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Abstract 
A non-linear HIV-TB co-infection has been formulated and analyzed. The 
positivity and invariant region has been established. The disease free equili-
brium and its stability has been determined. The local stability was deter-
mined and found to be stable under given conditions. The basic reproduction 
number was obtained and according to findings, co-infection diminishes 
when this number is less than unity, and persists when the number is greater 
than unity. The global stability of the endemic equilibrium was calculated. 
The impact of HIV on TB was established as well as the impact of TB on HIV. 
Numerical solution was also done and the findings indicate that when the rate 
of HIV treatment increases the latent TB increases while the co-infected pop-
ulation decreases. When the rate of HIV treatment decreases the latent TB 
population decreases and the co-infected population increases. Encouraging 
communities to prioritize the consistent treatment of HIV infected individu-
als must be emphasized in order to reduce the scourge of HIV-TB co-infection. 
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1. Introduction 

Tuberculosis is caused by Mycobacterium tuberculosis. It occurs in two strains, 
the active and the latent strain. The active strain must be treated to avoid death 
of individuals. It has, as its reservoir, one-third of human population [1]. It 
mostly affects the lungs. The latent type becomes active when infected people 
acquire HIV. On the other hand, Human immunodeficiency Virus (HIV) is a 
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deadly virus which when not treated results to AIDS, which is incurable. It 
damages body organs like, the kidney, heart, and the brain [2]. If treatment lacks, 
the HIV patient has 9 - 11 years to live. It is impossible to eradicate the virus 
during the life time of a host [3]. Usually HIV appears to be associated with oth-
er diseases [4]. It can be transmitted through blood transfusion, mother to child 
during birth or by breastfeeding, heterosexual or homosexual relations. (WHO, 
2008). The HIV virus falls to low levels when treatment is adhered to, but when 
treatment is withdrawn the viral load increases to the levels that existed before 
the administration. 

Co-infection of HIV and TB refers to the existence of the two deadly patho-
gens, Human Immuno deficiency virus and Mycobacterium tuberculosis, in an 
individual. Their interaction in epidemiological characteristics is similar [5]. 
According to reports from World Health Organization, a person with both HIV 
and TB infections is 30 times more likely to develop TB illness than a person 
with TB only. According to findings, coordinated care, adherence support and 
drug interactions, play a great role in controlling and treating co-infection. 
Healthcare providers as well as patients encounter a complex set of challenges as 
they deal with co-infection. Therefore this study finds great need in investigating 
the impact of inconsistent HIV treatment on the spread dynamics of the 
co-infection of HIV and TB. In particular, inconsistent uptake of HIV medica-
tion is common in low income countries especially the sub saharan Africa region 
[6].  

World Health Organization (WHO) estimates that around 100 million people 
are infected by TB worldwide. Every year 8.3 m new cases appear, worldwide, 
and 1.8 m deaths occur of which 93 percent of deaths appear in developing 
countries. [7]. Tuberculosis is among the top ten causes of death globally. WHO 
has declared the end of TB strategy by end of 2035. Targeting 90 percent reduc-
tion of incidence rate [8]. There is a growing tuberculosis epidemic whose data is 
scarce or insufficient to contain it in high HIV prevalence areas, especially 
sub-Saharan Africa ([6]). In 2012 twenty percent of 2.8 million people, infected 
with TB worldwide, were HIV positive, out of whom 42 percent were from 
sub-Saharan Africa (WHO 2013). There was a positive skewness in the distribu-
tion of young people. More than half of this population was aged between 15 - 
49 years. All these were infected with TB and developed active TB more fre-
quently [9] [10]. As such, this paper will develop a co-infection mathematical 
model that will analyze the spread dynamics of HIV-TB co-infection to provide 
possible control measures that can contain the spread of the two diseases. 

Among people living with HIV, TB is the leading cause of death, since their 
immune systems are already compromised and are unable to effectively fight off 
the TB bacterium. It has become a major global challenge to public health sector. 
In 2012 there were an estimated 8.6 million new cases of tuberculosis (TB), of 
which 13 percent were HIV positive, globally ([11]). In 2015, only three fifths of 
the 10.5 m people infected by TB were reported to the public health authorities 
[12]. The co-occurrence of HIV and TB is known as TB/HIV co-infection. In 
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middle and low-income countries there is a significant public health issue of 
HIV/TB co-infection, where HIV and TB are prevalent. In countries with li-
mited resources TB and HIV/AIDS make the main burden of infectious diseases 
[13]. 

HIV and TB are several times referred to as a “deadly pair” [5]. Co-infection is 
largely unknown but it is clear that every time an epidemic of HIV occurs, a se-
vere TB epidemic accompanies it. There is a high possibility of HIV patients to 
develop TB infection and also activate latent to active TB ([14]). Adherence to 
medication and ongoing monitoring and follow-up care is very critical for the 
successful management of HIV and TB co-infection.  

Co-infection of HIV and TB is associated with low lean body mass, in adults 
[15]. After destroying the immune system, HIV renders it incapable of perform-
ing its protective functions to the human body. It destroys this system by de-
creasing the number of T-cells that are responsible for fighting infections [16]. It 
reduces their number as it progresses in stages and hence the reason for calling it 
a retrovirus. Tuberculosis brings about death of HIV infectives. It is actually the 
leading factor of this mortality [17] [18].  

It is recommended that the initiation of ART for any HIV infected individual 
who develops TB should be done immediately after testing positive [19]. The 
rate of recurrent TB is increased by HIV infection due to reinfection and not re-
lapse [20]. The two pathogens (M. tuberculosis and HIV) potentiate one another 
and accelerate the deterioration of the immune functions in the body [13]. 

HIV and TB co-infection remain a major threat to public health and a chal-
lenge to health systems in middle income and low income countries [21]. Cur-
rent strategies are not sufficient to contain the glowing tuberculosis (TB) epi-
demic in areas of high HIV prevalence, such as sub Saharan Africa. Testing and 
treatment at community level is recommended ([22]).  

In this study the main objective is to develop and analyze a HIV-TB confec-
tion mathematical model to investigate the impact of inconsistent treatment of 
HIV on co-infection dynamics. The results were analyzed and conclusions made 
to inform appropriate recommendations to alleviate the problem. 

2. Model Formulation 

In this model we have nine compartments: Susceptible(S), Infected by HIV ( HI ), 
those infected with Active TB ( TbI ) those with latent TB ( TbL ), those treated for 
TB ( TbT ), those who have recovered from TB TbR  those who are co-infected by 
the two diseases ( cI ) and those with clinical symptoms of AIDS ( HA ). 

Humans join the Susceptible compartment(S) by natural descent or immigra-
tion, at the rate of Λ. When exposed they join the compartment TbL  at the rate 
of 2β , through mass action. From (S) they can join those infected by HIV, in 
the compartment ( HI ), at the rate of 1α , through mass action.  

From ( HI ) they join the compartment ( cI ), as they get co-infected by the two 
diseases, at the rate of cτ . They can also join the compartment of ( HA ) at the 
rate of 1γ  by mass action, and hence get infected by AIDS.  
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From the same compartment HT  they can get infected by Aids and join the 
compartment HA , at the rate of 1φ  through mass action. When people are 
co-infected they can easily move to the compartment ( HA ), at the rate of cγ . 
Thus they get AIDS. From this compartment, ( HA ) people die at the rate of 2σ  
due to the disease.  

People get co-infected when they are infected by TB and move from the com-
partment TBI , to the compartment CI , at the rate of cα . Those with latent TB 
move from the compartment TbL  to the co-infection compartment ( CI  at the 
rate of 2ω . Those with TB but are treated could also become co-infected, if ad-
herence to medication is not observed, or treatment wanes, and move to the 
compartment ( CI , at the rate of cω , through mass action. They could also get 
infected with TB when medication wanes, and from ( TbT ) to TBI  at the rate of 

2α . 
Those in this compartment, TBI , die due to disease at the rate of 2σ . Those 

who have recovered from TB move to the susceptible (S) compartment at the 
rate of 2η , through mass action. Those treated for HIV can develop co-infection 
and move from HT  to the compartment ( CI ), at the rate of 1κ , by mass action. 
Those co-infected can die of the co-infection at the rate of cσ . 

Those infected with TB recover at the rate of 2κ  and move from the com-
partment TbT  to TbR . From every compartment the rate of natural death is µ . 
These compartments and parameters are summarized in the illustrative model 
drawn in Figure 1 below. 

A summary of the parameters used to describe Figure 1 and their interpreta-
tion is given in Table 1 below. 

2.1. Model Assumptions 

The study has utilized the following model assumption  
 There is no vertical transmission  

 
Table 1. Co-infection transmission dynamics parameters. 

Parameter Interpretation 

Λ Recruitment rate 

cτ  Rate of progression from HIV to coinfection 

cα  Progression rate from TB infection to coinfection 

cβ  Progression rate from Latent TB to coinfection 

cω  Rate of progression from TB treatment to coinfection 

cφ  Rate of progression from Treatment of HIV to Coinfection 

cγ  Rate of progression from coinfection to AIDS 

cσ  Death due to coinfection 

2ω  Rate of progression from Latent TB to coinfection 
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Figure 1. Model flow chart for HIV and TB co-infection spread dynamics. 
 

 There is no immigration or emmigration  
 There is free association among individuals.  
 Susceptible humans are recruited at a constant rate  

2.2. Model Equations for Coinfection 

The model equations arising from the schematic model flow in Figure 1 are 
given as. 
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 (2.1) 

3. Basic Properties of the Model 
3.1. Positivity and Invariant Region for Co-Infection 

The total population is represented by N(T) and is given by 

 ( ) ( ) ( ) ( ) ( ) ( )H H H c TB TB TB TBN t S t I t T t A t I t I T L R= + + + + + + + +  (3.1) 

 
dd d d d d d dd d

d d d d d d d d d d
cH H H TB TB TB TBII T A I T L RN S

t t t t t t t t t t
= + + + + + + + +  (3.2) 

 1 2 2 2
d
d H TB TB TB
N SI SI SI S R
t

α β γ µ η= Λ − − − − + +  (3.3) 

 ( ) ( )1 1 1 1 1 1 1H c H h H c c HSI I I I Aα µ τ γ β γ φτ γ µ σ κ− + + + + + + − + + +  (3.4) 

 ( )c H c H c TR c TB c TB c cI T L I Iτ φ τ ω β α µ σ+ + + + − +  (3.5) 

 ( )2 2 2 2TB TB TB c c TBSI L T Iβ ω α α µ τ σ+ + − + + +  (3.6) 

 ( ) ( )2 2 2 2 2 2 2TB TB c TB TB c TBI L T SI Tτ φ ω κ α µ γ ω β φ µ+ − + + + + − + + +  (3.7) 

 ( )2 2 2TB c TBSI Lγ ω β φ µ− + + + +  (3.8) 

 ( )2 2TB TBT Rκ µ η− +  (3.9) 

Simplifying we obtain the following, 

 ( ) ( ) ( ) ( )1 2
d
d H H H c c TB
N t S I T A I I
t

µ µ µ µ σ µ σ µ σ= Λ − − − − + − + − + (3.10) 

In the absence of HIV, TB and Co-infection, We have, 

 
( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

d
d H H c

TB TB TB TB

N S t I T T t A t I t
t

I T T T L t R t

µ= Λ − + + + +

+ + + +
 (3.11) 

Hence,  
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 ( ) ( )d
d

N t
N t

t
µ= Λ −  (3.12) 

Integrating both sides, we have, 

 ( ) ( )( )d
d

N t
N t

t
µ= Λ −∫ ∫  (3.13) 

Let μ be= 

 ( )N tµΛ −  (3.14) 

 
d d
d d
u N
t t

µ= = −  (3.15) 

Hence,  

 dd UN
µ

=
−∫  (3.16) 

This is the same as, 

 1 d 1lnu u
µ µ µ
− −

= =∫  (3.17) 

but, 

 ( )u N tµ= Λ −  (3.18) 

Therefore,  

 ( )( )1ln N t tµ
µ
−

Λ − =  (3.19) 

So,  

 ( )( )ln N t t cµ µΛ − = − +  (3.20) 

We shall exponiate both sides to obtain,  

 ( )( )lne eN t t cAµ µΛ− − +=  (3.21) 

So we have,  

 ( ) e t cN t µµ − +Λ − =  (3.22) 

Hence, 

 e tA µ−  (3.23) 

where 

 ecA =  (3.24) 

We already have, 

 ( ) e tN t A µµ −Λ − =  (3.25) 

 ( ) e tN t A µµ
µ µ

−Λ −
=  (3.26) 

 ( ) = e tAN t µ

µ µ
−Λ

−  (3.27) 

But the initial condition is, 
0t =  
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Therefore, 

 ( )0 AN
µ µ
Λ

= −  (3.28) 

So, 
 ( )0A Nµ= Λ −  (3.29) 

Since, 

 ( ) e tAN t µ

µ µ
−Λ

= −  (3.30) 

and, 
 ( )0A Nµ= Λ −  (3.31) 

Then, 

 ( ) ( )0
e tA N

N t µµ
µ µ

−−Λ
= −  (3.32) 

As, 
 ,Ast →∞  (3.33) 

 
( )0

0
A Nµ

µ
−

→  (3.34) 

Hence, 

 ( )N t
µ
Λ

≤  (3.35) 

The region generated is positively invariant.  

3.2. Disease Free Equilibrium for Co-Infection 

From the model Equations, 
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 (3.36) 

At DFE,  
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 0, 0, 0, 0, 0, 0, 0H H H c TB TB TBI T A I I L R= = = = = = =  (3.37) 

Within any given time, 
d 0
dt

=  [23]. This implies that, 

 1 1 2 2 20 H TB TB TBSI SI SI S Rα β γ µ η= Λ − − − − +  (3.38) 

 ( )1 1 10 H c HSI Iα µ τ γ β= − + + +  (3.39) 

 ( )1 1 10 H H c HI A Tβ κ µ φ φ= + − + +  (3.40) 

 ( )1 1 1 10 H H c c HI T I Aγ φ γ µ σ κ= + + − + +  (3.41) 

 ( )0 c H c H c TB c TB c TB c c c cI T T L I I Iτ φ ω β α µ σ γ= + + + + − + −  (3.42) 

 ( )2 2 2 2 20 TB TB TB c TBSI L T Iβ ω α α µ τ σ= + + − + + +  (3.43) 

 ( )2 2 20 TB TB c TBI L Tτ φ ω κ α µ= + − + + +  (3.44) 

 ( )2 2 20 TB c TBSI Lγ ω β φ µ= − + + +  (3.45) 

 ( )2 20 TB TBT Rκ µ η= − +  (3.46) 

We can write, 

 
d 0
dt

=  (3.47) 

and, 
 0 Sµ= Λ −  (3.48) 

Therefore, 

 *S
µ
Λ

=  (3.49) 

This implies that, 

 ( )* * * * * * * *, , , , , , , ,0,0,0,0,0,0,0H H H c TB TB TBS I T A I I L R
µ

 Λ
=  
 

 (3.50) 

Stability of DFE of Co-Infection 
The jacobian matrix from the model equations is:  
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At DFE, the Jacobian matrix will be, 
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In this matrix, the eigenvalues of the first and last columns are negative. We 
shall now work at the seven by seven matrix formed to determine whether the 
eigenvalues will be negative. 
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(3.54) 

can be written as 
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β
α ω

µ
τ φ
γ
µ

Λ − 
 

− 
− 

 −
 Λ −
 
 −
 Λ −
  

 (3.55) 

whose trace is 

 1 2
1 2 3 4 5 6 7k k k k k k kα β

µ µ
Λ Λ
− − − − + − − −  (3.56) 

and determinant 
( )( )( )1 1 2 2 2 2 6 7 2 6 2 2 7 2 5 6 7 1 2 3 4 4 1 1

2
c ck k k k k k k k k k k kα µ α γ φ β γ ω µα τ µ γ κ φ κ φ

µ
Λ − Λ + Λ + Λ + − − +

 (3.57) 

For local stability of DFE to be attained the trace must be must be greater than 
zero while the determinant is less than zero. Since the trace is 

 1 2
1 2 3 4 5 6 7 0k k k k k k kα β

µ µ
Λ Λ
− − − − + − − − >  (3.58) 

We shall take all the positive values to the left hand side of the inequality and 
the negative ones to the right of the inequality. We have, 

 1 2
1 2 3 4 5 6 7k k k k k k kα β

µ µ
Λ Λ
+ > + + + + + +  (3.59) 

This Equation (3.59) is the first condition for local stability of the DFE of 
co-infection of the TB and HIV spread transmission dynamics. Similarly the 
second condition of local stability of the DFE of co-infection of TB and HIV can 
be determined by taking the positive values of the determinant in Equation (3.57) 
on the left hand side of the inequality and the negative values on the right hand 
side of the inequality. We have, 

( )( )( )1 1 2 2 2 2 6 7 2 6 2 2 7 2 5 6 7 1 2 3 4 4 1 1
2 0c ck k k k k k k k k k k kα µ α γ φ β γ ω µα τ µ γ κ φ κ φ

µ
Λ − Λ + Λ + Λ + − − +

>  (3.60) 

( )( )( )1 1 2 2 2 2 6 7 2 6 2 2 7 2 5 6 7 1 2 3 4 4 1 1 0c ck k k k k k k k k k k kα µ α γ φ β γ ω µα τ µ γ κ φ κ φΛ − Λ + Λ + Λ + − − + >  (3.61) 

 

( ) ( )(
( )
( ))( )

1 2 2 2 2 6 7 2 6 2 2 7 2 1 5 6 7

1 2 2 2 2 6 7 2 6 2 2 7 2

1 5 6 7 1 2 3 4 4 1 1 0c c

k k k k k k k

k k k k k

k k k k k k k k

α α γ φ β γ ω µα τ α µ

µ α γ φ β γ ω µα τ

µ µ γ κ φ κ φ

Λ Λ + Λ + Λ + − Λ

− Λ + Λ + Λ +

+ − + >

 (3.62) 

 

( )( )
( )( ) ( )(

) ( )( )
( )( )( )
( )( )( )

1 1 4 1 1 2 2 2 2 6 7 2 6 2 2 7 2

1 1 5 6 7 1 1 4 1 1 2 2 2 2 6 7

2 6 2 2 7 2 1 1 4 1 1 5 6 7

2 3 4 1 2 2 2 2 6 7 2 6 2 2 7 2

2 3 4 1 5 6 7 1 2

c c

c c c c

c c

k k k k k
k k k k k k k

k k k k k k k
k k k k k k k
k k k k k k k k

α γ κ φ κ φ α γ φ β γ ω µα τ
α γ κ φ µ µ γ κ φ κ φ α γ φ β
γ ω µα τ µ γ κ φ κ φ µ

α α γ φ β γ ω µα τ
α µ µ

Λ + Λ + Λ +Λ +

− Λ − + Λ + Λ

+ Λ + + +

− Λ Λ +Λ +Λ +

+ Λ + ( )(
) ( )( )

3 4 2 2 2 2 6 7

2 6 2 2 7 2 1 2 3 4 5 6 7 0
k k k k

k k k k k k k k k
α γ φ β

γ ω µα τ µ µ
Λ + Λ

+ Λ + − >

 (3.63) 
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( )( ) ( )( )( )
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1 1 4 1 1 2 2 2 2 6 7 2 6 2 2 7 2

1 1 4 1 1 5 6 7 2 3 4 1 5 6 7
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c c
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k k k k k

k k k k k k k k k k k

k k k k k k k k

k k k k k

k k k k k k

α γ κ φ κ φ α γ φ β γ ω µα τ

µ γ κ φ κ φ µ α µ

µ α γ φ β γ ω µα τ

α γ κ φ µ µ γ κ φ κ φ α γ φ

β γ ω µα τ µ

Λ + Λ + Λ + Λ +

+ + + Λ

+ Λ + Λ + Λ +

> Λ + + Λ

+ Λ + Λ + + ( )( )3 4 5 6 7k k k k kµ

 (3.64) 

 

( ) ( )
( ) ( )( )( )
( )

( ) ( ) (
) ( )( )

1 4 1 1 1 2 2 2 2 6 7 2 6 2 2 7 2

1 5 6 7 2 3 4 1 5 6 7

1 2 2 2 2 6 7 2 6 2 2 7 2

1 4 1 1 1 5 6 7 1 2 2 2 2 6 7

2 6 2 2 7 2 1 2 3 4 5 6 7

c c

c c

k k k k k

k k k k k k k k k k

k k k k k

k k k k k k k

k k k k k k k k k

γ κ φ κ φ α α γ φ β γ ω µα τ

µ µ α µ

µ α γ φ β γ ω µα τ

γ κ φ κ φ α µ µ α γ φ β

γ ω µα τ µ µ

+ Λ Λ + Λ + Λ +
+ + Λ

+ Λ + Λ + Λ +

> + Λ + Λ + Λ
+ Λ + +

 (3.65) 

Equation (3.65) is the second condition for local stability of DFE of co-infection, 
where 1 1 1 ck µ γ β τ= + + + , 2 1 ck µ φ φ= + + , 3 1 1k κ σ µ= + + , 4 ck µ σ= + ,  

5 2 2ck µ α σ τ= + + + , 6 2 2ck κ µ ω α= + + + , 7 2 2 2k β µ φ ω= + + + . If the two 
conditions are met then the DFE is locally asymptotically stable.  

3.3. Basic Reproductive Number for Co-Infection 

From the model equations given below 

( )

( )

( )

1 2 2 2

1 1 1

1 1 1

1 1 1 1

d
d
d
d

d
d

d
d

H TB TB TB

H
H c H

H
H H c H

H
H H c c H

S SI SI SI S R
t
I SI I
t

T I A T
t

A I T I A
t

α β γ µ η

α µ τ γ β

β κ µ φ φ

γ φ γ µ σ κ

= Λ − − − − +

= − + + +

= + − + +

= + + − + +

 

 

( )

( )

( )

( )

( )

2 2 2 2 2

2 2 2 2

2 2 2

2 2

d
d

d
d

d
d

d
d

d
d

C
c H c H c TB c TB c TB c c

TB
TB TB TB c TB

TB
TB TB c TB

TB
TB c TB

TB
TB TB

I I T T L I I
t

I SI L T I
t

T I L T
t

L SI L
t

R T R
t

τ φ ω β α µ σ

β ω α α µ τ σ

τ φ ω κ α µ

γ ω β φ µ

κ µ η

= + + + + − +

= + + − + + +

= + − + + +

= − + + +

= − +

 (3.66) 

From the system of differential Equations (3.66), we shall take the infectious 
compartments as X and the non-infectious as Y and write them down as follows; 

 

H

H

C

TB

TB

I
A

X I
I
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 =
 
 
  

 (3.67) 
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S
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Y
L
R

 
 
 =
 
 
 

 (3.68) 

Taking the parameters that bring in infection to X as f  

 

1

1 1

2 2

2

H

H H

c H c TB

TB TB

TB

SI
I T

f T L
SI L

L

α
γ φ
φ β
β ω

φ

 
 + 

= + 
 +
 
  

 (3.69) 

and those taking out infection from x as v, given below we have,  

 

( )
( )

( )
( )
( )

1 1

1 1 1

2 2 2

2 2 2

c H

H c c H

c H c TB c TB c c

TB c TB

TB c TB

I
I I A

I T I Iv
T I
I T

µ τ γ β
γ γ µ σ κ

τ ω α µ σ
α α µ τ σ
τ ω κ α µ

 + + +
 − − + + + 
 − − − + +=
 

− + + + + 
 − + + + + 

 (3.70) 

Taking the equation of (3.69) as 1 2 3 4, , ,f f f f  and 5f  respectively and ob-
taining their partial differentials, we have, 

 

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 54

H h c TB TB

H H c TB TB

H H c TB TB

H H c TB TB

H H C TB TB

f f f f f
I A I I T
f f f f f
I A I I T
f f f f f

F
I A I I T
f f f f f
I A I I T
f f f ff
I A I I T

∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ 
∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂ 
∂ ∂ ∂ ∂ ∂ 

=  ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂∂
 ∂ ∂ ∂ ∂ ∂ 

 (3.71) 

Which is equal to 

 

1

1

2

0 0 0 0
0 0 0 0

0 0 0 0 0
0 0 0 0
0 0 0 0 0

S

S

α
γ

β

 
 
 
 
 
 
  

 (3.72) 

At DFE Equation (3.72) becomes,  

 

1

1

2

0 0 0 0

0 0 0 0
0 0 0 0 0

0 0 0 0

0 0 0 0 0

F

α
µ
γ

β
µ

Λ 
 
 
 
 =
 

Λ 
 
 
  

 (3.73) 
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Similarly, solving for V from Equation (3.70), we have,  

 

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

H H c TB TB

H H c TB TB

H H c TB TB

H H c TB TB

H h c TB TB

v v v v v
I A I I T
v v v v v
I A I I T
v v v v v

V
I A I I T
v v v v v
I A I I T
v v v v v
I A I I T

∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂
 
∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ =
∂ ∂ ∂ ∂ ∂ 
 
∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂
 
∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂ 

 (3.74) 

Which is equal to, 

1 1

1 1 1

2 2 2

2 2 2

0 0 0 0
0 0

0
0 0 0
0 0 0

c

c

c c c c

c

c

V

β µ γ τ
γ κ σ µ γ
τ µ σ α ω

τ σ α µ α
τ κ µ ω α

+ + + 
 − + + − 
 = − + − −
 

+ + + − 
 

− + + + 

 (3.75) 

We shall now obtain the inverse of V here below, 

( )
( ) ( )

( )
( )

( )
( ) ( ) ( )( )

( )( ) ( ) ( ) ( ) ( ) ( )( )

1
1

1 5 2 21
2 2

1 2 2 1 2 3 4 2 2 2 2 2 2 2 2

1 5 2 4 2
1 2

1 1 3 4 2 2 2 2 2 2 2

0 0 0 0
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c c c c c c
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c

c c c c c

A
A

A
A A A B A A A A

A A
V A B A A

µ σ γ γ τ µα α ω τ γ γ ω µ ω α αγ
µ σ µ σ µ σ µ σ µ µ ω α κ α α κ σ κ τ

τ µα α ω τ ω µ ω α α
µ σ

µ σ µ σ µ σ µ µ ω α κ α α κ σ κ τ

−

−

−
−

+ + + + + +
+ + + + + + + + + + +

+ + + +
+

= + + + + + + + + + +

( ) ( )

( )

2 2 2
2 2

2 3 2 2 2 4

2 22
2 2

3 5 6 2 6 2 2 3 5 5 2 2 2

0 0 0

0 0 0

c

c c

c

c c c c

B A A

A A A A A A A

κ µ ω α α
µ µ µ α σ α κ ω

τ σ α µτ
µ µ α κ ω α σ µ µ α σ τ κ ω

 
 
 
 
 
 
 
 
 

+ + + 
 + + + + + +
 
 + + +
 + + + + + + + + + +   

(3.76) 

where 

1 1 1 cA β µ γ τ= + + +  

2 1 1A κ σ µ= + +  

3 2 2 2 2c cA α α κ ω σ τ= + + + + +  

4 2 2 cA τ σ α= + +  

5 2 2cA κ ω α= + +  

6 2 2A τ σ= +  

2
1 3 5 6 2 6 2 2c cB A A A Aµ µ α κ ω α σ= + + + + +  

( )2 3 4 2 4 2 2c cB A A Aµ κ ω α σ α= + + + +  

( )3 3 5 5 2 2 2c cB A A Aµ α σ τ κ ω= + + + +  

We shall now multiply F by the inverse of V to obtain 
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( )

( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )( )

1

1 1
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1 11
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0 0 0 0
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c

c

c

c c c c c c c c c c c
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β µ γ τ

β κ µ ω α β α
µ α α κ ω σ τ µ τ σ α κ τ σ α ω α σ α µ µ α α κ ω σ τ µ α σ α κ ω τ σ α µ

−

Λ 
 + + + 
 
 + + + 

=  
 

Λ + + + Λ
 + + + + + + + + + + + + + + + + + + + + + + + + + + 
 
 

 

(3.77) 

The eigenvalues will be 

( )
( ) ( ) ( ) ( )( )

( )

2 2 2
2

2 2 2 2 2 2 2 2 2 2 2

1

1 1

0

0

0

c

c c c c c c

c

β κ µ ω α

µ α α κ ω σ τ µ τ σ α κ τ σ α ω α σ α µ

α
µ β µ γ τ

 
 
 
 
 
 

Λ + + + 
 + + + + + + + + + + + + + + 
 Λ 
 + + + 

 (3.78) 

The most dominant eigenvalue will be, 

( )
( ) ( ) ( ) ( )( )

2 2 2
0 2

2 2 2 2 2 2 2 2 2 2 2

c

c c c c c c

R
β κ µ ω α

µ α α κ ω σ τ µ τ σ α κ τ σ α ω α σ α µ

Λ + + +
=

+ + + + + + + + + + + + + +
 (3.79) 

Equation (3.79) is the basic reproduction number of the co-infection spread 
dynamics. When R0 is greater than 1 the co-infection persist in the population 
while when R0 is less than one the co-infection dies down. 

4. Global Stability of the Endemic Equilibrium 

In order to determine the global stability we shall use Lypanov’s method.  

( )** ** ** ** ** ** ** ** **

** ****
** ** ** ** ** **

** ****
** ** ** ** ** **
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Differentiating we have, 
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Opening the brackets and simplifying we obtain the following values, 
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Expanding by using parameter values we have, 
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H H

H H H
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T TSI T I A A
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I

α β γ µ η µ τ γ β

α µ φ φ β κ µ σ κ

γ φ γ µ σ τ ω β α

β ω α

= + + + + Λ + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + ( )

( ) ( )

**

2 2 2 2

** ** **
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TB
TB TB

TB TB

TB TB TB
TB c c TB TB TB TB

TB TB TB

TT I
I T

T L RL L SI R T
T L R

ω κ α µ τ

φ ω β φ µ γ µ η κ

+ + + + +

+ + + + + + + + +

 

Therefore for global stability of the Endemic equilibrium to be attained Q  

must be greater than T, that is, Q T>  since 
d
d
L T Q
t
= − . When Q T>  then 

d 0
d
L
t
<  because the basic reproduction 0R  is greater than 1 hence the co-infection  

of HIV-TB persists in the population. 

https://doi.org/10.4236/jamp.2024.125109


S. M. N. Mwangi et al. 
 

 

DOI: 10.4236/jamp.2024.125109 1761 Journal of Applied Mathematics and Physics 
 

5. Impact of HIV on TB 

Considering the basic reproduction number of HIV given below  

 
( )

1 1
0

1
HR α

µ β µ
Λ

=
+

 (5.1) 

making μ the subject in (5.1) above we have  

 
2 2

1 1 1 14
2

oH oH oH

oH

R R R
R

β β α
µ

− + + Λ
=  (5.2) 

which can be further simplified to get  

 
2

1 1 11 4
2 2

oH

oH

R
R

β αβ
µ

+ Λ
= − +  (5.3) 

Considering the basic reproduction number of TB given by  

 
( )( )

2 2
0

2 2 2 2
TR β

µ σ µ τ τ α
Λ

=
+ + −

 (5.4) 

and substituting the value of μ in Equation (5.3) in Equation (5.4) we have  

 
( )

( ) ( ) ( ) ( )( ) ( )
1

2
1 1 2

2

2

oH
oT

oH oH

B R C
R

A C R C R C C A Cβ
=

+ +
 (5.5) 

where  

 1
1 2

A β
= −  (5.6) 

 2 1 14A α= Λ  (5.7) 

 1 2 2B β= Λ  (5.8) 

 2 2 2B τ α=  (5.9) 

 
2

1 2 2 2 1 22 2 2 2
2

oH oH oH oH oH

oH

A R B R R R R A
C

R
τ σ β− + + + +

=  (5.10) 

6. Impact of TB on HIV 

Considering the basic reproduction number of TB given below,  

 
( )( )

2 2
0

2 2 2 2
TR β

µ σ µ τ τ α
Λ

=
+ + −

 (6.1) 

making μ the subject in (6.1) above we obtained  

 
( )( ) ( )2

0 2 2 2 2 0 2 2 2 2 2 2 0

0

4

2
T T T

T

R R R

R

α τ τ σ β α τ τ σ
µ

− + + + Λ + − −
=  (6.2) 

Now considering the basic reproduction number of HIV given below  

 
( )

1 1
0

1
HR α

µ β µ
Λ

=
+

 (6.3) 
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and substituting the value of μ given by Equation (6.2) in Equation (6.3) we got  

( )( ) ( ) ( )( )
2

1 1

2 2
2 2 2 2 2 2 2 2 1

4

4 4 2
oT

oH

oT oT oT oT oT oT

RR
R A R R A R A R R A

α

β β β

Λ
=

− + Λ + − + Λ + −
(6.4) 

where  

2 2 2 2 2A α τ τ σ= − + +  

Numerical Simulations 

In the following section we explored the spread dynamics of the HIV-TB 
co-infection in a population. From the model parameters we have obtained the 
values used to draw the following graphs. The initial conditions used for the 
graphs were as follows: ( )0 98999S = , ( )0 1000HI = , ( )0 1000HT = ,  

( )0 100HA = , ( )0 100CI = , ( )0 1000TBI = , ( )0 100TBT = , ( )0 100TBL = ,  
( )0 2000TBR = . The graphs were drawn using maple software which utilized 

rungekutta order four method. The values of the parameters and their corres-
ponding reference sources are summarized in Table 2 below.  

The general population increases gradually within the given time at a constant 
rate. Close to this general population is the susceptible population, which drops 
at a small rate an d then levels off. The treatment HIV population rises from zero 
to around 700 and then falls to around 200 and keeps dropping in value to al-
most an insignificant one at the end of the period of study. The infected HIV 
population rises from zero to around 100 and then falls to a very small value un-
til it goes to zero, for this period. The AIDS population is almost insignificant  
 
Table 2. Co-infection transmission dynamics parameters. 

Parameter Interpretation Value Reference 

Λ Recruitment rate 1650 [24] 

cτ  Rate of progression from HIV to coinfection 0.000004 [5] 

cα  Progression rate from TB infection to 
coinfection 

0.004 [24] 

cβ  Progression rate from Latent TB to 
coinfection 

0.00000001 [18] 

cω  Rate of progression from TB treatment to 
coinfection 

0.0001 [18] 

cφ  Rate of progression from Treatment of HIV 
to Coinfection 

0.00000000127399 [5] 

cγ  Rate of progression from coinfection to 
AIDs 

0.01 [5] [24] 

cσ  Death due to coinfection 0.033 [5] 

2ω  Rate of progression from Latent TB to 
coinfection 

0.0011375 [18] 
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and remains quite low until the end of the study period. The infectious TB rises 
from zero to around eight hundred and then levels off. It lies very close to the 
treated population. The co-infected population is quite low from the very begin-
ning but exits in the population until the end of this period of study. The latent 
population exists at low levels of about 100 people from the beginning rises to 
around 150 and is steady until the end of the study. The recovered population 
increases from zero to around 1000 and then levels off until the end of the study 
period as illustrated in Figure 2. 

From the graph in Figure 3 above the infected HIV population rises from 
around 1500 to around 3000, then decreases gradually to around 500 and falls to 
almost zero in the duration of five hundred days. The AIDS population is 
around 2500 at the beginning of the study period. It then drops to around 1000, 
and continues dropping gradually until zero within 250 days. The treatment 
HIV population starts from 2500 people, rises to around 9000 and starts declin-
ing gradually to around 1000 and levels off until the end of the six hundred days 
of study. The latent TB population starts from zero and rises to around 1000, in-
creases to around 1500 and then levels off until the end of this 600 days. The re-
covered TB population starts from around 1000, increases steadily to around 
12,000 and then levels off until the end of this study period. The co-infected 
population starts from zero and increases to around 700 and continues to in-
crease at a small rate to around 800 and levels off until the end of the study pe-
riod.  
 

 

Figure 2. The general graph for HIV-TB coinfection spread dynamics. 
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Figure 3. The general graph for HIV-TB coinfection spread dynamics for  
, , , , , ,H H H TB TB C TBI A T L I I T  and TBR . 

 
From the graph in Figure 4 above, when “beta”, the rate at which infected 

HIV patients go for treatment, is 0.075, the co-infected population increases 
steadily until the value of around 1200, in a period of 600 days. When the value 
of “beta” decreases to 0.0075, the co-infected population increases from around 
150 to around 50 and keeps very low (to around 20) until the end of the study 
period. When “beta” is 0.75, the co-infected population increases from around 
100 to around 1200 and levels off until the end of the 600 days.  

In this Figure 5, we observe that when “alpha” the rate at which susceptible 
population acquires HIV, is 0.0000010411591, the latent population increases 
steadily from around 300 to around 2800 and levels off until the end of the study 
period. When “alpha” increases to 0.00000121411591, the latent population in-
creases steadily from around 350 to around 500 decreases a bit to around 490. It 
then increases steadily to around 1100 at the end of the study period. When “al-
pha” increases to 0.00000141411591 this latent population increases from 100 to 
around 300, then decreases to around 200 and continues to decrease steadily to 
around 100 at the end of the study period, which is 600 days.  

7. Discussion  

As we noted from the numerical simulation from the model above, when the 
rate of infection of HIV increases, latent TB is activated and hence increasing the 
risk of co-infection. We also realized that when the value of β, the rate at which 
people infected with HIV go for treatment, increases the HIV population reduc-
es. We also observe from the model that, as the rate of activation of latent TB to 
active TB increases, the infectious TB population increases. 
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Figure 4. Infected compartment at different values of β1. 
 

 

Figure 5. Latent TB population at different values of HIV infection rate (α1). 
 

Latent TB increases when α, the rate at which the susceptible population in 
the model gets infected by HIV, increases. This condition then predisposes the 
general susceptible population to co-infection. When β, the rate at which in-
fected HIV patients go for treatment, increases, the HIV population reduces, 
hence reducing the activation of latent to active TB. The community, therefore, 
has a responsibility to ensure that the HIV-infected population initiates treat-
ment for HIV, and goes for it consistently, for this will help decrease the viral 
load in our communities. Since the susceptible population is among the com-
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munity members, a lot of effort must be put in ensuring that this population is 
tested and those infected must go for treatment consistently, without fail. Incon-
sistent treatment will cause high levels of infectious HIV population among 
community members, which causes a great risk of co-infection.  

8. Conclusions and Recommendations 
8.1. Conclusion 

A mathematical model for co-infection has been developed. The corresponding 
differential equations were formulated and analyzed. The positive and invariant 
region was found to be bounded for the co-infection model. Through numerical 
simulation, it was found that, when the rate of HIV treatment β increases the 
HIV population decreases. Consequently it was found that when this population 
decreases, activation of latent TB decreases. Conversely, when the rate of treat-
ment of HIV, β, decreases the population of HIV increases and the population of 
latent TB decreases suggesting that the high level of HIV infections leads to ac-
tivation of latent TB to active TB. Therefore, for co-infection to be dealt with ef-
fectively, those infected with HIV must be encouraged by all means to go for 
treatment consistently.  

8.2. Recommendations 

The study recommends that communities in collaboration with public health of-
ficials, must take responsibility of identifying those infected with HIV and en-
suring that they go for treatment consistently. Every available opportunity must 
be used to inform the population about the danger imposed by coinfection. All 
public gatherings, including religious meetings, should be used as avenues of 
passing this important information. This information must be passed on to vul-
nerable youth who might underrate the importance of going for HIV treatment 
consistently, in order to reduce the levels of co-infection. This approach will re-
duce the impact of HIV-TB coinfection in the communities. Further research 
can be done on reversing the conversion of RNA of the HIV virus to DNA to 
reduce impact of HIV virus on the immune system of patients. 
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