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Abstract 
The exponential Randić index has important applications in the fields of bi-
ology and chemistry. The exponential Randić index of a graph G is defined as 

the sum of the weights ( ) ( )
1

d u d ve  of all edges uv of G, where ( )d u  denotes 
the degree of a vertex u in G. The paper mainly provides the upper and lower 
bounds of the exponential Randić index in quasi-tree graphs, and characte-
rizes the extremal graphs when the bounds are achieved.  
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1. Introduction 

Since the famous chemist Milan Randić proposed a structural descriptor called 
Randić index in 1975. The Randić index provides important references and 
guidance for the design and synthesis of new compounds, aiding chemists in 
better understanding the structure and properties of molecules, and thus facili-
tating the design and synthesis of molecular materials with specific properties 
and functions. Bollobás and Erdös [1] introduced the concept of the generalized 
Randić index and promoted the use of the indicator. For a simple connected 
graph ( ),G V E= , V and E represent the set of vertices and edges of graph G, 
respectively. And ( )d u  refers to the degree of a vertex u in G. The Randić in-
dex of the graph G is defined as 

( )
( ) ( )( )

1
uv E G

G
d u d v

χ
∈

= ∑ . 
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There are a lot of researcher on the mathematical properties of the Randić in-
dex and general Randić index of a graph. Hu and Li [2] [3] studied the maxi-
mum and minimum values of the generalized Randić index in all trees contain-
ing n vertices. Wu and Zhang [4] provided the minimum value of the genera-
lized Randić index at Cn in single-cycle graphs with n vertices when 0α > . 
When 1 0α− ≤ < , the minimum value is obtained at nS + . Pavlović [5] classified 
and discussed the maximum value of the zeroth-order Randić index in graphs 
without cycles, multiple edges, containing n vertices and m edges. Li and Zhao 
[6] provided the maximum, second maximum, third maximum, and minimum, 
second minimum, third minimum zeroth-order generalized Randić indices in 
trees, and characterized the corresponding extremal graphs. Zhang [7] provided 
the maximum, second maximum, third maximum, and minimum, second 
minimum, third minimum zeroth-order generalized Randić indices in sin-
gle-cycle graphs, and characterized the corresponding extremal graphs. Jahan-
bani and Murat [8] studied the minimum value attained by this index in n-th 
order trees at the path. 

The paper only considers simple connected graphs. Let G x−  represent the 
graph obtained by removing vertex x and its associated edges from graph G. If 
there exists a vertex ( )x V G∈  such that the graph G x−  is a tree, then G is 
called a quasi-tree graph. This paper primarily focuses on the exponential 
Randić index of quasi-tree graphs, aiming to determine the maximum and 
minimum values of the exponential Randić index for quasi-tree graphs and pro-
vide corresponding extremal graphs. In practical applications, the exponential 
Randić index and the Wiener index can be analyzed from different perspectives 
to study the structure of graphs. The exponential Randić index can also play a 
role in the study of spectral properties, graph complexity, symmetry, centrality, 
reliability, and robustness of graphs. Deriving bounds of the exponential Randić 
index for quasi-tree graphs can aid in our understanding of chemical bonding, 
reaction mechanisms, and intermolecular interactions. The definition of expo-
nential Randić index is as follows: 

( ) ( ) ( )

( )

1
d u d v

uv E G
e G eχ

∈

= ∑ . 

Lu and Guo [9] provided the upper and lower bounds of the Randić index for 
quasi-tree graphs: 

( ) ( )
( )4 2 1

2 1
2

21 63 1
n nR G
n nn
−

+ + + ≤ ≤
− −−

. 

They also provided the extremal graph as shown in Figure 1. 
The equality holds if and only if ( )0G Q T n≅  and ( )1G Q T n≅ . 
Sun and Gao [10] studied the zeroth-order generalized Randić index of qua-

si-tree graphs and determined the extreme values of the zeroth-order general 
Randić index of quasi-trees with perfect matchings and p pendant vertices, and 
characterized the corresponding extremal graphs. 
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Figure 1. ( )0Q T n  and ( )1Q T n . 

 
Based on the proofs in the paper, we can derive the following conclusion: 
Conclusion 1. Let G be a quasi-tree graph with n vertices and 3n ≥ . Then, 

there exists:  

( ) ( ) ( ) ( ) ( )
1 1 1 1

3 12 1 6 32 1 2 4nne G e n e e n eχ −−≤ + + + + − . 

The equality holds if and only if 0
nG U=  (Figure 2). 

Conclusion 2. Let G be a quasi-tree graph with n vertices and 3n ≥ . Then, 
there exists: 

( ) ( ) ( )
11 1

1 2 213 2 nne G n e e eχ −−≥ − + + . 

The equality holds if and only if 1
nG U≅  (see Figure 3). 

2. Preliminaries 

In this section, we will delve into certain graph transformations that enhance the 
exponential Randić index. Additionally, we will present several lemmas. These 
transformations and lemmas will serve as valuable tools in substantiating our 
primary findings. 

Lemma 2.1. For integer 0q ≥ , when 2x ≥ , the function  

( ) ( )
1 1

1q x qxf x e e+= −  is monotonically increasing. 

Proof. For 2x ≥ , it can be obtained that: 

( )

( )

( ) ( )

( )( )

( ) ( )

( )

( )

11
1

3 3
2 2

11
1

3 3 3
2 2 2

11
1

3
2

d 1
d 2 12

11

2 1

1 0
12

q xqx

q xqx

q xqx

f x q eqe
x q xxq

q eqe

x q q

e e
q qx

+

+

+

+
= −

+

 
 +

= − 
 + 
 
 
 

= − > 
+  

 

 

First, we introduce some special graph transformations. 
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Figure 2. 0
nU . 

 

 

Figure 3. 1
nU . 

 
Graph transformation 1: In graph G1, select a subgraph H1 and add a new ver-

tex v1 and v2 to a vertex u in it, such that v1 and v2 are adjacent to u, and their 
degrees are 2, 3, or 4, respectively. Then, attach two paths to G1 to obtain a new 
graph 1 1 1 1aK G uw u w= − + . The resulting new graph K1 is called the graph ob-
tained from G1 through graph transformation 1 (as shown in Figure 4). 

Lemma 2.2. If K1 is obtained from G1 through graph transformation 1, then 
( ) ( )1 1e G e Kχ χ< . 

Proof. Through graph transformation 1, let ( )1 1d v d= , ( )2 2d v d= , we can 
obtain: 

( ) ( ) ( )

( )

1 2

1 2

1 1 2 2

1 1 1 11
3 3 6 22

1 1

1 1 1 11
4 4 8 22

1 1 1 1 1 1 11
3 4 3 4 6 8 22

2

2 4

0.062

2

5
2

0
2

d d

d d

d d d d

e K e G e e e a b e e

e e e a b e e

e e e e e e e e

χ χ− = + + + + − +

− − − − + − −

= − + − −
>

− +
>

+

 

When 2x ≥ , the function ( ) ( )
1 1

1q x qxf x e e+= −  is monotonically increasing. 

Therefore: 

( ) ( )1 1 0.0265e K e Gχ χ− > , 

The lemma holds. 
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Figure 4. Graph transformation 1. 
 

Graph transformation 2: Given a path 1 2 1t tP v v v v−= 
 connected to the ver-

tex v1, then in the graph G2, select two adjacent vertices u and w different from 
v2, such that ( ) 2d u =  or ( ) 3d u = , ( ) 2d w =  or ( ) 3d w = , and ( )d u ≠

( )d w . Finally, by removing some edges from graph G2 and adding some new 
edges, a new graph K2 is formed. We refer to this process as graph transforma-
tion 2 (Figure 5). 

Lemma 2.3. If K2 is obtained from G2 through graph transformation 2, then 
( ) ( )2 2e G e Kχ χ< . 

Proof. Through graph transformation 2, let ( ) 1d u d= , ( ) 2d w d= , and ( )d u

( )d w≠ , we can obtain: 

( ) ( )

( ) ( )1 2 1 2

1 1 2 2

2 2

1 1 1 1 1 11 1
2 2 3 3 6 22 2

1 1 1 1 1 11
2 3 2 3 6 22

1 3

2
0.0183 0

d d d d

d d d d

e K e G

e e t e e e e e t e

e e e e e e e

χ χ−

= + + − − − − − − −

= − + − + − −
> >

 

The lemma holds. 
Graph transformation 3: For a given graph G3 and three paths P1, P2, and P3, if 

the endpoints connected by path P1 are u and a, the endpoints connected by path 
P2 are v and b, and the endpoints connected by path P3 are w and c, and it satis-
fies ( ) 1d u d=  (where d1 equals 2 or 3) and ( ) 2d v d=  (where d2 equals 2 or 
3), then by connecting and disconnecting edges in a certain manner, a new 
graph K3 can be obtained from the graph. This operation can be referred to as 
graph transformation 3 (as shown in Figure 6). 

https://doi.org/10.4236/jamp.2024.125112


L. Qiu et al. 
 

 

DOI: 10.4236/jamp.2024.125112 1809 Journal of Applied Mathematics and Physics 
 

 

Figure 5. Graph transformation 2. 
 

 

Figure 6. Graph transformation 3. 
 

Lemma 2.4. If K3 is obtained from G3 through graph transformation 3, then 
( ) ( )3 3e G e Kχ χ< . 

Proof. Let ( ) 1d p d= , ( ) 2d q d= , we can obtain: 

( ) ( ) ( )

( )

1 2 1

2

1 1 2 2

1 1 11
2 2 32

3 3

1 1 11 1
3 6 23 2

1 1 1 1 1 111
2 3 2 3 6 232

2

2 3 3 6

8 2 3 3
0.0188 0

d d d

d

d d d d

e K e G e a b c e e e

e e e e a b c e

e e e e e e e e

χ χ− = + + + + + −

− − − − − + + −

= − + − + − − −
> >
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The lemma holds. 
To further study the exponential Randić index in quasi-tree graphs, here we 

first present quasi-tree graphs for 4n =  and 5n = , and then calculate the ex-
ponential Randić index for each quasi-tree graph, observing the patterns. 

When 4n = , quasi-tree graphs with cycles are shown in Figure 7. 
When 4n = , the maximum value of the exponential Randić index for qua-

si-tree graphs is 
1 1
6 34 7.4123e e+ = , and the corresponding extremal graph is 

shown in Figure 7(3). When 4n = , the minimum value of the exponential 
Randić index for quasi-tree graphs with cycles is 

1 1 1
6 3 22 6.4384e e e+ + = , and 

the corresponding extremal graph is shown in Figure 7(1), and the exponential 
Randić index for Figure 7(2) is 

1
24 6.5949e = . 

When 5n = , quasi-tree graphs with cycles are shown in Figure 8. 
The exponential Randić index for (1) is 

1 11
6 223 8.1893e e e+ + = ; the expo-

nential Randić index for (2) is 
1 11
6 322 2 8.0871e e e+ + = ; the exponential Randić 

index for (3) is 
1
25 8.2436e = ; the exponential Randić index for (4) is 

1 1
6 32 3e e+

1
3 8.976e+ = ; the exponential Randić index for (5) is 

1 1 1
6 3 24 9.0611e e e+ + = ; 

the exponential Randić index for (6) is 
1 11 1
8 612 32 2 2 9.9215e e e e+ + + = ; the 

exponential Randić index for (7) is 
1 1 1
6 3 22 2 8.0871e e e+ + = ; the exponential 

Randić index for (8) is 
1 1
8 22 3 7.7944e e+ = ; the exponential Randić index for 

(9) is 
1 11 1
6 812 22 2 8.8400e e e e+ + + = ; the exponential Randić index for (10) is 

1
66 9.0251e = ; the exponential Randić index for (11) is 

1 1
8 46 9.8287e e+ = . 

 

 

Figure 7. Quasi-tree graphs with cycles for 4n = . 
 

 

Figure 8. Quasi-tree graphs with cycles for 5n = . 
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When 5n = , the maximum value of the exponential Randić index for qua-
si-tree graphs is 

1 11 1
8 612 32 2 2 9.9215e e e e+ + + = , and the corresponding ex-

tremal graph is shown in Figure 8(6). When 5n = , the minimum value of the 
exponential Randić index for quasi-tree graphs is 

1 1
8 22 3 7.7944e e+ = , and the 

corresponding extremal graph is shown in Figure 8(8). It is not difficult to see 
that when 5n = , quasi-tree graphs with cycles can be clearly divided into three 
categories based on the number of edges, among which: 

Number of edges is 5: (1) (2) (3) (7) (8), 
Number of edges is 6: (4) (5) (9) (10), 
Number of edges is 7: (6) (11). 
Lemma 2.5. Monotonic properties of three functions: 

1) The function ( )
1

1
xg x e=  is monotonically decreasing for 2x ≥ . 

2) The function ( )
11

12
2

xg x e e −= −  is monotonically increasing for 2x ≥ . 

3) The function ( )
11

2
3

11
2

xg x x e− = − 
 

 is monotonically decreasing for 

2x ≥ . 
Proof.  
1) By definition of ( ) tg t e= , ( ) ( ) 1

t x x
−

=  it can be derived that is mono-
tonically decreasing for 2x ≥ . 

2) Based on the conclusion of (1) and the expression of the function ( )2g x , it 
can be concluded that ( )2g x  is monotonically increasing for 2x ≥ . 

3) For 2x ≥ , through a series of transformations, it can be proved that 
( )3g x  is monotonically decreasing for 2x ≥ . 

( ) 1 13 3 1
3 2 2 2

1 13 1 3
2 2 2

1 3 1
2 2

1 3
2

d 1 1 11
d 4 2 2

1 1 1
4 2 4

1 1 1
4 2 4

1 1 1
4
0

x x

x x

x

x

g x
x e x x e

x

x e x x e

e x x

e x
x

− − −

− − −

− −

−

 
= − −  

 

 
= − −  

 

 
= − +  

 

 
= − 

 
<

 

Therefore, (3) holds true. 

Lemma 2.6. When 2x ≥ , the function ( )
1 1

21 2
2 4

x xf x e e= −  is monoton-

ically decreasing. 
Proof. When 2x ≥ , it can be derived that: 

( ) ( )
1 13 3

22 2

1 13 3
22 2

d 1 2 2
d 4 4

1 1
8 4
0

x x

x x

f x
e x x e

x

x e x e

− −

− −

= − +

= −

<
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Hence, the function ( )f x  is monotonically decreasing. 
Lemma 2.7. Let x and y be positive integers, 1x ≥ , 2y ≥ , then: 

( ) ( ) ( )
11 1 1 1

2 11 2, 1 yy y y yl x y e x e e y x e e −−   
= + − + − − −  

   
 

is monotonically decreasing with respect to x. 
Proof. For 1x ≥  and 2y ≥ , it can be derived that 

( ) ( )
11 1 1

2 11 2, yy y yl x y
e e e e

x
−−  ∂  

= − − −  ∂    
 

By Lemma 2.1, ( ),l x y
x

∂
∂

, ( ),l x y  is monotonically decreasing with respect 

to x. 
Lemma 2.8. For 2x ≥  the function 

( ) ( ) ( )
11 1 1 1

2 11 22 xx x x xf x e x e e e e −−
  

= + −     
−

 
− +

 
 

is monotonically decreasing with respect to x. 
Proof. For 2x ≥ , by applying Lemma 2.3.1 (3) and Lemma 2.2.1, it can be 

derived that 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 1 1 13 3
12 2

11 1 3 33
2 11 2 2 22

1 1 1 1 1 33 3
1 1 22 2

1 3
2 2

d 1 12
d 2 2

1 1 2 2 1
2

1 1 12 1
2 2 2

2 2
4 4

x x x x

xx x

x x x x x

x

f x
e x e e x e x

x

e x e x e x

e x e e x e x e x

e x

− −
−

− −− −−

−− −
− −

−

     
= − + − + − −               

 − − − − + −     
 

= − + − + − −
 
   + − 

  

− +

 

( ) ( )

( ) ( )

1 3
2 1 2

11 1 1 133
2 12 1 22

1

1 2 2 1
2 4 4

x

xx x x x

e x

e e x e e x e

−−

−− − −

−

  
 = − + − − +       

 

( )

( ) ( ) ( )

( )

( ) ( ) ( )

1 1 1 31
1 1 22

11 1 13 3
2 12 12 2

1 1 1 1 31
1 1 22

11 1 1 13 3
2 12 12 2

1 1 1
1 2

1 1 1
2 2

1 2 21 1
2 4 4

1 1 1
2 2

2 21 1
4 4

1 1
2 2

x x x

xx x x

x x x x

xx x x x

x x

e e x e x x

e e x e e x

e e e x e x x

e e x e e x e

e e x e

−−
− −

− −− −

−−
− −

− −− −

−
−

− − + −

 
≤ − − + − −  
 

+ − − + −

= − − + − − +

− −

 
 
 
 

  
     


+

  

( ) ( )
1 13 3

1 2 211 1
2

x xx x e x
− −

− − − −  
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( ) ( )

( ) ( ) ( )

( ) ( )

( )

11 1 1 1 13
2 12 1 12

1 1 1 13 3 3
1 12 2 2

1 1
2

1 1 1 1 13 31
1 12 22

1 1 3
1 2

1 2 2 1 1
2 4 4 2

1 1 1 11 1 1
2 2 2

2
1 1 11 1
2 2 2

1

0

1
2

xx x x x x

x x x x

x

x x x x x

x x

e e e e x e e

e x e x x e e x
e x

e e e x e x e x x

e e x

−− − −

− − −
− −

−

− −−
− −

−
−

 
 = − + − − +

 
  
 



−


  


 
 

− − − + − + − −

≤ − − − − +

+ −


−

<

−  

Hence, ( )f x  is monotonically decreasing. 
Lemma 2.9. Let n be a positive integer and 6n ≥ , it can be obtained 

( ) ( ) ( ) ( ) ( )
1 1 1 1 1 1 1

2 2 2 3 2 1 1 2 3 23 2 3 4n n n n n n ne e e n e e n e e− − − − − − −
 

− − > − − + −
 
  


− 
 




 

Proof. Let  

( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 1 1 1

2 2 2 3 2 1 1 2 3 23 3 4n n n n n n nf n e e e n e e n e e− − − − − − −
 

= − − − − − − − −  


 
 

 



. 

We use MATLAB to calculate and plot the function graph to determine the va-
lidity of the inequality. 

Define the horizontal axis variable as a one-dimensional array x, with the first 
element being 3, an increment of 0.01, and the final element being 15 (as shown 
in Figure 9). 
 

 

Figure 9. The graph of the function. 
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From the figure, it can be seen that the graph of ( )f n  always lies above the 
coordinate axis. Calculated by MATLAB, the point of intersection of ( )f n  and 
the horizontal axis is (0,  
−27852563104487148.539894396758705−23751291381668762.757332046522084 
* i). Therefore, when 6n ≥ , ( ) 0f n ≥  always holds true.  

3. Main Results 

In this section, we will give the upper and lower bounds on the exponential 
Randić indices of quasi-tree graph. 

3.1. The Upper Bounds and Extreme Graph 

Theorem 3.1. If T is a tree graph with n vertices, then T is not the maximum 
value of eχ  in Tn. 

Proof. Pn can be continuously transformed from T through graph transfor-
mation 1, graph transformation 2, and graph transformation 3, and by Lemma 
2.2, Lemma 2.3, and Lemma 2.4. Therefore, ( ) ( )nG T G P< .  

The theorem is proven. 
Theorem 3.2. Let G be a quasi-tree graph with n vertices, then: 

( ) ( ) ( ) ( ) ( )
1 1 1 1

2 1 3 1 6 32 1 2 4n ne G e n e e n eχ − −≤ + + + + − . 

Proof. When the number of edges is equal to 1n − , G is a tree graph. By 
Theorem 3.1, it is known that in an n-order tree graph, eχ  attains its maxi-
mum value on the path Pn. At this point: 

( ) ( )
11
223 2e G n e eχ ≤ − + . 

When G is a cycle graph, increasing the pendant edges will decrease the value 
of the exponential Randić index. By repeatedly applying Lemma 2.2, Lemma 2.3, 
and Lemma 2.4 to the sun graph until the sun graph becomes the cycle Cn, it is 
proven that eχ  attains an extremal graph at Cn, with the corresponding maxi-
mum value being ( )

1
2e G neχ ≤ . 

The sum of the above two maximum values is 
11
223 2 0e e− > , which implies 

that the exponential Randić index for a cycle graph is greater than the exponen-
tial Randić index for a tree graph.  

It is not difficult to observe that as the number of edges increases, the maxi-
mum value of the exponential Randić index for quasi-tree graphs also increases. 
Furthermore, by Lemma 2.2, Lemma 2.3, Lemma 2.4, and Theorem 3.1, it can be 
concluded that when the number of edges is fixed, the quasi-tree graph achieves 
the maximum value of the exponential Randić index when nG x P− ≅ . 

Therefore, when the number of edges is 2 3n − , the maximum value of the 
exponential Randić index is:  

( ) ( ) ( ) ( ) ( )
1 1 1 1

2 1 3 1 6 32 1 2 4n ne G e n e e n eχ − −≤ + + + + − . 

The maximum value is attained if and only if G x−  belongs to nP , and the 
equality holds if and only if 0

nG U=  (Figure 2).  
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3.2. The Lower Bounds and Extreme Graph 

Theorem 3.2. Let G be a quasi-tree graph with n vertices and 3n ≥ . Then, 
there exists: 

( ) ( ) ( )
11 1

2 11 23 2 nne G n e e eχ −−≥ − + +  

The equality holds if and only if 1
nG U≅  (see Figure 3). 

Proof. From the above conclusion, we can obtain that the exponential Randić 
index of a quasi-tree graph attains its maximum value at 0

nU . Moreover, as the 
number of edges in G decreases, the exponential Randić index may also de-
crease. Here, we do not consider the exponential Randić index of a tree graph. 
Therefore, we only need to consider the case where the number of edges is n, i.e., 
when the quasi-tree graph is a cycle graph. 

In the following proof, we assume that the graph G is a quasi-tree graph and 
we prove that ( ) ( )f n e Gχ≤  holds if and only if 1

nG U≅ . 
We proceed with mathematical induction on n. Since 1

nG U∈ , it follows that 
4n ≥ . When 4,5n = , the theorem holds (see Figure 10). In the following 

proof, we assume 1
nG U∈ , where 6n ≥ . Let M be the set of vertices in ( )V G  

with degree 1 (i.e., ( ) ( ){ }| 1M u V G d u= ∈ = ). Due to the previous conclusion, 
G is not a cycle graph, so M is not empty. Let u M∈  and let v be its neighbor, 
then ( ) 2d v ≥ . Let ( ) ( ) { } ( ){ }| \ , 1W u y y N v u d y= ∈ = . Choose a vertex 0u  
such that 

1) The set ( )0W u  is as large as possible; 
2) Under condition (1), ( )d v  is as small as possible. 
Let 0G G u′ = − , then 1nG −′∈ , ( )d v d=  and ( ) { }1 2 3 1, , , ,G dN v y y y y′ −=  . 

The eχ  value of all edges adjacent to v in G, except 0u v , is denoted as S, and 
we can then obtain that, 

1
1

1

yi
d dd

i
S e

−

=

= ∑ . 

 

 

Figure 10. The values of eχ  when 4,5n = . 
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The eχ  value of all edges adjacent to v in G' is denoted as S', then we can ob-
tain 

( )
1

1 1

1

yi
d d d

i
S e

−
−

=

= ∑ . 

By the inductive hypothesis, we can obtain, 

( ) ( )

( )

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( )

1

1

11 11
2 11 22

1 11
2 2 2

1 11 1
2 2 2 12 1

1

1

3 2 4

2

4 2 3 2

d

d

nn n

n d

n nn n

d

e G e G e S S

f n e S S

f n n e e e n e

e e e S S

f n n e e n e e

e S S

χ χ

−− −

−

− −− −

′ ′= + + −

′≥ − + + −

= − − − − + −

′+ + + + −

= + − + − − −

′+ + −

 

For 1,2,3, , 1i d= − , ( ) 2id y ≥ . If ( ) 2d v = , 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1

1 11 1
2 2 2 12 1

1 11
22

1 11 1
2 2 2 12 1

1 111
222

4 2 3 2

3 3 2 2

yi

y

yi

y

n nn n

d d

n nn n

d dn

e G f n n e e n e e

e e e

f n n e n e e e

e e e e

χ − −− −

− −− −

−

≥ + − + − − −

+ + −

+ − − − + −

+ − + −

  
 =  
     

 
 
 
 

 

By Lemma 2.5(2) and Lemma 2.1, we can get 

1 1

1 111 1 1 11
222 2 4 22 0y yd dne e e e e e e e−− + − ≥ − + − = , 

the inequality ( ) ( )e G f nχ >  holds. 
If ( ) 3d v =  and 9n ≥ , by Lemma 2.1, then 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( ) ( )

1 1 2 2

1 1 2 2

1 11 1
2 2 2 32 1

1 1 1 11 1
3 2 3 22 3

11 1
2 22 1

1 1 1 11 1 1
3 2 3 22 1 3 2

1 1
2 1

3 3 2 2

3 3 2

2

3 3

y y y y

y y y y

n nn n

d d d dn

nn n

d d d dn n

n n

e G f n n e n e e e

e e e e e e

f n n e n e e

e e e e e e e

f n n e n e

χ − −− −

−

−− −

− −

− −

  
  ≥ + − − − + −

− + + − + −

 
+ − − − + 
  

− + − + − + −


+ −

     

=

− −≥


( ) ( )

( )

1 1
2 2 2 12 2 0.0329n ne e

f n

− −
+ − +
 
 
  

>

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If ( ) 3d v =  and 6,7,8n = , there is 

( ) ( ) ( ) ( )

21 1 2

1 11 1 1
2 2 2 12 1 3

1 1 111
3 2 232

3 3 2 2

0y y y

n nn n

d d ddddn

n e n e e e e

e e e e e

− −− −

−

  
− − − + − + 

 
 
 
  

− + − + − >

 

The theorem has been proven to hold when the vertex degree is 2 or 3. 
For the case of vertex degree greater than or equal to 4, we can deduce that 

there exists at least one vertex for which the graph G, when the vertex is re-
moved, forms a subgraph H that is a tree with at least 2 vertices. This is because 
for all vertices u in M, there exists a vertex u' in H that is adjacent to v', such that 
the degree of v' is 2 and ( )W u  is not empty, which contradicts the premise. 
Therefore, the vertex degree ( )d v  is not greater than 3. 

For ( ) ( ) ( )1 2 1kd y d y d y= = = = , ( )1k ≥  and ( ) 2id y ≥ . By Lemma 2.1, 
we can obtain, 

( )

( )

( ) ( )

111 11 1 11

1 1
111 1 1 1 11

1 1

11 1 1
2 11 2

e e e e

e e

1

y yi i

y yi i

d ddd d dd d

i k i k

d ddd d dd d

i k i k

dd d d

S S k k

k e e

k e e d k e e

− − −−

= + = +

− − −−

= + = +

−−

′− = + − +

 
= − + −  

 
 
 ≥

 
  


− + − − −
 
 

∑ ∑

∑ ∑  

Since nG U∈ , 2k d≤ − , and ( ) 2d v d n= ≤ − . By Lemma 2.7, Lemma 2.8, 
we can obtain, 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

1 11 1 1
2 2 2 12 1

11 1 1
2 11 2

1 11 1 1
2 2 2 12 1

11 1 1
2 11 2

4 2 3 2

1

4 2 3 2

2

n nn n d

dd d d

n nn n d

dd d d

e G f n n e e n e e e

k e e d k e e

f n n e e n e e e

d e e e e

χ − −− −

−−

− −− −

−−

  
        

  
  

≥ + − + − − − +

+ − + − − −

≥ + − + − − − +

     
+ − −


+ −

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

1 11 1 1
2 2 2 12 1 2

1 11 1
2 2 2 32 3

1 1 1 1
2 1 2 3

1 1 1 1
2 2 2 1 2 2 2 3

4 2 3 2

4

3 4

2

n nn n n

n nn n

n n n n

n n n n

f n n e e n e e e

n e e e e

f n n e e n e e

e e e e

f n

− −− − −

− −− −

− − − −

− − − −

 
 
 
 

   
      
   

≥ + − + − − − +

 
+ − − + −  

 

= + − − + − −

+ − +
   
   
   
   

−

>
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Proof completed. 

4. Conclusion 

In this paper, based on existing research results, we have studied the exponential 
Randić index. By using mathematical induction and various structural transfor-
mations of graphs, we have obtained extremal values and extremal graphs, and 
have got some new conclusions.  
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