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) ® 1. Introduction

For many years, the relationship between growth rate and density for population

has been the object of discussion and experiment, and researchers have proposed
many mathematical models to describe this relationship. In 1963, Smith [1] used
continuous culture techniques to study a relatively complex adaptation of the
metazoan daphnia population. According to the experimental data, the rela-
tionship between the specific growth rate and population density of daphnia was
observed to be inconsistent with the prediction of the Logistic differential equa-
tion, that is, the relationship is not linear. Smith proposed the following model
to describe what he observed
dx

E:xH(x), (1)

where H(x) isaverage growth rate of population and
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H =
(x)=r| 4=
k+—x
c
kis the mass of xat saturation, ris the growth rate of x without food restriction,
c is the replacement rate of x at saturation. In 2020, Liu et al based on Smith
model (1) and considering linear yield, proposed the following model (see [2])

E=x[m—h], 2)

dt k + bx

where A (>0) is a linear harvest rate and b = r/c. They studied phenomena such
as harvest behavior and equilibrium bifurcation caused by Allee effects.

Since diffusion can significantly change the spatial distribution of species, in
recent years, many researchers have paid attention to the model with diffusion
effects (see [3] [4] [5]). For example, Meng et al discussed the discrete popula-

tion diffusion model
t
iz+1 _ p:ui - +dA2;uit—l
I+qu;

under the Dirichlet boundary condition (see [4]) of
/u(t) =0= /urtn+1 (3)
and studied the existence of steady-state solutions and bifurcation of the model.
In this paper, inspired by papers [2] and [4], we will consider the diffusion
model of model (2)
r(k - ﬂ.’)
t+1 t ! 2t
oy | ———2L—h|+dA U 4
i luz k + b,ul’ luz—l ( )
where d >0 is the diffusion coefficient, te Z* = {0,1,2,- . } , A? isthe second
order difference operator, and A’y =, —2u + ', ie€{l,2,---,m}. Sup-
posing that the Dirichlet boundary condition (3) is as g, =0=; and binary

variables as
X, =i, y=p, teZ ={0,1,2,--},

then, we rewrite model (4) (with replacing 2 with £ as the following two-di-
mensional discrete time element population model
r(k-x,)

- -2
T R

xn+l = xn + 5xn [
(5)

r k_yn
Vor1 =Vu +5yn[l({+—byn)—hj+d(xn -2y,)s

where neZ" = {0,1,2,-~-} and & >0. Obviously, the system (5) has three fixed
points: zero fixed point E, =(0,0) and two positive fixed points

E, :[1,2—3(%4}} E, :{2—3[%—;;}1} :
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In the following, the hyperbolic and non-hyperbolic properties of three fixed
points are analyzed, and the flip, transcritical and pitchfork bifurcations gener-

ated at E are also studied.

2. Analysis of Hyperbolic and Non-hyperbolic Cases

We write the model (5) as a plane map on R’ as follows

r(k—x)
1-8h-2d Ox——+d
( )x+6x i +dy

L) k=), | ©
Y (=h-2d)y+ 5yt iy

k+by

For any fixed point (xi, yi) , the Jacobian matrix of (6) is

art

where A4, =1-6(h—r)-2d,and

e+d d
J(Ei)z d e+ B,

where
e—l—Sh-2d. Ai:5r(k—x[)_5rk(b+1)2xl.
k+bx,‘ (k+bx[)
3 _5r(k—y,.)_5rk(b+1)yi
L k+by, (kb))
for i=1,2.

2.1. The Property of the Fixed Point E,

In order to discuss the properties of £, we define

B=h-r, L,={d|d=2-3B), L‘,Z:{d|d:§(2—§ﬂ)},
L,={d|d=—-38,8<0}, £4:{d|d:—%5ﬁ,ﬁ<0},
DI:{(d,ﬂ)|0<d<—§5ﬁ,ﬂ<O},

Dz{(d,ﬁ)|0<§(2—5ﬁ)<d<—5,B,ﬁ<0},

D, ={(d.B)|d >2-58>0},
ICI:{(d,ﬁ)|0<—5ﬂ<d<%(2—6ﬂ),ﬂ£0},

K, = {(d,p’) |0<d < min{—é’ﬂ,%(z - 5ﬂ)}},
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X, ={(d, ,B)|max{0,—5,8,%(2—c’)‘ﬁ)}<d < 2—5ﬂ}.

Theorem 2.1 The fixed point £, has the following properties:

1) when (d,f)eD,,;, E, isan unstable node;
2) when (d,ﬂ) € K, E, isa stable node;
3) when (d,ﬂ) €K, 5, E,is a saddle;

4) when (d,,B) el (i =1, 2,3,4) » By is non-hyperbolic.
Proof. The characteristic equation corresponding to the Jacobian matrix of
fixed point E, is
F(2)=[A-(1-88-2d)] -d*.
Thus, we get
A=1-80—-d, A, =1-5f-3d,
and
A >A,.
Therefore, we easily prove that
1) when (d,)eD,,,we have |ﬁl| >1, |ﬂ,z| >1. Thus E is an unstable node;
2) when (d,B)eK;,wehave |4|<1, |4,|<1.Thus E,is a stable node;
3) when (d,)ek,;, we have |/11|>1, |Z,Z|<1 or |/11|<1, 12|>1. Thus E,
is astable node saddle point;
4) when (d,ﬂ) IS El(l :1,2,3,4), we have |21| =1 or |ﬂ/2| =1. Thus E, is a
non-hyperbolic fixed point.

2.2. The Properties of Fixed Points E,(i=1,2)

In order to discuss the stabilitiesof fixed point E, (i =1,2), we give the following
lemma of which the proof is obvious and will be omitted.

Lemma 2.1 Suppose F(A)=2A’+QA+S and 4,4, aretwo roots of
F(2)=0.Then

1) when —2<Q<2, Q®>4S and F(-1)>0,then 0-1<4,<1;

2) when Q<-2 and Q2 >4§, then A>T

3) when O>2 and Q2 >4§, then Ay <—13

4)when F(1)>0 and F(-1)<0, then |21|>1 and |ﬂ,z|<l;

5)when F(1)=0 and Q#0,-2,then 4 =1 and A, #1;

F(1)

6) when ( =0 and Q=0 or-2,then Anr=1;
7) when F(—l):O and O#2,then 4, =-1 and A, #-1;
8) when F(—l)zO and 0=2,then A, =—1;

9) when 0<S<1 and Q®<4S, then 4, is a pair of complex roots and

|ﬁm|<1;

10) when S$>1 and Q®<4S, then A, is a pair of complex roots and

|ﬂ12| >1;

11) when §=1 and -2<(Q<2, then 4, is a pair of complex roots and

|j'1,2|:1'

Let
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= (4+8), @ =(e+4)(e+B),

1
or
for i=12.

Theorem 2.2 All of topology types for the fixed points E,(i=1,2) are listed
in Table 1.

Proof. Thecharacteristic equation corresponding to the Jacobian matrix of
fixed point E|, is

F(A)=2*+04+8=0,
where

Q=-tr(J(E,))=0ry 2, S=det(J(E,))=0,—d*,

for i=1,2.
Therefore, from lemma 2.1, we easily obtain the conclusion of Table 1 of the

theorem.

3. Analysis of Bifurcation at Fixed Point Ej

Theorem 3.1 When (d,8)e L ={d|d=2-3B}, system(5) undergoes a su-
percritical flip bifurcation at point E|, (0,0), ie., as Jf goes from less than 2
to more than 2, system (5) bifurcates out a stable period-2 orbit at the fixed
point E,(0,0).

Proof When (d,f) e, ={d|d =2—-06B}, characteristic values 4 =-1,
A, ==5+29f and |Az| #1. Denote ¢=d+9f—2 and select & as the bi-

furcation parameter. Therefore the mapping (6) becomes

Table 1. The topology types for the fixed points E, (i=1,2)

conditions topology types

2e-2 2e+2
<K < >
or or

max {O,&r,ul. —2e+d? —1} <o, Si(&ry, —2¢) +d?

4(1 —d2)+ 2¢? stable node

or g <———-~t
or

max{dz,%(é'ry, —26)2 +d2}<a)l. <l+d’

,u,<26_2, 1+d’ <o, Si(5rﬂi726)2+d2
r
unstable node
or ,u,>26+2, 1+d2<a)iSi(é‘r,ui—Ze)H-d2
_ g2
,u,v>%, 0<w, <Sru, —2e+d’ -1 saddle
r
®, > max {1 +d2,%(5ryi —262)+d2} unstable focus

w,=8ry, —2e+d* -1

2e_2<,u‘.<2e+2a)1 41
or or

non-hyperbolic
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—(g+d+5r+l)x+5xr(k_x)+dy
k +bx

. (7)
r(k—y) +dx
k+by

b

The Taylor expansion of mapping (7) is

—(e+d+6r+1)y+5y

~6r(b+1)

(;)H(_g_dd_l —g—dd—lj(;]+ E; <0([(x3)f). ®

k

We get the Jacobian matrix

—c—d-1
By an)

characteristic values
A=—-1, L=-6-2d -1
and the corresponding eigenvectors
(L1)", (L,-1)". ©)
From the eigenvectors the following transformation is obtained
X I 1\u
Wat

and it can transform (8) into the following mapping (¢ is treatedas an indepen-

dent variable)
—5r(b+l) s
u -1 0 0 u k (” v )
vie| 0 -&-2d-1 0|l v |+ —25r(b+1) +O(|(u,v)|3). (10)
e 0 0 1) e A

0

From center manifold theorem, the stability of mapping (10) in small neigh-
borhood of (u,v)=(0,0) can be determined by single parameter mapping,
which satisfies

W, (0,0)={(w.v.€) € R* |v=h(u.£),h(0,0) = 0,Dh(0,0) =0} . (11)

loc
Suppose the central manifold is as follows

v="h(u,¢)=Au’ +Bue+C52+0(|(u,e)|3). (12)

Then
—5r(b + 1) (

h((—g—l)u+ W+ (u,g)),g]
wuh(u,e) + O(|(u,$)|3 )

(13)
=(-e-2d -1)h(u,&)+

From (10), (12) and (14), we get
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A=B=C=0.
Then
v=h(u,2)=0(|(we) ). (14)
The mapping (10) restricted to the central manifold (14) is
T:ul—)f(u,£)=(—g—l)u+wuz+0(|(u,g)|3). (15)

Thus

de ou*  Oude

1(e2fY 1(f 2577 (b+1)’
L) 2L 2R L,
2\ Ou 3\ ou k

(00

Therefore, from [6] we know that system (5) undergoes a supercritical flip bi-

7(0,0)=0, 21(0,0):_1, [152f+2 azfj — 220,
“ (0.0)

furcation at point £, (0,0).

Theorem 3.2 When (d,ﬂ)eﬁzz{d|d=§(2—5ﬂ)} and d=#1, o=-1,

system(5) undergoes a subcritical flip bifurcation at point £, (0,0) .

Proof. When (d,ﬁ)e[zz{d|d:§(2—§ﬂ)} and d#1, 68#-1,wehave

4:%(1_25@, A =1

and |/11| #1. Similar to Theorem 3.1, the proof of this theorem can be obtained
and will be omitted.

Theorem 3.3 When (d,8)e L, ={d|d=-6,8<0} and d=1, system(5)
undergoes atranscritical bifurcation at point £, (0,0).
Proof. When (d,ﬂ)e L, :{d |d :—§ﬁ,,3<0} and d #1, we have

A =1, |4|=[1+258]=1.

Set d =—0ff+¢ and chose ¢ as the bifurcation parameter, thus mapping (6)

is written in the following form

_5r(b+l)(u2+v2)

k

u l-¢ 0 0\ u

vik| 0 1-g-2d 0 v|+ Mm} (16)
i .

£ 0 0 c)\e 0

Similar to the proof of theorem 3.1, one-dimensional equations under the re-

striction of a central manifold is obtained

T:ul—)f(u,&‘):(l—é‘)u+mu2+

o(|(we))- (17)
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We have
£(0,0)=0, —u(o,o)_— , =—(0,0)=0,
62f

-26r(b+1 o f
L (002001 2

0,0 3
( ) k ouds

(0,0)=—1%0.

Therefore, from [7] we know that system (5) undergoes atranscritical bifurca-
tion at point £, (0,0).

Theorem 3.4 When (d,B)eL, = {d |d = —%5,8,/3 < O} , system(5) under-
goes a pitchfork bifurcation at point £,.

Proof. When (d,f)eL, :{d |d :—ééﬂ,ﬂ<0}, we have

A :1-%5/3, A =1.

Set d :é(—é)‘ﬁ +¢) and chose ¢ as the bifurcation parameter, thus mapping
(6) is written in the following form

—5r(b+1)( ) 2)

wY (2d-s+1 0 O\(u) | x5 TV
= 0 —+1 Of|v|+ —2§r(b+1)uv . (18)
& 0 0 )¢ k

0

Similar to the proof of theorem 3.1, one-dimensional equations under the re-
striction of a central manifold is obtained

5 (b+1)
T:ul—)f(u,g):(—e+l)v+—%v3+0(|(u,$)|3). (19)

Then we have
of of
0,0)=0, =—(0,0)=1, =—(0,0)=0,
7(0.0)=0. Z(0.0)-1. L(00)
2.2 2
66°r (b+1) 20

o’f of of
—(0,0)=0, ——(0,0)=-1#0, —(0,0)=—

o’ " Oude
Therefore, from [8] we know that system (5) undergoes a pitchfork bifurcation
at point £, (0,0).

Theorem 3.5 When d=1 and Jf =-1, system (5) undergoes fold-flip bifur-

cation at point E.
Proof When d=1 and 6f=-1,wehave A =1, 4, =-1.Let

g=d-1, r=9f+1

and chose g and ras the bifurcation parameter. Then mapping (6) may be

. (—2q—r—§r)x+é'x%+(q+l)y
[yjH r(k-y) . (20)
(—2q—r—5r)y+5ym+(q+l)x
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The Taylor expansion of mapping (20) is

-or(b+1) ,
x

X —2g-r q+1 \(x k 3
[yj'_)( g+1 —261—'J[yj+ —or(b+1) #0fef). v
y
k

We get the Jacobian matrix

J(EO)Z(—Zq—r g+1 J

g+l 2q-r
The characteristic values of J(E,) are
A=—q-r+l, A, =-3g-r—1
and the corresponding eigenvectors are
SN BET)
which satisfy
J(Eo)ql =44, J(EO)qz =049,
J(E) p=hp J(E) pr=Apss
(P1a)=(Pr:a0,) =1, {P1:a,) ={P1.q,) =0,

where <,> is scalar product. Therefore, any vector X =(x, y)T can be uni-

quely expressed as
X =84 +6:4
where & and &, can be calculated by the following equation
{51 =(p.x),
&= < )2 x>.

Then the mapping (21) can be rewritten in the following form with the new

coordinates & and &,

1 1
& B +1 0 g _gzo§12 +_g02§22 3
(é]H[ 0 5 —J(é} . hngé! +0(|(§1’§2)| ) (22)
where
ﬂl =—q-r, ﬁz =_3q_r>
= —25r(b+1)’ g, = —25r(b+1)’ = —§r(b+1) 0,
k k k

&1 =My =hy, =& :hij =0, fori+ j=3.
Then from the result of [9] we know that system (5) undergoes Fold-flip bifurca-
tion at point £,
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