t z t

p p ε

α
β

ε ε ε ε
ε σ

β∞ ∞

− −
− +

Ω Σ
= ∇ −

− +∫ ∫  

One denotes by fτ  the weak topology on ( )2 0, ;L Σ∞ . 
Theorem 3.1. According to the values of α , there exists a functional Fα  

defined on ( )2 0, ;L Σ∞   with a value in { }∪ +∞  such that limf e F Fα
ετ − =  

in ( )2 0, ;L Σ∞  , where the functional Fα  is given by; 
1) If ( )2 1a pα < + − :   

( ) 21 d d .
2

F z z x tα
∞Ω

= ∇∫  

2) If ( )2 1a pα ≥ + − :  

( )
( )( )

( )
( )12

|

11 d d d d .
2 1

p pa p
F z z x t z t

p p
βα η α

σ
β∞ ∞

− +

ΣΩ Σ

− −
= ∇ −

− +∫ ∫  

Proof. First, we write the energy functional ( )F zε ε  associated with the 
problem as follows; Let ( )2 0, ;z Lε Σ∈ ∞  , we have: 

( )
( )( )

2 21 1d d d d .
2 1

pF z z x t u u z t
p p ε

ε ε ε ε ε εα σ
ε β∞ ∞

−

Ω Σ
= ∇ −

− +∫ ∫  

And,  

( ) d d .G z f z x tε ε ε∞Ω
= −∫  

Given ( ) au z z z β
ε ε ε εε= − , we want to apply the method of epi-convergence. 

1) We will determine the upper epi-limit: 
From a density result, let ( )2 0, ;z L Σ∈ ⊂ ∞  , there is a sequence ( )kz  in 

  such that  

in , as .kz z k→ →+∞  

So that kz z→  in ( )2 0, ;L Σ∞  . 
Let θ  be a smooth function verifying ( )3 1xθ =  if 3 1x ≤ , ( )3 0xθ =  if 
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3 2x ≥  and ( )3 2xθ ′ ≤ , x∀ ∈ . 
We define  

( ) 3
2 .xxεθ θ

ε
 =  
 

 

And ( ) ( )( ), | 1k k kz x z x zε ε εθ θΣ= + − . 
It is easy to show that ( )2

, 0, ;kz Lε Σ∈ ∞   and ,k kz zε →  in  , when 0ε → . 
Since  

( )
( )

( )
( )

1
2 1

, , ,
1 d d d d .
2 1

a p
p p

k k kF z z x t z t
p p ε

α
β

ε ε ε ε
ε σ

β∞ ∞

− −
− +

Ω Σ
= ∇ −

− +∫ ∫  

So that 

( )
( )

( )
( )

( )

( )
( )

1
2 1

, , ,

2 1
12

|

1 d d d d
2 1

1 d d d d .
2 1

a p
p p

n k k

a p
p p

k k

F z z x t z t
p p

z x t z t
p p

ε

α
β

ε ε ε ε

α
β

ε σ
β

ε σ
β

∞ ∞

∞ ∞

− −
− +

Ω Σ

+ − −
− +

ΣΩ Σ

= ∇ −
− +

= ∇ −
− +

∫ ∫

∫ ∫
 

Since ( ) ( )( )2 1 1a p a pαε η α+ − − → − − , 

( )
( )

( )
( )

( )
( )( )

( )
( ) ( )

,
0

2 1
12

, |
0

2
1

|

limsup

1limsup d d d d
2 1

0 if 2 1
1 d d 1
2 d d if 2 1

1

k

a p
p p

k k

p pk
k

F z

z x t z t
p p

a p
z x t a p

z t a p
p p

ε ε
ε

α
β

ε
ε

β

ε σ
β

α

η α
σ α

β

∞ ∞

∞

∞

→

+ − −
− +

ΣΩ Σ→

− +
Ω

ΣΣ

 
≤ ∇ −  − + 

 < + −


≤ ∇ − − −
≥ + − − +

∫ ∫

∫ ∫





 

Since kz z→  in ( )2 0, ,L Σ∞  , when k → +∞ . According to the classical 
result, the diagonalization lemma ([11], Lemma 1.15), there is a function  
( ) :k ε + →   increasing to +∞  when 0ε → , such as ( ),kz zε ε →  in  
( )2 0, ,L Σ∞  , when 0ε → . While k approaches +∞ ; 

( )( )
( )

( )
( )( )

( )
( ) ( )

,
0

,0

2
1

|

limsup

lim suplimsup

0 if 2 1
1 d d 1
2 d d if 2 1

1

k

nk

p p

F z

F z

a p
z x t a p

z t a p
p p

ε ε ε
ε

ε εε

β

α

η α
σ α

β
∞

∞

→

→+∞ →

− +
Ω

ΣΣ

≤

 ≠ + −


≤ ∇ − − −
= + − − +

∫ ∫

 

2) We will determine the lower epi-limit: 
Let z∈  and ( )zε  be a sequence in ( )2 0, ;L Σ∞   such that z zε   in 
( )2 0, ;L Σ∞  , so that  

 ( )( )32 2in 0, , .z z L Lε∇ ∇ ∞ Ω  (5) 

Using Fatou’s lemma and the fact that zε  converges weakly to z in 
( )2 0, ;L Σ∞  , we obtain 

2 2
0

1 1liminf d d d d
2 2

z x t z x tε ε∞ ∞→ Ω Ω
∇ ≥ ∇∫ ∫ . 
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For ( )2 0, ;z Lε Σ∈ ∞  , we have  

( )
( )

( )
( )

( )

( )
( )

1
2 1

2 1
12

1 d d d d
2 1

1 d d d d
2 1

a p
p p

a p
p p

F z z x t z t
p p

z x t m z t
p p

ε

α
β

ε ε ε ε

α
βε

ε ε

ε σ
β

ε σ
β

∞ ∞

∞ ∞

− −
− +

Ω Σ

+ − −
− +

Ω Σ

= ∇ −
− +

= ∇ −
− +

∫ ∫

∫ ∫
 

Therefore, we have ( )2 1a pα ≠ + − ; 

( ) 2

0

1liminf d d .
2

F z z x tε εε ∞Ω→
≥ ∇∫

 
If ( )= 2 1a pα + − : If ( )0lim inf F zε

ε ε→ = +∞ , there is nothing to prove, be-
cause  

( )

( )
( )

1
2 11 d d d d .

2 1

a p
p pz x t z t

p p ε

α
β

ε ε
ε σ

β∞ ∞

− −
− +

Ω Σ
∇ − ≤ +∞

− +∫ ∫  

Otherwise, ( )0lim inf F zε ε ε→ < +∞ , there is a sub-sequence of ( )F zε ε  still 
designated by ( )F zε ε  and a constant 0C > , such as ( )F z Cε ε ≤ . which  

implies that 21 d d
2

z x t Cε∞Ω
∇ <∫ . 

Moreover, thanks to (3) and the continuous inclusion of ( )2L Σ  in 

( ) ( )1p pLβ − + Σ  for 
2

1
p

p
β −
≤

−
; 

( ) ] [( ) ] [( )1 2

2 2 22
| | 00, 0,

d d .p pL L
m z z C m z z C z tβ

ε

ε ε ε σ− +

∞

Σ Σ Σ∞ ×Σ ∞ ×Σ
− ≤ − ≤ ∇∫ ∫  

We have weak convergence of |zε Σ  to |zΣ  in ] [( )2 0,L ∞ ×Σ . Since | |z zε Σ Σ
 

in ( ) ] [( )1 0,p pLβ − + ∞ ×Σ , we have |m z zε
ε Σ

 in ( ) ] [( )1 0,p pLβ − + ∞ ×Σ , and hence 

|m z zε
ε Σ

 in ( ) ( ) ( )( )1 10, ;p p p pL Lβ β− + − +∞ Σ . 

( )
( )

( )
( )2 1

121 d d d d .
2 1

a p
p p

F z z x t m z t
p p

α
βε

ε ε ε ε
ε σ
β∞ ∞

+ − −
− +

Ω Σ
≥ ∇ −

− +∫ ∫  

Using the subdifferential inequality, we obtain 

( )
( )

( )
( )

( )

( )
( ) ( )

2 1
12

|

2 1
1 2

| | |

1 d d d d
2 1

d d .
1

a p
p p

a p
p p

F z z x t z t
p p

z z m z z t
p p

α
β

ε ε ε

α
β ε

ε

ε σ
β

ε σ
β

∞ ∞

∞

+ − −
− +

ΣΩ Σ

+ − −
− + −

Σ Σ ΣΣ

≥ ∇ −
− +

− −
− +

∫ ∫

∫





 

By passing to the lower limit, we obtain  

( ) ( )( )
( )

( )12
|0

11liminf d d d d .
2 1

p pa p
F z z x t z t

p p
β

ε εε

η α
σ

β∞ ∞

− +

ΣΩ Σ→

− −
≥ ∇ −

− +∫ ∫  

Hence the result.  
In the sequel, one is interested to limit problem determination partner to 

the problem (1), when ε approaches zero. Thanks to the epi-convergence 
results, (see ([11], Proposition p. 40), and according to fτ -continuity of G 
in ( )2 0, ;L Σ∞ , one has F Gε +  fτ -epi-converges toward F Gα +  in 

( )2 0, ;L Σ∞ . 
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Table 1. Numerical tests for stability on - εΣ  and Ω.  

t zε  |zε Σ  z  |zΣ  

t = 1 3.9947036053134716e−05 8.461611843695231e−22 3.798728877912462e−05 8.70266010292555e−22 

t = 3 4.0078456996587055e−05 8.4776107549483e−22 3.808151054788732e−05 8.719448911188138e−22 

t = 6 4.007915985374034e−05 8.477653057484787e−22 3.808176052445502e−05 8.719492925316215e−22 

t = 10 4.007915985374034e−05 8.477653057484787e−22 3.808176052445502e−05 8.719492925316215e−22 

4. Numerical Tests 

For a sufficiently small value of ε, the solution zε  of the approximating prob-
lem approaches the solution z of the limit problem. We are interested in the 
numerical treatment in this section and we will focus on the impact of the con-
trol on the surface ε

∞Σ , with 

10T =  { }2
3|x xε εΣ = ∈∂Ω ≤  

( ) ] [ ] [ ] [{ }1 2 3 1 2 3, , | 1,1 , 1,1 , 1,1x x x x x xΩ = ∈ − ∈ − ∈ −  au z z β
ε ε εε= −  

Using the Python programming language, with the finite element method and 
the Newton method, with 7p = , ( )2 1a pα = + −  and 1e 7ε = − , one will 
have the results shown in the table. 

The solution of the approximation problem converges to that of the limit 
problem. 

Initially, uε  does not stabilize the state on all of Ω, which is normal because 
the control is defined only on εΣ , so the control will stabilize the state only on 

εΣ . 
Table 1 shows that the solution of the approximation problem converges to 

that of the limit problem and shows that uε  stabilizes the state |zε Σ , and u sta-
bilizes the state |zΣ  on the nanolayer, which shows that the model is suitable 
for control specialists on the nanolayer. 

5. Conclusion 

In this paper we have focused on the stability of nanolayer boundaries in diffu-
sion-reaction systems, taking into account a nonlinear boundary control condi-
tion. We have demonstrated the stability of nanolayer boundaries using the 
Lyapunov function approach, making certain regularity assumptions and im-
posing appropriate control conditions. In addition, we have extended the stabil-
ity analysis to more complex systems by studying the boundary problem with 
interface conditions using the epi-convergence approach. The results obtained in 
this paper were then tested numerically to validate the theoretical conclusions. 
These results pave the way for further research into the stability of boundaries in 
diffusion-reaction systems with non-linear control conditions.  
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