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Abstract 
With the help of the classical Abel’s lemma on summation by parts and algo-
rithm of q-hypergeometric summations, we deal with the summation, which 
can be written as multiplication of a q-hypergeometric term and q-harmonic 
numbers. This enables us to construct and prove identities on q-harmonic 
numbers. Several examples are also given.  
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1. Introduction 

Harmonic numbers are a class of famous sequences in combinatorics, number 
theory and computer science. Many properties could be found in the literature. 
Recall that for positive integers m and n, the classical generalized harmonic 
numbers are given by  

 ( )

1

1 .
n

m
n m

k
H

k=

= ∑  (1.1) 

For convenience, we have ( )
0 0mH = . As usually, ( )1

nnH H= . 
In recent years, many identities involving the generalized harmonic numbers 

have been established [1]-[8]. For example, in [2], the author reconsidered the 
following type of sums 
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∑  (1.2) 

With the help of binomial transformations and difference operators, he re-
proved some well-known identities such as 
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q-analogues of combinatorial identities always appear in other branches such 
as physics [9]. In this paper, we focus on the q-analogues of identities involving 
harmonic numbers. The well-known two kinds of q-harmonic numbers are de-
fined as follows. 

Definition 1. For positive integers n, two kinds of the q-harmonic numbers 
are defined as 

 ( ) [ ] ( ) [ ]1 1

1 ,   ,
kn n

q q
k k

qH n H n
k k= =

= =∑ ∑  (1.6) 

where [ ] 1
1

kqk
q

−
=

−
 is the q-integer. We also set ( ) ( )0 0 0q qH H= = .  

Note that when 1q → , [ ]k k→ , thus they are q-analogues of classical har-
monic numbers.  

Definition 2. For non-negative integers ,n k  and a complex number q with 
k n≤ , 1q < , the q-binomial coefficients are defined as  

 
( )

( ) ( )
;

,
; ;

n

k n k

q qn
k q q q q

−

 
= 

 
 (1.7) 

where ( ) ( )( ) ( )1; 1 1 1 n
na q a aq aq −= − − −  is the well-known q-factorial.  

Note that we have ( )0; 1a q =  and 0
n
k
 

= 
 

 when k n>  or 0k < .  

Mansour et al. [10] discovered the following elegant identity by using partial 
fraction decomposition 
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which could be known as a q-analogue of the following identity 
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0
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n n k

k
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n k n
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k k
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∑  (1.9) 

We should point out that there exist some typos in this result. The correct 
version is given in Section 3.  

Wei and Gu [11] considered the q-analogues of the following type of sums 

 ( ) ( ){ }
k 0

1 2 .
mn

k

n
W m m n k H

k=

 
= + − 

 
∑  (1.10) 

Note that when 62 m− ≤ ≤  and 0k ≠ , the “closed form” of ( )W m  have 
been known. By using Watson’s q-Whipple transformation, they discovered the 
q-analogues of these identities. For example,  
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which reduce to 
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Chen, Hou and Jin [12] proposed the Abel-Zeilberger algorithms to prove 
combinatorial identities on non-hypergeometric terms. In this paper, we observe 
that summations on q-harmonic numbers fall in the scope of a simplified 
q-version of this method. This enables us to prove and establish many identities 
on q-harmonic numbers. For more detail of the q-analogues identities, see [13]. 

2. Our Method 

The classical Abel’s lemma on summation by parts is as follows. 
Lemma 1. For any two sequences { }na , { }nb , we have 

 ( ) ( )
1 1

1 1 1 .
n n

k k k k k k n n m m
k m k m

a a b a b b a b a b
− −

+ + +
= =

− = − + −∑ ∑  (2.1) 

Using the difference operator, Abel’s lemma can be rewritten as: 

 
1 1

1 .
n n

k k k k n n m m
k m k m

b a a b a b a b
− −

+
= =

∆ = − ∆ + −∑ ∑  (2.2) 

Given a q-hypergeometric term ( ),F n k , namely, 
( )
( )

( )
( )

1, , 1
,

, ,
F n k F n k

F n k F n k
+ +

  

are both rational functions in nq  and kq , the q-Zeilberger algorithm tries to 
find polynomials ( ) ( )0 , ,n n

da q a q  and rational functions ( ),n kR q q  such 
that  

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
0 1, 1, ,

, , .

n n n
d

n k

q F n k a q F n k a q F n d k

R q q F

a

n k

+ + + + +

= ∆



 (2.3) 

Then summing this skew-recurrence relation over k, one can find a recur-
rence relation of the sum 

 ( ) ( ), .
k

S n F n k=∑  (2.4) 

For more detail of hypergeometric algorithms, see [14].  
Let us consider the sum ( ) ( ), k

k
S n F n k b=∑ , where ( ),F n k  is q-hyper- 

geometric term, bk is a sequence satisfying kb∆  is q-hypergeometric. The me-
thod can be described as follows.  
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Step 1. Applying the q-Zeilberger algorithm to ( ),F n k , we find the skew- 
recurrence relation 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1, 1, , , ,n n n
dq F n k a q F n k a q F n Ga d k n k+ + + + + = ∆ (2.5) 

where ( ) ( ) ( ),, ,n kqG n k R q F n k= . 
Step 2. Multiplying both sides of this relation by bk and summing over k, we 

have  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 1 1 , .n n n
d k

k
q S n a q S n a q S n d G n k ba + + + + + = ∆∑  (2.6) 

Step 3. Applying Abel’s lemma to the right-hand side, we will transform it to a 
hypergeometric sum since kb∆  is q-hypergeometric.  

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
0 1

.

1

, 1

n n n
d

k
k

q S n a q S n a q S n d

G n k

a

Wb n

+ + + + +

= − ∆ ++∑


 (2.7) 

Note that ( ) 0W n =  in many cases. 
Step 4. Denote by ( ) ( ), 1 k

k
G n k bT n + ∆=∑ . If a closed form for ( )T n  could 

be found by using the q-Zeilberger algorithm, we thus obtain a recurrence rela-
tion for the original sum ( )S n . 

Remark. The Maple package for the q-Zeilberger algorithms can also be 
found in [14]. Here we use the package APCI, which is written by Hou Q. H. 
[15]. After loading the package, we input the command qZeil (F, n, k, q, “cert”) 
and then get the skew-recurrence relation (2.5). 

Let us give an example to illustrate this method.  
Example 1. For positive integer n, we have 

 ( )
( )

( ) [ ]

1
1

2

0

11 ,
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n n kk
q

k
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q H k

k n
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− = − 

 
∑   (2.8) 

 ( ) ( ) [ ]
2

0

11 .
k

n k
q

k

n
q H k

k n

 
 
 

=

 
− = − 

 
∑  (2.9) 

The first result appeared in [16] and the second appeared in [17]. Clearly, 
both of them could be seen as q-analogue of  

 ( )
1

11 ,  0.
n k

k
k

n
H n

k n=

 
− = − > 

 
∑  (2.10) 

Proof. For brevity, we only prove the first identity. Denote the left-hand side 
sum by ( )S n  and let 

 ( ) ( )
( )

1
1

2, 1 .
k

n kk n
F n k q

k

+ 
− + 

   
= −  

 
 (2.11) 

By the q-Zeilberger algorithm, we find that  

 ( ) ( ) ( ), , 1 , ,F n k G n k G n k= + −  (2.12) 

where ( )
( )

( ) ( )
1

, ,
1

n k

n k

q q
G n k F n k

q q

−
= −

−
. Then with the help of Abel’s lemma, we  
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obtain the following formula by multiplying both sides of the above equation by 
( )qH k  and summing over k from 0 to +∞ 

 ( ) ( ) ( ) ( ) ( ) 1
1

0 0

, 1
, 1 .

1

n
k

q k
k k

G n k
S n G n k H k q q

q

+∞
+

+
= =

+
= ∆ = − −

−∑ ∑  (2.13) 

Denote the new sum by ( )T n  and ( ) ( ) ( ) 1
1 1

, 1
, 1

1
k

k

G n k
F n k q q

q
+

+

+
= −

−
, by the 

q-Zeilberger algorithm, we further find ( ) ( ) ( )1 1 1, , 1 ,F n k G n k G n k= + − , where 

( )
( )

( ) ( )
1

1 11

1
, ,

1

n k

n k

q q
G n k F n k

q q

+

+

−
= −

−
. 

By summing over k from 0 to ∞, we obtain  

 ( ) ( ) [ ]1
1 1,0 .
1 n

qT n G n
nq

−
= − = =

−
 (2.14) 

Thus, we finally have ( ) ( ) [ ]
1S n T n
n

= − = − . 

3. Applications 

By using the above method, we can construct or prove many identities on 
q-harmonic numbers. Here, we only give two examples. The first is the correct 
version of identity  

 ( ) ( ) [ ]
[ ]

22
2

0 1

2
1 ,  1 .

k n
n nn k k

q
k k

n k n k
q H k q n

k k k

− 
 −  

= =

+   
− =   

   
≥∑ ∑  (3.1) 

Theorem 1. For positive integer n, we have 

 ( ) ( ) [ ]
[ ]

2
2

0 1

2
1 .

k n
n nn k

q
k k

n k n k
q H k

k k k

− 
 −  

= =

+   
− =   

   
∑ ∑  (3.2) 

Proof. Denote the left-hand side sum by ( )S n  and let  

( ) ( ) 2, 1
k n

n k n k n
F n k q

k k

− 
 −  

+   
= −    

   
. By the q-Zeilberger algorithm, we find that  

 ( ) ( ) ( ) ( ), 1, , 1 , ,F n k F n k G n k G n k− + = + −  (3.3) 

where ( )
( ) ( )

( )( ) ( )
21 1

1 n+1

1 1
, ,

1

n k n

n k

q q q
G n k F n k

q q q

+ +

+

− +
=

− −
. Then with the help of Abel’s  

lemma, we obtain the following formula by multiplying both sides of Equation 
(3.3) by ( )qH k  and summing over k from 0 to +∞,  

 ( ) ( ) ( ) ( ) ( ) ( )1
0 0

, 1
1 , 1 .

1

n

q k
k k

G n k
S n S n G n k H k q

q

+∞

+
= =

+
− + = ∆ = − −

−∑ ∑  (3.4) 

Denote the new sum by ( )T n  and ( ) ( ) ( )1 1

, 1
, 1

1 k

G n k
F n k q

q +

+
= −

−
, by the 

q-Zeilberger algorithm, we further find 
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( )( ) ( ) ( )( ) ( )

( ) ( )

2 1 1 2
1 1

1 1

1 1 , 1 1 1,

, 1 , ,

n n n nq q F n k q q F n k

G n k G n k
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where ( )
( )( )( ) ( )

( )( ) ( )
2 1 1 2 3

1 11 2

1 1 1 1
, ,

1

n k k n n

n k n

q q q q q
G n k F n k

q q q

+ + + +

+ +

+ − − −
= −

− −
. By sum-

ming over k from 0 to ∞, we obtain 

 ( )( ) ( ) ( )( ) ( )2 1 1 21 1 1 1 1 0,n n n nq q T n q q T n+ + + ++ − − + − + =  (3.6) 

Taking the initial value ( ) ( ) ( )
211 1,0 1,1

1
qT G G
q

+
= + =

+
 into account, we ob-

tain 

 ( ) ( ) ( ) ( )
1

1
11 1 .
1

n

n
qS n S n T n q
q

+

+

+
− + = − = − −

−
 (3.7) 

Furthermore, ( )1 1S q= + , we thus have 

 ( ) ( )
( )

( ) [ ]
[ ]

2

2 2
2 1

211 1 .
1
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kqS n S q
kq= =

−
= + − =

−
∑ ∑  (3.8) 

The second example is the following q-analogues of (1.4) and (1.5).  
Theorem 2. For positive integer n, we have 
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1
2
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Proof. We only prove the first identity. Denote the summation by ( )S n  and 

 ( ) ( )
( )

[ ]
1

1
2, 1 .

k
n kk n

F n k q k
k

+ 
− + 

   
= −  

 
 (3.11) 

Then, by the q-Zeilberger algorithm, we know 
 ( ) ( ) ( ), , 1 , ,F n k G n k G n k= + −  (3.12) 

where  

 ( )
( )

( ) ( ), , .
n k

n k

q q q
G n k F n k

q q q

−
= −

−
 (3.13) 

Noting that the summation range of the series is equivalent to summing from 
0 to ∞, we multiply both sides of Equation (3.13) by ( )qH k  and sum over k 
from 0 to ∞. Using Abel’s lemma, we get (with the reminder term being 0). 
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∆
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 (3.14) 
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Let 

 ( ) ( ) ( ) 1
1 1

, 1
, 1 .

1
k

k

G n k
F n k q q

q
+

+

+
= −

−
 (3.15) 

Furthermore, by the q-Zeilberger algorithm, we know 

 ( ) ( ) ( )1 1 1, , 1 , ,F n k G n k G n k= + −  (3.16) 

where 

 ( )
( ) ( )

( )( ) ( ) ( )
1 2 1 1 1

1 12

2 1
, , .

1 1

k n k n n n k

k n k n

q q q q q q q
G n k F n k

q q q q q q

+ + + + ++ − − + −
=

− + − −
  (3.17) 

Taking the sum over k from 0 to ∞ for Equation (3.17), we obtain: 

 ( ) ( ) [ ]1
1,0 .

1
T n G n

q n
= − = −

−
 (3.18) 

Thus, we have: 

 ( ) ( ) [ ] ( )1 , 1 .
1

S n T n n
q n

= − = >
−

 (3.19) 

4. Conclusion 

Sometimes, finding q-analogues for given combinatorial identities may be chal-
lenging. In this paper, we used the ideal of the Abel-Zeilberger algorithm to con-
struct and prove several q-analogues of identities involving harmonic numbers. 
In particular, we obtained the q-analogues identities for the classical kind of  

( )
1

1
n k m

k
k

n
k H

k=

 
− 

 
∑  when 0,1,2m = . For 3m ≥ , we can also construct the cor-

responding identities. In fact, we have verified almost all identities on q-harmonic  
numbers appeared in the references. We also point out that some examples of 
the method have been included in Zheng huanhuan’s master thesis.  
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