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Abstract 
The aim of our work is to formulate and demonstrate the results of the nor-
mality, the Lipschitz continuity, of a nonlinear feedback system described by 
the monotone maximal operators and hemicontinuous, defined on real reflex-
ive Banach spaces, as well as the approximation in a neighborhood of zero, of 
solutions of a feedback system [ ],A B  assumed to be non-linear, by solutions 
of another linear, This approximation allows us to obtain appropriate estimates 
of the solutions. These estimates have a significant effect on the study of the 
robust stability and sensitivity of such a system see [1] [2] [3]. We then consider 
a linear FS 0 0,A B   , and prove that, if ( ) ( ), ,u v e f ; ( ) ( )0 0, ,u v e f , 

with u r≤ , v r≤  ( 0r > ) and ( ),e f , ( )0 0,e f  the respective solutions 

of FS’s [ ],A B  and 0 0,A B    corresponding to the given ( ),u v  in 

E E∗× . There exists, 11k , 12k , 21k , 22k , positive real constants such that,  
0

11 12e e k u k v− ≤ +  and 0
21 22f f k u k v− ≤ + . These results are the 

subject of theorems 3.1, ∙∙∙, 3.3. The proofs of these theorems are based on our 
lemmas 3.2, ∙∙∙, 3.5, devoted according to the hypotheses on A and B, to the 
existence of the inverse of the operator I BA+  and aM . The results ob-
tained and demonstrated along this document, present an extension in gen-
eral Banach space of those in [4] on a Hilbert space H and those in [5] on a 
extended Hilbert space eH .  
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1. Introduction 

During these last decades, see [6] [7], functional analysis and the theory of mon-
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otone operators, defined on Banach spaces have played, an important role in the 
study and analysis of systems. Reference [4], introduced the feedback systems de-
scribed by monotone operators, defined on appropriate spaces. He has estab-
lished, a series of existence and uniqueness results, of the solutions of this system 
on a Hilbert space H. These types of systems find their uses in several fields such 
as: control theory, network theory, solving the Hammerstein equation... etc. [8]. 
The techniques used are based, on the surjectivity theorem, of the monotonic 
and coercive maximal operators on a reflective Banach space. References [4] [5] 
introduced, the notion of extended Hilbert space He, and obtained, among oth-
ers, a normality and linearization results for a feedback system, on this space. 

One of our fundamental results is that, the behavior of the FS [ ],A B  is com-
pletely determined, by the inverse of some application ( )aM I B a A= + +  (see 
(2)). Note that, in the case where the operators A and B are not linear, and if 
( ) ( ), ,u v e f , then ( ) ( )1 1, ,v ve f M u v AM u− −= + . If one of the two operators is 
linear, the writing of the solution ( ),e f , can take forms that do not necessarily 
depend, on the inverse of the operator aM , see (4). This approximation allows 
us, to obtain suitable estimates of the solutions, in the sense of Section 3, these 
estimates have a significant effect, on the study of robust stability and sensitivity 
[1]. For more details, on the study of the inverse of such an operator, which is 
non linear, one consult [9] [10] [11] [12]. 

The subject of our work, is to proceed to the approximation method. There-
fore, to find an approximate solution of [ ],A B , supposed nonlinear by one lin-
earizes, in the neighborhood of zero. We then consider a linear 0 0,A B   , and 
prove that, if ( ) ( ), ,u v e f ; ( ) ( )0 0, ,u v e f , with u r≤ , v r≤  ( 0r > ) 
and ( ),e f , ( )0 0,e f  the respective solutions of [ ],A B  and 0 0,A B    corre-
sponding to the given ( ),u v  in E E∗× . There exists, 11k , 12k , 21k , 22k , 
positive real constants such that 0

11 12e e k u k v− ≤ +  and  
0

21 22f f k u k v− ≤ + . 
The paper is organized as follows. In Section 2, we recall some definitions, and 

we demonstrate results of normality of the FS [ ],A B , according to whether the 
two operators are nonlinear or one of the operators is linear. Section 3, is re-
served for our results of normality, Lipschitz continuity and approximate solu-
tion of [ ],A B , supposed nonlinear, by one linearizes, in the neighborhood of 
zero. An example is presented, at the end of this section. 

2. Definitions and Preliminary Results 

Let E be a real vector space, 2E  the set of all parts of E, E∗  the algebraic dual 
of E. Let : 2EA E

∗
→  and : 2EB E∗ → , the pair ( ),A B  is said feedback sys-

tem and it is noted FS [ ],A B  or [ ],A B . ( ) { };D A x E Ax= ∈ ≠ ∅ , the domain 
of A. We say that, A is an operator, if ( )D A E=  and Ax  is a singleton. A is 
said simple if, for every ( ) 2,x x E′ ∈ , x x′≠  we have Ax Ax φ′ = . Note that, 
if A is a simple operator it is injective. 

The meaning of the following definition, can be understood, by looking at Figure 1. 
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Figure 1. 1 − (u, v) input; 2 − (y, g) output; 3 − (e, f) solution, 4 − [A, B] a feedback system. 
 

Definition 2.1. We say that, an element ( ),e f  of E E∗×  is a solution of 
the FS [ ],A B , corresponding to the given ( ),u v  (input) in E E∗×  and we 
write ( ) ( ), ,u v e f , if there exists ( ),y g  (output) in Bf Ae×  such that: 

;
.

e u y
f v g
= −

 = +
                          (1) 

Definition 2.2. We say that the FS [ ],A B  is: 
1) Resoluble, if for all ( ),u v E E∗∈ × , there exists ( ),e f E E∗∈ × , checking 

(1). 
2) Unambiguous, if each solution is unique. 
3) Normal, if it is resoluble and unambiguous. 
The existence and uniqueness results of the solutions of [ ],A B , are based on 

the mapping : 2E
aM E   defined for all ( ),x a E E∗∈ × , by 

( ).aM x x B a Ax= + +                      (2) 

Proposition 2.1. The FS [ ],A B  is resoluble, iff aM E E= , a E∗∀ ∈ . 
Proof. Since [ ],A B  is resoluble, for ( ),u a E E∗∈ × , there are ( ),e f E E∗∈ ×  

and ( ),y g Bf Ae∈ ×  verifying: e y u+ =  and f g a− = . So 
( ) ( ) a a a

x E
u e Bf e B a g e B a Ae M e M x M E

∈

∈ + = + + ∈ + + = ⊂ =


 therefore  

aE M E= . Reciprocally, let ( ),u v E E∗∈ × , since ( )vE M E= , it exists e E∈  
such that ( )vu M e e B v Ae= = + + , satisfying u e y= + , where ( )y B v Ae∈ + , 
then y Bf∈ , with f v Ae∈ + . Therefore, there are g Ae∈  verifying  
f v g= + . 

Proposition 2.2. 
1) If [ ],A B  is unambiguous, then for every a E∗∈ , aM  is simple. 
2) If A is an operator and for every a E∗∈ , aM  is simple. Then [ ],A B  is 

unambiguous. 
Proof. 
1) Suppose that, there are a E∗∈ , ( ) 2,x x E′ ∈  such that a aM x M x φ′ ≠ . 

Let a au M x M x′∈  , for ( )u x B a Ax∈ + + , it exists ( )y B a Ax∈ +  checking 
u x y= + , since y Bf∈  where f a g= + , with g Ax∈ , then ( ) ( ), ,u a x f . 
Likewise, when ( )u x B a Ax′ ′∈ + + , there are ( ) ( ), ,u a x f′ ′

 , as 
( ) ( ), ,x f x f′ ′=  then x x′=  so, for every a E∗∈ , aM  is simple. 

2) Assume that, for ( ),u a E E∗∈ ×  there exists two solutions ( ),e f , ( ),e f′ ′  
of [ ],A B , related to ( ),u a . Then, there are y Bf∈ , y Bf′ ′∈  such that:  
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u e y e y′ ′= + = + , and a f Ae f Ae′ ′= − = − . So,  
( ) au e Bf e B a Ae M e∈ + ∈ + + = , also au M e′∈  hence a aM e M e φ′ ≠ . As, 

for every a E∗∈ , aM  is simple, we have e e′=  and f f ′= . 
Corollary 2.1. Let A and B be two operators, the FS [ ],A B  is: 
1) Resoluble, iff a E∗∀ ∈  aM  is surjective. 
2) Unambiguous, iff a E∗∀ ∈  aM  is injective. 
3) Normal, iff a E∗∀ ∈  aM  is invertible. In this case, if ( ) ( ), ,u v e f  

then: 

( ) ( )1 1, , .v ve f M u v AM u− −= +                     (3) 

Proof. 
1) Let 2EY ∈ , so aY M E⊂ , a E∗∀ ∈ , (see, proposition 2.1), then for 

y Y∈ , it exists x E∈  such that a E∗∀ ∈ , aM x y= . Reciprocally, if 
a E∗∀ ∈ , 2E

aM E =  as 2EE∈ , there is x E∈ , such that aM x E= . Since  

a a
x E

M x M E
∈

=


, it follows that aE M E⊂ , a E∗∀ ∈  the reverse inclusion is 

obvious, hence [ ],A B  is resoluble. 

2) If, [ ],A B  is unambiguous, from the proposition 2.2 (1), a E∗∀ ∈  aM  is 
simple, hence it is injective. Conversely, since a E∗∀ ∈  aM  is injective, then 
for ,x x′  in E, x x′≠  we have a E∗∀ ∈  a aM x M x′≠ , then a E∗∀ ∈   

a aM x M x φ′ = , so aM  is simple, from proposition 2.2 (2) [ ],A B  is unam-
biguous. 

3) Direct consequence of 1) and 2). 
Let’s demonstrate the Formula (3). If ( ) ( ), ,u v e f  it exists y Bf∈ , 

g Ae∈  satisfying e u y u Bf= − = − , because B is an operator, and  
f v g v Ae= + = + . Then, ( ) ( )= ve u B v Ae u e B v Ae M e= − + ⇔ + + = , from 

where 1
ve M u−= , this implies that 1

vf v AM u−= + . 
Proposition 2.3. Let A and B be two operators, :I E E→  the identity. If B 

is linear, then I BA+  is bijective iff a E∗∀ ∈ , aM  is bijective. 
Proof. 
Proof that, I BA+  is surjective ⇔  a E∗∀ ∈ , aM  is surjective. Let  

( ),a y E E∗∈ × , since y Ba E+ ∈ , B is linear and a E∗∀ ∈ , aM  is surjective, 
it exists x E∈  such that a E∗∀ ∈ ,  

( ) ( )aM x y Ba x B a Ax x Ba BAx Ba I BA x= + = + + = + + = + + , then  
( )I BA x y+ =  and I BA+  is surjective. Reciprocally, since y Ba E− ∈ , and 
I BA+  is surjective, it exists x E∈  such that ( )I BA x y Ba+ = − , a E∗∀ ∈ , 
this implies ( ) ( ) ay I BA x Ba x B a Ax M x= + + = + + = , a E∗∀ ∈  therefore 

a E∗∀ ∈ , aM  is surjective. 
Proof that, I BA+  is injective ⇔  a E∗∀ ∈ , aM  is injective. Let ,x x′  in 

E, with ( ) ( )I BA x I BA x′+ = + , then a E∗∀ ∈ ,  
( ) ( )a aM x I BA x Ba I BA x Ba M x′ ′= + + = + + = , as a E∗∀ ∈ , aM  is injective, 

then x x′= . Conversely, Let ( ) 2,x x E′ ∈  such that a E∗∀ ∈ , a aM x M x′=  
that is to say a E∗∀ ∈ , ( ) ( )I BA x Ba I BA x Ba′+ + = + + , so  
( ) ( )I BA x I BA x′+ = + , since I BA+  is injective then = .'x x  
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Corollary 2.2. Let A and B be two operators, and :I E E→  the identity. If B 
is linear, the FS [ ],A B  is: 

1) Resoluble iff I BA+  is surjective. 
2) Unambiguous iff I BA+  is injective. 
3) Normal iff I BA+  is invertible. In this case, if ( ) ( ), ,u v e f  then: 

( ) ( ) ( ) ( ) ( )( )1 1, , .e f I BA u Bv v A I BA u Bv− −= + − + + −            (4) 

Proof. Direct consequence of proposition 2.3 and corollary 2.1. To demon-
strate (4), let ( ) ( ), ,u v e f , there are y Bf=  and g Ae=  satisfying 
e u Bf= −  and f v Ae= + , from where ( )e u B v Ae u Bv BAe= − + = − − , so 
( )I BA e u Bv+ = − , hence ( ) ( )1e I BA u Bv−= + −  and  

( ) ( )1f v A I BA u Bv−= + + − . 

3. Linearization Results 

Let ,E E∗ ∗∗  be, the dual and the bidual of a real normed space E. Since the ca-
nonical application : E Eπ ∗∗→ , defined by: for every ( ),x f E E∗∈ × ; 

( ), ,, : , =E E E Ef x x f f xπ ∗ ∗∗ ∗=  is linear and isometric, then it's continuous 
and injective. If the range ( )R E E∗∗= , we say that E is reflexive, then E is topo-
logically identical at E∗∗  and x E∈  can be considered as a linear form on 
E∗ , it is natural to write for any ( ),x f E E∗∈ × ; 

, ,, ,E E E Ef x x f∗ ∗= . Since 
E∗  is a Banach space, then E is also Banach. Note that, if E is the real Hilbert 
space then E E∗= . In the sequel, we assume that E is reflexive, and we denote 
indifferently by .,.  the scalar product in the duality between these spaces, and 

.  their norms. 
Definition 3.1. A is said: 
1) Monotone if, for every ( ) 2,x y E∈ , ( ),f g Ax Ay∈ × ; , 0x y f g− − ≥  

or , 0x y Ax Ay− − ≥  if A is an operator. It’s strictly monotone if 
, 0x y f g− − =  implies x y=  or , 0x y f g− − > , whenever x y≠ . 

2) Maximal monotone, if A is monotone and the following property holds: 
( : 2ES E

∗
→ ; ( ) ( )G A G S⊂ , S monotone) then A S= , where  

( ) ( ){ }, ;G A x f E E f Ax∗= ∈ × ∈  the graph of A. 
Definition 3.2. B is said: 
1) Monotone if, for every ( ) 2

,f g E∗∈ , ( ),x y Bf Bg∈ × ; , 0f g x y− − ≥  
or , 0f g Bf Bg− − ≥  if A is an operator. It’s strictly monotone if 

, 0f g x y− − =  implies f g= , or , 0f g x y− − > , whenever x y≠ . 
2) Maximal monotone, if B is monotone and the following property holds: 

( : 2ET E∗ → ; ( ) ( )G B G T⊂ , T monotone) then B T= , where  
( ) ( ){ }, ;G B f x E E x Bf∗= ∈ × ∈  the graph of B.  
Corollary 3.1. If A is strictly monotone, or B is an operator strictly monotone. 

Then N I BA= +  is simple. 
Proof. Let ,x x′  in E, and ( ) ( )y I BA x I BA x φ′∈ + + ≠ , there are f Ax∈  

and g Ax′∈  such that ( ) ( )y x Bf x Bg′∈ + + , hence it exists ( ),z z Bf Bg′ ∈ ×  
verifying y x z x z′ ′= + = + , which implies 0x x z z′ ′− + − =  and  
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, , 0f g x x f g z z′ ′− − + − − = . As , 0f g x x′− − ≥  and , 0f g z z′− − ≥  
because A and B are monotone, then , 0f g x x′− − =  and  

, 0f g Bf Bg− − = . Therefore, if A is strictly monotone or B is strictly mono-
tone, we have f g=  which implies, z Bf Bg z′= = = , replacing in y we get 
x x′= . 

Corollary 3.2. If A or B is an operator strictly monotone, [ ],A B  is unam-
biguous. 

Proof. According to proposition 2.2, and corollary 3.1, this amounts to 
demonstrating that, for every a E∗∈ , ( )a aM I B a A I BC= + + = +   
( aC a A= + ) is simple. It suffices to note that aC  is monotone (respectively 
strictly monotone) iff A is strictly monotone (respectively strictly mono-
tone). 

Definition 3.3. An operator :A E E∗→  is said: 

1) Coersive, if 
,

lim
x

x Ax
x→∞

= +∞ . 

2) Hemicontinuous, if for any 0 ,x x E∈ , 0nt →  we have ( )0 nA x t x+  
weakly converges to 0Ax . 

Note that hemicontinuity is operational, continuity implies hemicontinuity, 
and see [13] [14] [15] [16]. 

If A is monotone, bounded and hemicontinuous, then A is maximal mono-
tone. 

If A is maximal monotone and coercive, then ( )R A E∗= . 
If A is monotone, hemicontinuous and coercive, then ( )R A E∗= . 
If A is hemicontinuous, and there exists 0c >  such that  

2,x y Ax Ay c x y− − ≥ − , for all ,x y E∈ . Then, A is invertible and the in-
verse 1 :A E E− ∗ →  is monotone continuous. 

To simplify the statements of linearization theorems, we note by: 

2,

,
: such that inf ;N x y E

x y

x y Nx Ny
N E E

x y
µ∗

∈
≠

 − − = → = > −∞ 
−  

  

,
: such that : sup ;

x y E
x y

Nx Ny
Lip N E E N

x y
∗∗

∈
≠

 − = → = < +∞ 
−  

 

2,

,
: such that : inf ;T

f g E
f g

f g Tf Tg
T E E

f g
µ

∗

∗
∗

∈
≠

 − − = → = > −∞ 
−  

  

,
: such that : sup ;

f g E
f g

Tf Tg
Lip T E E T

f g∗

∗∗
∗

∈
≠

 − = → = < +∞ 
−  

 

and 

,
: such that : inf .

x y E
x y

Sx Sy
Lip S E E S

x y
∗

∈
≠

 − = → = < +∞ 
−  
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The following assertions (which are also valid for ∗  and Lip∗ ) are true: 
Proposition 3.1. 
1) Lip ⊂ . 
2) ,M N∀ ∈ , 0α∀ ≥ , M N+ , Nα ∈ , M N M Nµ µ µ+ ≥ +  and 

N Nαµ αµ= . 
3) N∀ ∈ , N is monotone (respectively strictly monotone) iff 0Nµ ≥  

(respectively 0Nµ > ). 
4) NN µ∗ ≥ , Lip ⊂  and 0N ∗ =  iff N is constant.  
5) ,M N Lip∀ ∈ , α∀ ∈ , Nα , N M Lip+ ∈ , N Nα α∗ ∗= , 

N M N M∗ ∗ ∗+ ≤ + . 
6) If N ∈ , and N is linear, then LipN ∈  iff N is linear. In this case 

N N∗ = . 
7) If N Lip∈  and M Lip∗∈ , then MN Lip∈  and MN N M∗ ∗ ∗≤ . 
The numbers Nµ  and N ∗  can be interpreted crudely as a “gain” and 

“minimal slope” of the operator N, respectively. 
Lemma 3.1. Let N ∈  with 0Nµ > ; if N is hemicontinuous, then N is 

invertible, 1N Lip−
∗∈ , 1 0

N
µ − ≥  and 1 1

NN µ
∗− −≤ . If in addition N Lip∈ , 

then 
2

1 NN
Nµ µ

−

−

∗≥ . 
Proof. Since, 0Nµ > , ( ) 2,x y E∀ ∈  2, Nx y Nx Ny x yµ− − ≥ −  (*), as N 

is hemicontinuous then N is invertible. From (*) and because ( ),f x E E∗∀ ∈ × , 
,x f x f≤ , we have ( ) 2,x y E∀ ∈   

2 ,N x y x y Nx Ny x y Nx Nyµ − ≤ − − ≤ − − , then ( ) 2,x y E∀ ∈  ( )x y≠ , 
( ) 2

,N x y Nx Ny f g Eµ ∗− ≤ − ⇔ ∀ ∈  ( )f g≠ ,  

( )1 1 2,N N f N g f g f g Eµ − −− ≤ − ⇔ ∀ ∈  ( )f g≠ ,  
1 1

1
N

N f N g

f g
µ

− −
−

−
≤

−
,  

witch implies 1N Lip−
∗∈  and 1 1

NN µ
∗− −≤ . If N Lip∈ ,  

22 2Nx Ny N x y∗− ≤ −  ( ) 2,x y E∀ ∈ , returning to (*) we obtain  
( ) 2,x y E∀ ∈  

22 2, N Nx y Nx Ny x y Nx Ny Nµ µ
−∗− − ≥ − ≥ − . It follows 

that, ( ) 2
,f g E∗∀ ∈  ( )f g≠ ,  

2
1 1 1 1

2 2

, ,
N

N f N g f g f g N f N g
N

f g f g
µ

−
− − − −

∗− − − −
= ≥

− −
, which leads to  

2

1 NN
Nµ µ

−

−

∗≥ . 

Lemma 3.2. Let B ∗∈  which is hemicontinuous and let A Lip∈ , with 
0Aµ > . If, 

2

0B A Aµ µ
−∗+ > , then 1A B− +  and I BA+  are invertible, 

( ) 1I BA Lip−+ ∈ , 

( ) ( )2 1
1 1 .A B AI BA Aµ µ µ

− −∗ ∗− −+ ≤ +                  (5) 

Proof. Since A Lip∈ , then ( ) 2,x y E∀ ∈ , Ax Ay A x y∗− ≤ − , so A is 
hemicontinuous, with 0Aµ > . By lemma 3.1 1A−  exists, 1A Lip−

∗∈ , 
1 1

AA µ
∗− −≤  and 

2

1 AA
Aµ µ

−

−

∗≥ . Thus 1A B− +  is hemicontinuous with  
2

1 0B AA B
Aµ µ µ

−

−

∗

+
≥ + > , using again lemma 3.1, ( ) 11A B

−− +  exists,  
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( ) 11A B Lip
−− + ∈  and ( ) ( )2

1

111 1
B AA B

A B Aµ µ µ
−

−

−∗− ∗− −
+

+ ≤ ≤ + . As  

( )1I BA A B A−+ = + . then I BA+  is invertible, ( ) ( ) 11 1 1I BA A A B
−− − −+ = +  

and ( ) ( ) ( )2 111 1 1 1
A B AI BA A A B Aµ µ µ

− −∗∗ −∗ ∗− − − −+ ≤ + ≤ + . 

Lemma 3.3. Let B ∗∈  be linear, with 0Bµ >  and let A∈  be 
hemicontinuous, with 0Aµ ≤ . If, 2 0B A Bµ µ+ > , then 1B A− +  and 
I BA+  are invertible, ( ) 1I BA Lip−+ ∈ , 

( ) ( ) 121 .B AI BA B Bµ µ
−∗−+ ≤ +                 (6) 

Proof. Since B ∗∈  is linear, 0Bµ > , then B is bounded B Lip∗∈ , 
B B B∗ ∗= = , where B∗  is the conjugate of B. Hence B is hemicontinuous, 

by lemma 3.1 1B−  exists, 1B Lip− ∈ , and 1 1
BB µ− −≤ . The open mapping the-

orem ensures the continuity of 1B− , and hence its hemicontinuity. To continue, 
let ( )D I BA B B BAB∗ ∗ ∗= + = + , since for any 0 ,f f E∗∈ , 0nt →  we have 

( ) ( )0 0n nAB f t f A B f t B f∗ ∗ ∗+ = +  weakly converges to 0AB f∗ , taking into ac-
count the continuity of B, we have ( )0 nBAB f t f∗ +  weakly converges to 

0BAB f∗ , which gives the hemicontinuity of D. Moreover, for ,f g E∗∈   
( )

( ) ( )

, , ,

, ,

f g Df Dg f g B f g f g BAB f BAB g

B f g f g B f B g AB f AB g

∗ ∗ ∗

∗ ∗ ∗ ∗

− − = − − + − −

= − − + − −
. As,  

( ) ( ) 2, BB f g f g f gµ− − ≥ − ;  
( )

2
, AB f B g AB f AB g B f gµ∗ ∗ ∗ ∗ ∗− − ≥ −  and ( )B f g B f g∗ − ≤ − , 

then ( )
2 2 2

A AB f g B f gµ µ∗ − ≥ − , hence  

( )2 2, B Af g Df Dg B f gµ µ− − ≥ + − , so 2 0D B A Bµ µ µ≥ + > . Lemma 

3.1 confirms that, D is invertible, 1D Lip− ∈  and ( ) 121 1
D B AD Bµ µ µ

−∗− −≤ ≤ + . 

As B∗  is invertible, 
1 1

BB µ
−∗ −≤ ; then 

1
DB I BA

−∗ = +  is invertible,  

( ) 1 1I BA B D− ∗ −+ = , so ( ) 1 1I BA B D
∗ ∗− −+ ≤ , which give (6).  

Lemma 3.4. Let A∈  be linear, with 0Aµ >  and let B∈  be 
hemicontinuous, with 0Bµ ≤ . If, 2 0A B Aµ µ+ > , then 1A B− +  and 
I BA+  are invertible, ( ) 1I BA Lip−+ ∈ , 

( ) ( ) 121 .A BI BA A Aµ µ
−∗−+ ≤ +                   (7) 

Proof. Since A∈  is linear, 0Aµ > , then A is bounded A Lip∈ , 
A A A∗ ∗= = , where A∗  is the conjugate of A. Hence A is hemicontinuous, 

by lemma 3.1 1A−  exists, 1A Lip− ∈ , and 1 1
AA µ− −≤ . The open mapping the-

orem ensures the continuity of 1A− , and hence its hemicontinuity. To continue, 
let ( )C A I BA A A BA∗ ∗ ∗= + = + , since for any 0 ,x x E∈ , 0nt →  we have 

( ) ( )0 0n nBA x t x B Ax t Ax+ = +  weakly converges to 0BAx , taking into account 
the continuity of A, we have ( )0 nA BA x t x∗ +  weakly converges to 0A BAx∗ , 
which gives the hemicontinuity of C. Moreover, for ,x y E∈   
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( )
( ) ( )
, , ,

, ,

x y Cx Cy x y A x y x y A BAx A BAy

A x y x y Ax Ay BAx BAy

∗ ∗ ∗− − = − − + − −

= − − + − −
. Since, for any  

( ),x f E E∗∈ × ; 
, ,, ,E E E Ef x x f∗ ∗=  then,  

( ) ( ) 2, , AA x y x y x y A x y x yµ− − = − − ≥ − ;  
( ) 2

, BAx Ay BAx BAy A x yµ− − ≥ −  and ( )A x y A x y− ≤ − , then  
( ) 2 2 2

B BA x y A x yµ µ− ≥ − , hence ( ) 2,x y E∀ ∈ ;  

( )2 2, A Bx y Cx Cy A x yµ µ− − ≥ + − , so 2 0C A B Aµ µ µ≥ + > . Lemma 3.1 
confirms that, C is invertible, 1C Lip−

∗∈  and ( ) 121 1
C A BC Aµ µ µ

−∗− −≤ ≤ + . 
As A∗  is invertible, 

1 1
AA µ

−∗ −≤ ; then 
1

A C I BA
−∗ = +  is invertible,  

( ) 1 1I BA C A− − ∗+ = , so ( ) 1 1I BA A C
∗ ∗− −+ ≤ , which give (7). 

Lemma 3.5. Let A be linear, and let A, N I BA= +  be invertible, then 
( ),x a E E∗∀ ∈ × , the operator ( )aM x x B a Ax= + +  is invertible and 

( )1 1 1 1 .aM x N x A a A a− − − −= + −                    (8) 

Proof. Indeed, x E∀ ∈ , we have 

( )( )
( )( )

( )

1 1 1 1

1 1 1 1

1 1 1 ;

a aM M x N x A a B a Ax A a

N x A a BA x A a A a

N N x A a A a x

− − − −

− − − −

− − −

= + + + −

= + + + −

= + − =

 

and, 

( )
( ) ( )
( )

1 1 1

1 1 1 1 1

1 1 1 .

a a a aM M x M x B a AM x

N x A a BAN x A a A a

NN x A a A a x

− − −

− − − − −

− − −

= + +

= + + + −

= + − =

 

Definition 3.4. We say that, a normal FS [ ],A B : 
1) is Lipschitz continuous for the first inputs, if there are positive numbers 

11k  and 12k  such that 

11e e k u u′ ′− ≤ −  

and 

12 ,f f k u u′ ′− ≤ −  

where ( ) ( ), ,u v e f∗
 , ( ) ( ), ,u v e f∗ ′ ′

 . 
2) is Lipschitz continuous for both inputs, if there are positive numbers 11k , 

12k , 21k  and 22k  such that: 

11 12e e k u u k v v′ ′ ′− ≤ − + −  

and 

21 22 ,f f k u u k v v′ ′ ′− ≤ − + −  

where ( ) ( ), ,u v e f , ( ) ( ), ,u v e f′ ′ ′ ′
 . 

New, let a non linear FS [ ],A B  be. The main idea in this section is to linear-
ize [ ],A B  in the neighborhood of the zero. We then consider a linear FS 

0 0,A B    and prove that, if ( ) ( ), ,u v e f  and ( ) ( )0 0, ,u v e f  where 
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( ),u v E E∗∈ ×  with ,u v r≤  ( 0r > ) and ( ),e f , ( )0 0,e f  the respective 
solutions of [ ],A B  and 0 0,A B   , corresponding to the given ( ),u v E E∗∈ × . 
There exists 11 12 21, ,k k k  and 22k  positive real constants such that  

0
11 12e e k u k v− ≤ +  and 0

21 22f f k u k v− ≤ + . 
The inequalities above are given by theorem 3.1. To have suitable estimates, in 

the sense that the solutions of the two systems become sufficiently close. It is as-
sumed that, one of the two operators of [ ],A B  is linear, this is the subject of 
theorems 3.2 and 3.3. 

Before establishing the first linearization result of this paper, let us denote by 

rB  the closed ball of E, and rB∗  the closed ball of E∗ , which are centered in 
zero and of radius 0r > . 

Theorem 3.1. Assume that: 
1) A Lip∈ , such that there exist a linear 0 :A E E∗→ , 0a >  verifying 

0 A aµ< −  and 

( )0 , .rA A x a x x Bν− ≤ ∀ ∈                  (9) 

2) B Lip∗∈ , such that there exist a linear 0 :B E E∗ → , 0b >  verifying 

( ) ( )
0

1
,

A r
B B f b f f B

ν ∗
∗

+
− ≤ ∀ ∈               (10) 

where ( )2 1
1

A B A Aν µ µ µ
− −
∗−= + . 

3) ( )( ) 2
0B Ab a a Aµ µ

−∗− + − + > . 
Then 
a) [ ],A B  and 0 0,A B    are normal and Lipschitz continuous in the first 

input. 
b) if ( ), r ru v B B∗∈ × , and ( ) ( ), ,u v e f  for [ ],A B ; ( ) ( )0 0, ,u v e f  for 

0 0,A B   , we have 
0

11 12e e k u k v− ≤ +                    (11) 

and 
0

21 22f f k u k v− ≤ +                    (12) 

where ( )0
11k b A a Bκν ∗= + ; 12k bκ= ; ( )0 0

21k a A b A a Bν κν ∗= + + ; 

0
22k A bκ=  with ( ) ( )( ) 121 0

A B Aa b a Aκ µ µ µ
−−−= − − + − . 

Proof. Beginning by demonstrating (a). The linearity of 0A  and (9) implies 
that 0 0A = , and x E∀ ∈ , ( ) ( )0 0A x A A x Ax a A x∗≤ − + ≤ + , hence 

0A  is bounded and 0A a A ∗≤ + . As rx Bν∀ ∈ ,  

( )0 0, , ,x A x x Ax x A A x= − − ; 2, Ax Ax xµ≥ ,  

( ) ( ) 20 0,x A A x A A x x a x− ≤ − ≤ , then x E∀ ∈ , ( ) 20, Ax A x a xµ≥ − . 
Therefore 0 0AA

aµ µ≥ − > , returning to the lemma 3.1, 0A  is invertible. By 
the same arguments and since for any ( ),x f E E∗∈ × ; 

, ,, ,E E E Ef x x f∗ ∗= , 
we have, 0B  is bounded, 0B b B ∗≤ +  and 0 BB

bµ µ≥ − . Now, let’s pose 
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for ( ),x z E E∗∈ × , ( )zM x x B z Ax= + + ; zB x z Ax= +  and  

( )0 0 0
zM x x B z A x= + + ; 0 0

zB x z A x= + . It is clear that z zM I BB= + ,  
0 0 0
z zM I B B= + , 0

zB Aµ µ= > , 0 0 0
zB A

µ µ= > , zB A∗ ∗=  and 0 0
zB A

∗
= , 

these with (3) then give,  

( )( )2 2 2
0

zB B z B A B AB A b a a Aµ µ µ µ µ µ
− − −∗ ∗ ∗+ = + > − + − + > . By lemma  

3.2, zM  is invertible 1
zM Lip− ∈  and ( )2 1

1 1
z A B AM Aµ µ µ ν

− −∗ ∗− −≤ + = . 
Then corollary 2.1, implies that the FS [ ],A B  is normal. Since see (3), for 

( ) ( ), ,u v e f∗
 , ( ) ( ), ,u v e f∗′ ′ ′

  we have 1 1=
v v

e e M u M u∗ ∗
− −′ ′− − ;  

1 1
v v

f f AM u AM u∗ ∗
− −′ ′− = − , then 

1 1 1 ,zv v
e e M u M u M u u u uν∗ ∗

∗− − −′ ′ ′ ′− = − ≤ − ≤ −  

and 
1 1 1

1

v v v

v

f f AM u AM u AM u u

A M u u A u uν

∗ ∗ ∗

∗

∗− − −

∗∗ ∗−

′ ′ ′− = − ≤ −

′ ′≤ − ≤ −
 

where, 11k ν=  and 12k A ν∗=  in definition 3.1, (a); i.e. [ ],A B  is Lipschitz 
continuous for the first inputs. Using the same for 0

zM , we obtain  
( )( )

2

0 0 0 0

220 0 0
z

z B AB B B A
B A b a a Aµ µ µ µ µ µ

− −∗ − ∗+ = + > − + − + > . By lem-
ma 3.2, 0

zM  is invertible 0 1
zM Lip− ∈  and  

( ) ( )( )2

0 0 0

1 1210 1 1 0 0
z A B AA B A

M A a b a Aµ µ µ µ µ µ κ
− − −∗ −−− −  ≤ + ≤ − − + − = 

 
.  

Then corollary 2.1 with (3) imply that, the linear FS 0 0,A B    is normal, and 
for ( ) ( )0 0, ,u v e f∗

 , ( ) ( )0 0, ,u v e f∗′ ′ ′
 , we have 0 0 0 1 0 1

v v
e e M u M u∗ ∗

− −′ ′− = − ; 
0 0 0 1 0 0 1

v v
f f A M u A M u∗ ∗

− −′ ′− = − , then  
0 0 0 1 0 1 0 1 ,

v v v
e e M u M u M u u u uκ∗ ∗ ∗

∗− − −′ ′ ′ ′− = − ≤ − ≤ −  

and 
0 0 0 1 0 0 1 0 0 1

0 0 1 0

v v v

v

f f A M u A M u A M u u

A M u u A u uκ

∗ ∗ ∗

∗

∗− − −

∗−

′ ′ ′− = − ≤ −

′ ′≤ − ≤ −
 

where, 11k κ=  and 0
12k A κ=  in definition 3.1, (a); i.e. 0 0,A B    is 

Lipschitz continuous for the first inputs. 
To demonstrate (b), let 0 0N I B A= + , since 0A Lip∈  is linear with 

0 0
A

µ > , 0B Lip∗∈  is linear and 0 0

20 0
B A

Aµ µ
−

+ > . By lemma 3.2, 1N −   

exists, 1N Lip− ∈ , ( )0 0 0

121 1 0
A B A

N Aµ µ µ
−−− −≤ +  therefore 1N κ− ≤ . Let 

now, ( ), r rx z B B∗∈ × , 1
zM x w− = , it is obvious that  

1 1
z zw M x M x x rν ν

∗− −= ≤ ≤ ≤ , witch implies that rw Bν∈ . By lemma 3.5 
and (8), we have ( )1 0 1 1 1 1 1

0 0z z zM x M x M x N x A z A z− − − − − −− = − + + , then 

( )
( ) ( )
( )

1 0 1 1 1 1 1 1
0 0

1 1 1 1
0

1 1 1 1
0

1 1 0

z z z

z

z z

z

M x M x M x N x N A z A z
M x N x I N A z

N M N M x N N I A z
N M w Nw N B z

− − − − − − −

− − − −

− − − −

− −

− = − − +
= − + −

   = − − + −   
= − − +
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( )

( ) ( ) ( ) ( )
( )( ) ( )

1 0 0 0

1 0 0 0 0

1 0 0 0 .

N B z Aw B A w B z

N B z Aw B z Aw B z Aw B z A w

N B B z Aw B A A w

−

−

−

 = − + − − 
 = − + − + + + − + 
 = − − + + − 

 

As, ( )1z Aw z A w r A r A rν ν∗ ∗ ∗+ ≤ + ≤ + = + , then  

( )1 A r
z Aw B

ν∗
∗

+
+ ∈  hence 

( )( ) ( )

( )
( )

1 0 1 1 0 0 0

1 0

0

0
11 12 ,

z zM x M x N B B z Aw B A A w

N b z Aw B a w

b z b A B a x

b A a B x b z k x k z

κ ν

κν κ

− − −

−

∗

∗

 − ≤ − + + − 

 ≤ + + 
 ≤ + +  

≤ + + = +

   (13) 

New, if ( ), r ru v B B∗∈ × , and ( ) ( ), ,u v e f  for [ ] ( ) ( )0 0, ; , ,A B u v e f  
for 0 0,A B   , by (3) we have, 1 0 1

v ze e M u M u− −′− = −  and  
1 0 0 1

v zf f AM u A M u− −′− = − , to get (11) just replace x by u and z by v in (13). Fi-
nally, to have (12) and complete the demonstration of (b), it suffices to notice 
that 

( )
( )

( )

1 0 1 0 1 0 0 1

1 0 1 0 1 0 0 1

0 1 0 1 0 1

1 0 1 0 1 0
11 12

0 0
11 12 21 22 .

v v v z

v v v z

v v z

v v z

f f AM u A M u A M u A M u

AM u A M u A M u A M u

A A M u A M u M u

a M u A M u M u a u A k u k v

a A k u A k v k u k v

ν

ν

− − − −

− − − −

− − −

− − −

′− = − + −

≤ − + −

≤ − + −

≤ + − ≤ + +

= + + = +

 

The estimates (11) and (12) in theorem 3.1, can be improved if one of the op-
erators of FS [ ],A B  is linear. Starting with 

Theorem 3.2. Assume that: 
1) B ∗∈  with 0Bµ >  be linear and A Lip∈  with 0Aµ ≤ , such that 

there exist a linear 0 :A E E∗→ , 0a >  verifying 0 0
A

µ ≤  and 

( ) ( )
0

1, ,B rA A x a x x Bω ν+− ≤ ∀ ∈                (14) 

where ( ) 12
B AB Bω µ µ

−
= + . 

2) ( ) 2 0B A a Bµ µ+ − > . 
Then 
a) [ ],A B  and 0 ,A B    are normal and Lipschitz continuous in both inputs. 
b) if ( ), r ru v B B∗∈ × , and ( ) ( ), ,u v e f  for [ ],A B ; ( ) ( )0 0, ,u v e f  for 

0 ,A B   , we have 
0e e u B vλ λ− ≤ +                    (15) 

and 

( )( )0 0f f a A u B vω λ− ≤ + +               (16) 

where ( ) ( )0

1 13 2 2
B A B A

a B B Bλ µ µ µ µ
− −

= + + . 
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Proof. Let N I BA= + , 0 0N I BA= + , an in the proof of theorem 3.1 (a) we 
have 0 0A = , therefore 0 0N = . Also, 0A  is bounded, 0A a A ∗≤ + , 

0 0A A
aµ µ− ≤ ≤ , then 0A ∈ , since by (2) 2 2 0B A B a Bµ µ+ > ≥  we 

have see lemma 3.3, N is invertible, 1N Lip− ∈ , and 1N ω
∗− ≤ . Since B is line-

ar, then by the corollary 2.2, [ ],A B  is normal. By using (4), and because 
A Lip∈ , B Lip∗∈  and 1N Lip− ∈ , then [ ],A B  is Lipschitz continuous in 

both inputs. On the other hand, by (2), ( )0
2 2 0B B AA

B a Bµ µ µ µ+ > + − > , 
so lemma 3.3 implies that 0N  is invertible, 0 1N Lip− ∈ , and  

( )0

120 1
B A

N B B kµ µ
−

− ≤ + = . Always by the corollary 2.2 , 0 ,A B    is 
normal and Lipschitz continuous in both inputs. To demonstrate (b), let 

( )1 B rx B +∈  then ( )1 1N x N x x B rω ω∗− ≤ ≤ ≤ + , hence ( )
1

1 B rN x Bω
−

+∈ , 
by using (14) we have 

( )
( )

( )

1 0 1 0 1 0 1

0 1 0 1

0 1 0 1

1

.

N x N x N N N N x

N B A A N x

N B A A N x

k B a N x

ak B x xω λ

− − − −

− −

− −

−

− = −

= −

≤ −

≤

≤ =

            (17) 

Now, if ( ), r ru v B B∗∈ × , and ( ) ( ), ,u v e f  for [ ],A B ; ( ) ( )0 0, ,u v e f  
for 0 ,A B   , we have ( )1u Bv u B v B r− ≤ + ≤ + , then  

( )1 B rs u Bv B += − ∈  so by (4), in corollary 2.2 and (17) we get 

( )0 1 0 1e e N N s s u B vλ λ λ− −− = − ≤ ≤ +  

and 

( ) ( )
( )

( ) ( )

0 1 0 0 1

1 0 1 0 1 0 0 1

0 1 0 1 0 1

0

0 0 .

f f AN s A N s

AN s A N s A N s A N s

A A N s A N N s

a u Bv A u B v

a A u a A B v

ω λ λ

ω λ ω λ

− −

− − − −

− − −

− = −

= − + −

≤ − + −

≤ − + +

≤ + + +

 

The last linearization result in this work is to assume that the operator A in 
the FS [ ],A B  is linear. 

Theorem 3.3. Assume that 
1) Let A∈  with 0Aµ >  be linear and B Lip∈  with 0Bµ ≤ , such that 

there exist a linear 0 :B E E∗ → , 0b >  verifying 0 0
B

µ ≤  and 

( ) ( )1
0

1
, ,

AA r
B B f b f f B

ρ µ−
∗

+
− ≤ ∀ ∈                (18) 

where ( ) 12
A BA Aρ µ µ

−
= + . 

2) ( ) 2 0A B b Aµ µ+ − > . 
Then 
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a) [ ],A B  and 0,A B    are normal and Lipschitz continuous in both inputs. 
b) if ( ), r ru v B B∗∈ × , and ( ) ( ), ,u v e f  for [ ],A B ; ( ) ( )0 0, ,u v e f  for 

0,A B   , we have 
0 1

Ae e u vγ γµ−− ≤ +                       (19) 

and 
0 1

Af f A u A vγ γ µ−− ≤ +                   (20) 

where ( ) ( )0

1 13 2 2
A B A B

b A A Aγ µ µ µ µ
− −

= + + . 

Proof. By (18), we have 0 0B = , 0B b B ∗≤ +  furthermore B is bounded, 
and 0 0.B B

bµ µ− ≤ ≤  by lemma 3.1, A is bounded, then it is invertible, 
1A Lip−

∗∈ , 1 0
A

µ − ≥  and 1 1
AA µ− −≤ . The operators N I BA= + , 

0 0N I BA= + , they are such that: ( )2 2 0A B A bA b Aµ µ µ µ+ ≥ + − >  (see (2)) 
then, lemma 3.4 with (7) imply that N is invertible, 1N Lip− ∈  and 

( ) 121
A BN A Aµ µ ρ

−∗− ≤ + = . Likewise,  

( )0
2 2 0A A bB

A b Aµ µ µ µ+ ≥ + − >  (see (2)) then, lemma 3.4 with (7) imply  

that 0N  is invertible, 0 1N Lip− ∈  and ( )0

120 1
A B

N A Aµ µ η
−

− ≤ + = . 
Now, let's for ( ),x z E E∗∈ × , ( )zM x x B z Ax= + +  and 

( )0 0
zM x x B z Ax= + + . Since 1 0 1,N N− −  exist, A is linear and it is invertible, 

lemma 3.5 implies that, 1
zM −  and 0 1

zM −  exist. Moreover by (8), we have 

( )1 1 1 1
zM x N x A z A z− − − −= + −  and ( )0 1 0 1 1 1

zM x N x A z A z− − − −= + − . It’s easy to 
see that, 1 0 1,z zM M Lip− − ∈ ; 1 1

zM N ρ
∗ ∗− −= ≤  and 0 1 0 1

zM N η
∗− −= ≤ . 

Returning to corollary 2.1, [ ],A B  and 0,A B    are normal. Now, assume that 
for [ ],A B , ( ) ( ), ,u v e f  and ( ) ( ), ,u v e f′ ′ ′ ′

  it follows, by (3) that  

( ) ( )
( )

( )

1 1

1 1 1 1 1 1

1 1 1

11 ,

v ve e M u M u

N u A v A v N u A v A v

N u u A v v A v v

u u A v vρ ρ

− −
′

− − − − − −

∗− − −

−

′ ′− = −

′ ′ ′= + − − + +

′ ′ ′≤ − + − + −

′ ′≤ − + + −

 

and 

( )

( )( )
( ) ( )( )

1 1

1 1

1

1

1

1 1 .

v v

v v

f f u u A M u M u

u u A M u M u

u u A u u A v v

A u u A A v v

ρ ρ

ρ ρ

− −
′

− −
′

−

−

′ ′ ′− = − + −

′ ′≤ − + −

′ ′ ′≤ − + − + + −

′ ′≤ + − + + −

 

So, [ ],A B  is Lipschitz continuous in both inputs. We prove in the same way 
that 0,A B    is Lipschitz continuous in both inputs, the proof of a) is then 
complete. 

Now, if ( ), r ru v B B∗∈ × , and ( ) ( ), ,u v e f  for [ ],A B ; ( ) ( )0 0, ,u v e f  
for 0,A B   . Let 1y u A v−= +  then 1

Ay u vµ−≤ +  and 

( ) ( )1 1 1 1 11 1 AAN y A N u A v A A r A rρ ρ µ
∗− − − − −≤ + ≤ + ≤ +  
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then ( )1
1

1 AA r
AN y B

ρ µ−
− ∗

+
∈ . Using, (3) and (18) we have 

( )
( ) ( )
( )

( )

0 1 0 1 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 1

1 1 ,

v v

A A

e e M u M u N N y

N N N N y N B B AN y

N B B AN y b AN y b y

b u v u v

η η ρ

η ρ µ γ γµ

− − − −

− − − −

− − −

− −

− = − = −

= − = −

≤ − ≤ ≤

≤ + = +

 

therefore (19) is checked. Finally,  
0 1 0 0 1 1 0 1 1 ,v v v v Af f AM u A M u A M u M u A u A vγ γ µ− − − − −− = − ≤ − ≤ +  

hence (20) is established and the proof is finished. 
Example Reference [4]. Let n ∗∈ , ( )2

nE L +=   be, where ( )2L +  is the 
Lebesgue space, equipped with the natural inner product, then E is the Hilbert 
space. Let D be a real n n×  matrix, denote by ( ) { }0,1 ; 1nS ξ ξ= ∈ =  and 

( )
T

0,1
inf
S

d D
ξ

ξ ξ
∈

= , where Tξ  is the transposed of ξ . Let ( ) ( )( ),i jK t k t=  be 
n n×  matrix, with ( ) ( ) ( ), 1 2i jk t L L+ +∈    and let ( )K̂ iw  be the Fourier 
transform of ( )K t , (defined as 0 if 0t < ). Denote  

( )
( ) ( )( )TT

0,1

1 ˆ ˆinf inf
2 w S

k K iw K iw
ξ

ξ ξ
∈ ∈

= +


 and ( )( )ˆsup
w

K iwκ
∈

= Λ


, where ( )MΛ   

denotes the square root of the largest eigenvalue of the matrix TM M , where 
M  is the complex conjugate martix of M (note that 0k−∞ < ≤  and 
0 κ≤ < +∞ ). Furthermore, let : n nψ →   be defined by: it exists 0α >  
such that ( ) ( )ψ ξ ψ ξ α ξ ξ′ ′− ≤ − , for every , nξ ξ ′∈ ; ( )0 0ψ =  (*). 

And ( ) ( )( ) ( )T
22,

1inf 0
n

a
ξ ξ
ξ ξ

ψ ξ ψ ξ ξ ξ
ξ ξ′∈

′≠

′ ′− − = ≤
′−

. Now define operators 

A and B as follows, for any x E∈ , ( )( ) ( ) ( ) ( )
0

d
t

Ax t Dx t K t xτ τ τ= + −∫ ; 0t ≥ , 

and ( )( ) ( )( )Bx t x tψ= . Moreover, let 
( )

T
0 0,1

inf 0
S

a F
ξ

ξ ξ
∈

= ≤ , where F is the  

constant n n×  matrix, suppose that, it exists 0β >  such that 
( ) Fψ ξ ξ β ζ− ≤ , nξ∀ ∈  (**) and define 0 :B E E→  by:  

( )( ) ( )0B x t Fx t=  when 0t ≥ . Clearly, A is linear and bounded, using 
Parseval’s equality and the number k, we have A∈ , 0A d kµ ≥ + > . Also, it 
is known [12] that A D κ≤ + . On the other hand (*) shows that B is contin-
uous, it is also easy to see that, B∈ , 2 0B aµ = ≤ . Thus, if  

( )( )2
2 0d k a Dβ κ+ + − + > , we have, ( ) 2 0A B Aµ µ β+ − > . In the other 

hand, 0 0 0
B

aµ = ≤ , ( )0B B x b x− ≤  x E∀ ∈  by virtue of (**), then by  
theorem 3.3, [ ],A B  and 0,A B    are normal and Lipschitz continuous in both 

inputs, with 

( ) 10e e u d k vδ δ −− ≤ + +  

and 

( ) ( )( ) 10f f D u D d k vδ κ δ κ −− ≤ + + + +  
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whenever ( ), r ru v B B∗∈ × , and ( ) ( ), ,u v e f  for [ ],A B ; ( ) ( )0 0, ,u v e f  
for 0,A B   , with  

( ) ( ) ( )
1 13 2 2

0BD d k D d k a Dδ α κ µ κ κ
− −

   = + + + + + + +      
. 

4. Conclusion 

The aim of this work is to extend the results obtained in [4] [5], concerning the 
normality, Lipschitz continuity, of a non linear feedback system described by the 
monotone maximal operators, defined on real reflexive Banach spaces. In addi-
tion, the results of approximation of the solutions of the feedback system as-
sumed to be nonlinear, by solutions of another linear are established. These 
types of systems find their uses in several fields such as: control theory, network 
theory, solving the Hammerstein equation... etc. The techniques used are based, 
on the surjectivity theorem, of the monotone maximal operator and 
hemicontinuous, defined on real reflexive Banach spaces [14]. 
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