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Abstract 
In this study, we prove the of existence of solutions of a convolution Volterra 
integral equation in the space of the Lebesgue integrable function on the set 
of positive real numbers and with the standard norm defined on it. An oper-
ator P was assigned to the convolution integral operator which was later ex-
pressed in terms of the superposition operator and the nonlinear operator. 
Given a ball Br belonging to the space L it was established that the operator P 
maps the ball into itself. The Hausdorff measure of noncompactness was then 
applied by first proving that given a set rM B∈  the set is bounded, closed, 
convex and nondecreasing. Finally, the Darbo fixed point theorem was ap-
plied on the measure obtained from the set E belonging to M. From this ap-
plication, it was observed that the conditions for the Darbo fixed point theo-
rem was satisfied. This indicated the presence of at least a fixed point for the 
integral equation which thereby implying the existence of solutions for the 
integral equation. 
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1. Introduction 

The existence of an integral equation solution is a true indicator of whether or 
not a given integral equation can be solved [1]. Over the years, numerous func-
tion space-based methods have been implemented to test the nature of an 
integral equation solution. Although all these various procedures have the same 
end goal, the function spaces and the applied fixed-point theorems are the key 
components that differentiate them. According to [2], fixed-point theorems are 
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essential in determining whether there exists a solution for a given integral equa-
tion. The most used fixed point is the Schauder fixed point [3]. Other fixed 
points confirm that a self-mapping on a set, which is continuous, convex, non-
empty, and a compact subset of a Banach space, possesses at least a fixed point 
[4]. However, finding this subset of a set belonging to a certain function space, 
which is bounded, convex, closed, and at the same time maps itself by the oper-
ator due to an underlying integral equation, is very difficult. For example, some 
of the approaches that apply either classical Banach or the Schauder fixed point 
normally result in inaccurate results since strong hypotheses are required for the 
use of these fixed-point theorems. To address these inaccuracies, the techniques 
of measures of noncompactness and the Darbo fixed-point theorem have been 
successfully employed in establishing the existence of solutions, rather than re-
lying solely on methods like the classical Banach or Schauder fixed-point theo-
rems. Measures of noncompactness and Darbo fixed point theorem are highly 
valuable in functional analysis spanning areas such as metric fixed-point theory 
and operator theory, differential equations, functional equations, integral and 
integro-differential equations, optimization, and more.  

With the introduction of the concept of the measure of noncompactness, 
there have been successful applications through the Darbo Fixed point theorem 
in establishing the existence of the solution of an integral equation. [5] presented 
an approach that depends on the measure of noncompactness and the Darbo 
fixed-point theorem. 

[6] provided an integral-type generalization of Darbo’s theorem and applied it 
to establish the existence of solutions for functional integral equations. [7] pre-
sented another generalization of Darbo’s theorem along with an application. 
Recently, integral equations of fractional orders have been investigated in [8] 
and [9] using measures of noncompactness. For various types of integral equa-
tions, refer to [10] [11] [12] [13]. [14] utilized shifting distance functions to es-
tablish several new generalizations. 

Although this approach has been applied to prove the existence of monotonic 
solutions of integral equations of various types in the space of Lebesgue integra-
ble functions, it’s application in establishing the solvability of the convolution 
Volterra integral equation in the space of Lebesgue integrable functions has not 
been extensively studied [15] [16] [17] [18] [19]. 

Therefore, in this study, considering a convolution Volterra integral equation 
in the form of Equation (1):  

 ( ) ( ) ( ) ( )( )( )
0

, d , 0
t

x t f t t s g s x s s tα ϕ= + − >∫ , (1) 

we establish the proof of existence of solutions of the convolution integral Equa-
tion (1) using the measure of noncompactness and the Darbo fixed-point theo-
rem in the space of Lebesgue integrable functions. The mathematical prelimi-
naries and theoretical concepts are in section two, while the main results are 
presented in section three. 
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2. Main Concept 
2.1. Basic Definitions and Preliminaries 

Some of the various mathematical concepts and theorems required for the study 
are recalled in this section. For the purpose of this study,   represent the set of 
real numbers, ∀  denotes for all and   the set of natural numbers. 

Definition 1 A set nG ⊂   is convex if and only if for every two points in G, 
the line segment that connects them is entirely contained within G. That is 1xλ
( ) 21 x Gλ+ − ∈  [ ]0,1λ∀ ∈  1 2,x x G∈  [20]. 
Definition 2 Let X be a vector space over the field   then X is said to be a 

Banach space if and only if X is equipped with a norm and is also complete. 
The space X is complete if for every Cauchy sequence { }nx  in X, there exist a 

subsequence { }nx  which converges to x X∈ . 
Definition 3 Let   denote the set of real numbers and [ )0,∞  be an inter-

val on  . For a given nonempty, non-bounded and Lebesgue measurable sub-
set [ )0,∞  of  , denoted by L1, as the space of Lebesgue integrable functions 
on [ )0,∞  the standard norm is given by ( )

0
dx x t t

∞
= ∫ .  

Definition 4 Suppose 0 p< < ∞  and ( ), ,X M µ  represent a measure space. 
If :f X →  is said to be a measurable function, then we define ( ) :pL Xf =  

1

d
pp

X

f x
 
 
 
∫  and ( ) ( ): esssupx XL xf f x∞ ∈= . 

The Lebesgue space can therefore be restated in the following definition. 
Definition 5 Let ( )pL x  be a space then this is defined as a set of ( )pL x =

( ){ }: | pL xf x R f→ <∞  

2.2. Volterra Integral Equations 

Volterra Integral equation is a type of integral equation which has one of its lim-
its to be a variable. The standard form of a Volterra integral equation is given by:  

 ( ) ( ) ( ) ( ) ( )
0

, d
x

t u t f x k x t u t tϑ λ= + ∫  (2) 

The Volterra integral equation can be of either the first or second kind, de-
pending on the position of the unknown variable inside or outside the integral 
sign. When the unknown function ( )u x  appears inside and outside the 
integral sign and ( ) 1tϑ =  in Equation (2), the resulting integral equation is 
called a Volterra integral equation of the second kind and is represented by: 

 ( ) ( ) ( ) ( )
0

, d .
x

u x f x k x t u t tλ= + ∫  (3) 

The convolution integral equation results from the nature of the kernel of the 
integral equation.  

2.3. Convolution and Regularization 

Theorem 1 Let ( )1 Nf L∈   and ( )p Ng L∈   with 1 p< < ∞ . Then for 
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almost everywhere Nx∈  the function ( ) ( )y f x y g y→ −  is integrable on 
N

  and so ( )( ) ( ) ( )dNf g x f x y g y y∗ = −∫


 in addition ( )p Nf g L∗ ∈   
and 

1p pf g f g∗ ≤  [21]. 
Theorem 2 Suppose that :g I R→  is differentiable on an open interval I 

and g′  is integrable on I. Let ( )J g I= . If :f J R→  is continuous then for  

every ,a b I∈  ( )( ) ( ) ( )( )
( )d d

b g b

a g a
f g x g x x f u u′ =∫ ∫ . 

2.4. Carathéodory Conditions 

The Carathéodory Conditions stipulate that in the domain of the ( ),t x  space, 
the following conditions are fulfilled: 

1) The function ( ),f t x  be defined and continuous in x for almost all t; 
2) The function ( ),f t x  be measurable in t for each x; 
3) ( ) ( ),f t x m t≤  where the function ( )m t  is integrable in the Lebesgue 

sense on each finite interval. 

2.5. Superposition Operator 

Suppose that a function ( ) [ ), : 0,f t x f= ∞ × →   satisfies the Carathéodory 
conditions, then for the function ( ) ( )( ),Tx t f t x t=  where [ )0,t∈ ∞  is as-
signed for every ( )x x t=  which is measurable on [ )0,∞ . The operator T is 
called the superposition operator generated by f. Functions of several variables 
are converted to a single variable by the superposition operator T [22]. The su-
perposition operator converts the functions of several variables to a single varia-
ble function which can be observed for the L norm. 

Theorem 3 (Superposition) The space L1 map continuously onto itself by the 
superposition operator T if and only if  
 ( ) ( ),f t x a t b x≤ +  (4) 

[ )0,t∀ ∈ ∞  and x∈ , where 0b ≥  and ( )a t  is a function from L1 [23]. 
Next, we recall a theorem on the compactness of a measure subset X of L1. 
Theorem 4 X is a compact measure if and only if X is a bounded subset of L1 

comprising of function which are almost everywhere nondecreasing or nonin-
creasing on the interval [24]. 

Also, we recall some facts on the convolution operator as indicated in [25]. Let 
( )1p L R∈  and ( )1g L R∈  then the integral  

 ( ) ( ) ( )
0

dHx t p t s g s s
∞

= −∫  (5) 

exists for almost every [ )0,t∈ ∞ . ( )Hx t  belongs to the space L1 where it is the 
linear operator which maps the space of L1 to L1. The linear operator H is also 
bounded and continuous since the norm  
 ( )1L RHx H g≤  (6) 

For every ( )1x L R∈ . Thus, H  is a convolution operator which is majored 
by ( )1L RH . 
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Theorem 5 Suppose ( ) [ ) [ )2, : 0, 0,p t s p= ∞ → ∞  is measurable on [ )20,∞  
such that the integral operator  

 ( ) ( ) ( )
0

, d , 0Hx t p t s g s s t
∞

= ≥∫  (7) 

maps L1 into L1, then H transforms the set of nonincreasing functions from L1 
into L1 if and only if for 0A∀ >  and , [ )1 2, 0,t t ∈ ∞  then the assertion 1 2t t<   

( ) ( )1 2
0 0

d d
A A

p t s s p t s s⇒ − ≥ −∫ ∫  is valid. 

2.6. Measure of Non-Compactness 

One of the most widely used techniques for proving that certain operator equa-
tion has a solution is, to reformulate the problem as a fixed-point problem and 
see if the latter can be solved via a fixed-point argument. Measure of 
non-compactness is a function defined as the family of all non-empty and 
bounded subset of a metric space such that it is equal to zero on the whole family 
of relatively compact sets [26].  

2.7. Hausdorff Measure of Non-Compactness 

The Hausdorff measure of noncompactness of a nonempty and bounded subset 
Q of X denoted by ( )Qχ  according to [27] is defined as the infimum of all 
numbers 0r >  such that Q has r-net in X.  

 ( ) { }inf 0 : , is finiterQ r Q S B Sχ = > ⊂ +  (8) 

Also, [10] defined the Hausdorff measure in space L as for 0ε > , let  

 ( ) ( ) [ )
0

lim sup sup d , 0, ,
x X D

c x x t t D meas D
ε

ε
→ ∈

     = ⊂ ∞ ≤   
     

∫  (9) 

and  

 ( ) ( )lim sup d :
T

T

d x x t t x Q
∞

→∞

   = ∈  
   

∫  (10) 

where meas D  denotes the Lebesgue measure of a subset D. Also given that 
( ) ( ) ( )Q c Q d Qγ = + , then these two measures ( )Qχ  and ( )Qγ  are con-

nected by the following theorem. 
Theorem 6 Let Q be a nonempty, bounded and compact measure subset of L1, 

then  

 ( ) ( ) ( )2Q Q Qχ γ χ≤ ≤  (11) 

Since these measures of noncompactness are used alongside certain fixed-point 
theorem, the next theorem considers the fixed point which will be used in this 
paper. 

2.8. Darbo Fixed Point Theorem 

The Darbo fixed point theorem is an extension of the classical Banach contrac-
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tion mapping and the Schauder fixed point theorem. 
Theorem 7 (Darbo Fixed Point) Suppose Q is a nonempty, bounded, closed 

and convex subset of X and let :P Q Q→  be a continuous transformation 
which is a contraction with respect to the measure of noncompactness μ, i.e. 
there exist [ )0,1k∈  such that ( ) ( )PE k Eµ µ=  for any nonempty subset E of 
Q. Then P has at least one fixed point in the set Q [28]. 

2.9. Lebesgue Integration  

A measurable real-valued function φ defined on a set E is said to be simple pro-
vided it takes only a finite number of real values. Suppose φ assumes distinct 
values 1, , na a  on E, then the measurability of φ, its level set ( )1

iaϕ−  are  

measurable and the canonical representation of φ on E is given by 
1

n

i i
i

a Eϕ χ
=

=∑  

on E [29]. 
The following definitions from [29] are also recalled. 
Definition 6 A bounded function f on a domain E of finite measure is said to 

be Lebesgue integrable over E provided its upper and lower integrals is called the 
Lebesgue integral and is denoted by 

E
f∫ . 

Definition 7 (Measurable function) let ( ),X µ  be a measure space. A func-
tion [ ]: ,f X → −∞ ∞  is said to be measurable if the set  

( ]( ) ( ){ },f a x X f x a∞ = ∈ >  is measurable for each a∈ .  
Suppose that X is a measure space, then the Lebesgue integral d

X
f µ∫  can be 

defined for any non-negative measurable function [ ]: 0,f X → ∞ . Although, 
this will depend more on the function, the integral can be infinite but will always 
be well-defined as [ )0,∞ . 

3. Main Results 

According to [30], in order to establish the existence of a solution of an integral 
equation in the form of Equation (1), if the integral equation has a convolution 
kernel, then the right-hand side of Equation (1) can be defined under more gen-
eral hypotheses. Therefore, the following assumptions are made for establishing 
the proof of existence of solution of the convolution Volterra integral equation 
in Equation (1): 

1) Let ( )f t L∈  be such that f is continuous and bounded on + .  
2) ( ): Lα +→ ∈    
3) :g + × →    satisfies the Carathéodory condition. 
4) :ϕ + →   is increasing and absolutely continuous such that there exist 

u such that ( )t uϕ′ ≥ .  
5) b C u<  
Theorem 8 There exists at least one solution for Equation (1) that is x L∈  

which is almost everywhere nondecreasing on +  if and only if the assump-
tions (1) - (5) are satisfied. 

Proof Let the right-hand side of Equation (1) be represented by operator P, 
therefore,  
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 ( ) ( ) ( ) ( )( )( )
0

,
t

Px t f t t s g s x sα ϕ= + −∫  (12) 

which implies that: 

 ( ) ( )x t Px t=  (13) 

Let the nonlinear Volterra integral operator as a result of Equation (1) be pre-
sented by Equation (14): 

 ( ) ( ) ( )( )
0

, d
t

Tx t t s g s x s sα= −∫  (14) 

According to [21] the nonlinear Volterra integral operator can be expressed in 
terms of the convolution operator as a result of Equation (1) which is given by: 

 ( ) ( ) ( )
0

d
t

Cx t t s g s sα= −∫  (15) 

and F, the superposition operator due to Equation (1) is also given by  

 ( ) ( )( ),Fx t g t x t=  (16) 

Therefore, Equation (1) can be written in the form:  

 Px f Tx f CFx= + = +  (17) 

Next, in order to show that the operator Px will transform any ball of radius r, 
(Br) into itself, it is established that for x L∈ , the function Px belongs to L 
when assumptions (1) - (5) are satisfied and will also imply that if there exist a 
ball Br, Px transforms the ball into itself. Therefore, 

 ( ) ( ) ( ) ( )( )( )0 0
0

d , d d
t

Px t t f t t s g s x s s tα ϕ
∞ ∞

= + −∫ ∫ ∫  (18) 

 ( ) ( ) ( )( )( )
0 0 0

d , d d
t

f t t t s g s x s s tα ϕ
∞ ∞

≤ + −∫ ∫ ∫  (19) 

 Px f CFx≤ +  (20) 

In order to apply the superposition theorem, Equation (20) is expanded to 
separate the norms of the convolution and the superposition operators. 

 Px f C Fx≤ +  (21) 

Applying the superposition theorem on the superposition operator in Equa-
tion (21) results in:  

 ( ) ( )( )
0

dPx f C a t b x t tϕ
∞

 ≤ + + ∫  (22) 

 ( )( )
0

dPx f C a b C x t tϕ
∞

≤ + + ∫  (23) 

from assumption (4), Equation (23) is rewritten as: 

 ( )( ) ( )
0

d
b C

Px f C a x t t t
u

ϕ ϕ
∞

′≤ + + ∫  (24) 
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The theorem for Lebesgue integration by substitution (Theorem 2) is applied 
in order to convert the function of several variables under the integral sign in 
Equation (24) to a function of single variable as indicated in Equation (25) 

 ( )
0

d
b C

Px f C a x t t
u

∞

≤ + + ∫  (25) 

Expressing ( )
0

dx t t
∞

∫  in terms of the norm on the space of Lebesgue integra-

ble functions, results in Equation (26) 

 
C b

Px f C a x
u

≤ + +  (26) 

Since the operator Px maps the space of Lebesgue integrable functions into it-
self by the superposition operator, then for any x L∈ , if x r≤ , then the op-
erator P assumes the radius of x that is Px r≤ . This is due to the fact that P is 
an operator and cannot have a norm so it assumes the norm defined on the 
space of Lebesgue integrable functions.  

Therefore, the exact value of the radius, r of the ball Br is deduced from Equa-
tion (26) by assuming that x r≤  and also Px r≤ . 

Hence from Equation (26): 

 
br f C a C r
u

≤ + +  (27) 

 
br C r f C a
u

− ≤ +  (28) 

 1 br C f C a
u

 − ≤ + 
 

 (29) 

Hence 

 
1

f C a
r b C

u

+
=

−
 (30) 

Therefore, let the radius r of a ball be defined by:  

 , where 1
1

f C a C b
r

C b u
u

+
= ≠

−
 (31) 

Then, given that rx B∈  then it can be concluded that rPx B∈ . This means 
that P maps the ball Br into itself since substituting the value of the radius r in 
Equation (31) in place of x in Equation (26) results in the inequality, 

 
1

b C f C a
Px f C a

C bu
u

 
 +
 ≤ + +
 − 
 

 (32) 

 

2

1

b C f b C a
u uPx f C a

C b
u

+
≤ + +

−
 (33) 
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( )

2

1

1

C b b C f b C a
f C a

u u u
Px

C b
u

 
+ − + + 

 ≤
−

 (34) 

 

2
2

1

C b b C f b C abf f C a C a
u u u uPx

C b
u

− + − + +
≤

−
 (35) 

Therefore,  

 
b C

Px f C a r r
u

≤ + + =  (36) 

Next, in order to apply the Hausdorff measure of non-compactness and the 
Darbo fixed point theorem, Lemma 1 is established since the Darbo fixed point 
theorem is applied on sets which are closed, bounded, convex and a compact 
measure. 

Lemma 1 Let rM B∈  consisting of all functions which are almost every-
where positive and nondecreasing on [ )0,∞  then M is closed, bounded, convex 
subset of ( )L R+  and a compact measure.  

Proof Suppose for x M∈  there exist 0r ≥  then x is bounded for all func-
tions of M with respect to time if and only if x r≤ . 

Then, for M to be closed, there exist a sequence nx M∈  such that nx x−
0→  and the sequence nx  converges to a point in x M∈  as n →∞ .  

Furthermore, to show also that M contains functions which are nondecreas-

ing, let 0ε >  such that ( ) ( )1 1 2knx t x t ε
− ≤  and ( ) ( )2 2 2knx t x t ε

− ≤  for  

( ) ( )2 1x t x t ε− ≤ . 

Thus, for every kn ∈  

( ) ( ) ( ) ( )( )1 2 2 1x t x t x t x t− = − −  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 2 2 2 1 1 1k k k kn n n nx t x t x t x t x t x t x t x t− = − − + − + −      (37) 

        ( ) ( ) ( ) ( ) ( ) ( )( )2 2 2 1 1 11
k k k kn n n nx t x t x t x t x t x t= − − + − + −  

( ) ( ) ( ) ( )2 2 1 1k kn nx t x t x t x t≤ − + −                      (38) 

 ( ) ( )1 2 2 2
x t x t ε ε

− ≤ +  (39) 

Since 
knx x→  almost everywhere on [ )0,∞  and also 0ε >  then  

 ( ) ( )1 2x t x t ε− <  (40) 

Therefore, ( ) ( )1 2x t x t≤ . This implies that x is nondecreasing on [ )0,∞  and 
as such M is closed. Next, for M to be convex, Let 1 2,x x M∈  for 0r >  then 

ix r≤  for all 1,2i =  
Let ( ) ( ) ( ) ( )1 21z t x t x tλ λ= + −  for all [ )0,t∈ ∞  and 0 1λ≤ ≤  hence 

 ( ) ( )1 1z x x r rλ λ λ λ≤ + − ≤ + −  (41) 
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 z r≤  (42) 

Thus, the convexity of M is established. 
Again, the subset M is a compact measure as a result of Theorem 4, since it is 

bounded and contains functions which are nondecreasing almost everywhere on 
[ )0,∞ . Therefore, x M∈  implies that ( )x t  is nondecreasing and positive 
almost everywhere on [ )0,∞ . Hence Px is also nondecreasing and positive on 
[ )0,∞ . Also, since : r rP B B→  and P is nondecreasing and positive on [ )0,∞ , 
it can be concluded also that :P M M→ . 

In order to apply the Hausdorff measure of noncompactness, let E M⊆ , 
which is nonempty and 0ε > . Then for x E∈  and for a set [ )0,d ⊂ ∞  if 
meas d ε≤  then from Equation (17) 

 ( ) ( )d d d
d d d

Px t t f t t CFx t≤ +∫ ∫ ∫  (43) 

 ( ) ( ) ( )d d l d
d d

Px t t f t t CFx≤ +∫ ∫  (44) 

Applying the superposition operator on Equation (44), Equation (45) is ob-
tained. 

 ( ) ( ) ( ) ( )( )( )d d dd
d d d

Px t t f t t C a s b x s sϕ≤ + +∫ ∫ ∫  (45) 

To convert the function of several variables to a function of single variable 
under the integral sign in Equation (45), assumption (4) is applied on Equation 
(45) which generates into Equation (46) as follows:  

 ( ) ( ) ( ) ( )( ) ( )d d d dd d
d d d d

bPx t t f t t C a s s C x s s s
u

ϕ ϕ′≤ + +∫ ∫ ∫ ∫  (46) 

 ( ) ( ) ( ) ( )
( )

d d d dd d
d d d d

bPx t t f t t C a s s C x t t
u ϕ

≤ + +∫ ∫ ∫ ∫  (47) 

Applying the Hausdorff measure of noncompactness in Equation (9) to Equa-
tion (47) 

 ( ) ( ) [ )
0

lim sup sup d d : 0, , 0d
x E d d

f t t C a s s d meas d
ε

ε
→ ∈

   + ⊂ ∞ ≤ =  
   

∫ ∫  (48) 

Therefore, the measure for the last inequality becomes: 

 ( ) ( )d

bc PE C c E
u

≤  (49) 

Furthermore, fixing 0S >  so that the lower limit of the integral equation 
could be any value apart from zero, Equation (47) becomes: 

 ( ) ( ) ( ) ( )d d d dd d
S S S S

bPx t t f t t C a s s C x t t
u

∞ ∞ ∞ ∞

≤ + +∫ ∫ ∫ ∫  (50) 

Applying the measure of noncompactness in Equation (10) to Equation (50) 
result in Equation (51): 

 ( ) ( ) ( ) ( )lim sup d d d d ,d dS
S S S S

bPx t t f t t C a s s C x t t x E
u

∞ ∞ ∞ ∞

→∞

 
≤ + + ∈ 

 
∫ ∫ ∫ ∫  (51) 
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Therefore, 

 ( ) ( )db C
d PE d E

u
≤  (52) 

Combining Equations (49) and (52), the measure of noncompactness is given 
by  

 ( ) ( )bPE c E
u

β β≤  (53) 

By assumption (4), applying the Darbo fixed point theorem in Theorem 7 im-
plies that, there exist at least one fixed point for the operator P in M. This also 
implies that, there exist a solution for the integral Equation (1) since the condi-
tion for the Darbo fixed point theorem is satisfied. 

4. Conclusion 

The study proved the existence of solution of the convolution Volterra integral 
equation in Equation (1). For a set rM B∈  which is a compact measure, 
bounded and convex, the condition for the Darbo fixed point theorem is satis-
fied. This indicates the presence of a fixed point for the convolution Volterra 
integral equation after the Hausdorff measure of noncompactness was applied to 
obtain the measure of the set x E M∈ ⊂ . The presence of the fixed point is an 
indication that there exists at least one solution to the convolution Volterra 
integral equation.  
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