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Abstract 
In this paper, the dynamical properties of Smith type diffusion model with 
Dirichlet boundary conditions are studied. The properties of hyperbolic fixed 
points and non-hyperbolic fixed points of the model are analyzed. By using 
the central manifold theorem, the bifurcation phenomenon of the model is 
studied. The results show that flip, transcritical, pitchfork and Fold-flip bi-
furcations exist at non-hyperbolic fixed points. 
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1. Introduction 

For many years, the relationship between growth rate and density for population 
has been the object of discussion and experiment, and researchers have proposed 
many mathematical models to describe this relationship. In 1963, Smith [1] used 
continuous culture techniques to study a relatively complex adaptation of the 
metazoan daphnia population. According to the experimental data, the rela-
tionship between the specific growth rate and population density of daphnia was 
observed to be inconsistent with the prediction of the Logistic differential equa-
tion, that is, the relationship is not linear. Smith proposed the following model 
to describe what he observed 

( )d
d
x xH x
t
= ,                           (1) 

where ( )H x  is average growth rate of population and  
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( ) k xH x r rk x
c

 
 −

=  
 + 
 

 

k is the mass of x at saturation, r is the growth rate of x without food restriction, 
c is the replacement rate of x at saturation. In 2020, Liu et al. based on Smith 
model (1) and considering linear yield, proposed the following model (see [2]) 

( )d
d

r k xx x h
t k bx

− 
= − + 

,                      (2) 

where h (>0) is a linear harvest rate and b = r/c. They studied phenomena such 
as harvest behavior and equilibrium bifurcation caused by Allee effects. 

Since diffusion can significantly change the spatial distribution of species, in 
recent years, many researchers have paid attention to the model with diffusion 
effects (see [3] [4] [5]). For example, Meng et al. discussed the discrete popula-
tion diffusion model  

1 2
11

t
t ti
i it

i

p d
q
µ

µ µ
µ

+
−= + ∆

+
 

under the Dirichlet boundary condition (see [4]) of 

0 10t t
mµ µ += =                               (3) 

and studied the existence of steady-state solutions and bifurcation of the model. 
In this paper, inspired by papers [2] and [4], we will consider the diffusion 

model of model (2) 

( )1 2
1

t
it t t

i i it
i

r k
h d

k b

µ
µ µ µ

µ
+

−

 −
 = − + ∆
 + 

                (4) 

where 0d >  is the diffusion coefficient, { }0,1,2,t Z +∈ =  , 2∆  is the second 
order difference operator, and 2

1 1 12t t t t
i i i iµ µ µ µ− + −= − +∆ , { }1,2, ,i m∈  . Sup-

posing that the Dirichlet boundary condition (3) is as 0 30t tµ µ= =  and binary 
variables as 

2
t

tx µ= , 1
t

ty µ= , { }0,1,2,t Z +∈ =  , 

then, we rewrite model (4) (with replacing n with t) as the following two-di- 
mensional discrete time element population model 

( ) ( )

( ) ( )

1

1

2 ,

2 ,

n
n n n n n

n

n
n n n n n

n

r k x
x x x h d x y

k bx

r k y
y y y h d x y

k by

δ

δ

+

+

  −
= + − + − +  

+  


 − = + − + −  + 

          (5) 

where { }0,1,2,n Z +∈ =   and 0δ > . Obviously, the system (5) has three fixed 
points: zero fixed point ( )0 0,0E =  and two positive fixed points 

( ) ( )
1 2

1 1
1,2 , 2 ,1

r k r k
E h E h

d k b d k b
δ δ   − −   

= − − = − −         + +      
. 
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In the following, the hyperbolic and non-hyperbolic properties of three fixed 
points are analyzed, and the flip, transcritical and pitchfork bifurcations gener-
ated at E0 are also studied. 

2. Analysis of Hyperbolic and Non-hyperbolic Cases 

We write the model (5) as a plane map on 2  as follows 

( ) ( )

( ) ( )

1 2

1 2

r k x
h d x x dy

x k bx
r k yy

h d y y dx
k by

δ δ

δ δ

 − 
− − + +   +    −  − − + + 

+ 

 .             (6) 

For any fixed point ( ),i ix y , the Jacobian matrix of (6) is  

( ) 0
0

0

A d
J E

d A
 

=  
 

 

where ( )0 1 2A h r dδ= − − − , and 

( ) i
i

i

e A d
J E

d e B
+ 

=  + 
 

where 

1 2e h dδ= − − , 
( ) ( )

( )2

1i i
i

i i

r k x rk b x
A

k bx k bx

δ δ− +
= −

+ +
,  

( ) ( )
( )2

1i i
i

i i

r k y rk b y
B

k by k by

δ δ− +
= −

+ +
 

for 1,2i = . 

2.1. The Property of the Fixed Point E0 

In order to discuss the properties of E0, we define 

{ } ( )1 2
1, | 2 , | 2 ,
3

h r d d d dβ δβ δβ = − = = − = = − 
 

   

{ }3 4
1| , 0 , | , 0 ,
3

d d d dδβ β δβ β = = − < = = − < 
 

   

( )1
1, | 0 , 0 ,
3

d dβ δβ β = < < − < 
 

  

( ) ( )2
1, | 0 2 , 0 ,
3

d dβ δβ δβ β < − < < − < 
 

  

( ){ }3 , | 2 0 ,d dβ δβ= > − >  

( ) ( )1
1, | 0 2 , 0 ,
3

d dβ δβ δβ β = < − < < − ≤ 
 

  

( ) ( )2
1, | 0 min , 2 ,
3

d dβ δβ δβ  = < < − −  
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( ) ( )3
1, | max 0, , 2 2 .
3

d dβ δβ δβ δβ  = − − < < −   
  

  

Theorem 2.1 The fixed point E0 has the following properties: 
1) when ( ) 1,2,3,d β ∈ , E0 isan unstable node; 
2) when ( ) 1,d β ∈ , E0 isa stable node; 
3) when ( ) 2,3,d β ∈ , E0 is a saddle; 
4) when ( ) ( ), 1,2,3,4id iβ ∈ = , E0 is non-hyperbolic. 
Proof. The characteristic equation corresponding to the Jacobian matrix of 

fixed point E0 is 

( ) ( ) 2 21 2F d dλ λ δβ= − − − −   . 

Thus, we get 

1 21 , 1 3 ,d dλ δβ λ δβ= − − = − −  

and 

1 2.λ λ>  

Therefore, we easily prove that 
1) when ( ) 1,2,3,d β ∈ , we have 1 1λ > , 2 1λ > . Thus E0 is an unstable node;  
2) when ( ) 1,d β ∈ , we have 1 1λ < , 2 1λ < . Thus E0 is a stable node;  
3) when ( ) 2,3,d β ∈ , we have 1 1λ > , 2 1λ <  or 1 1λ < , 2 1λ > . Thus E0 

is astable node saddle point; 
4) when ( ) ( ), 1,2,3,4id iβ ∈ = , we have 1 1λ =  or 2 1λ = . Thus E0 is a 

non-hyperbolic fixed point. 

2.2. The Properties of Fixed Points ( )iE i 1,2=  

In order to discuss the stabilitiesof fixed point ( )1,2iE i = , we give the following 
lemma of which the proof is obvious and will be omitted. 

Lemma 2.1 Suppose ( ) 2F Q Sλ λ λ= + +  and 1 2,λ λ  are two roots of  
( ) 0F λ = . Then 
1) when 2 2Q− < < , 2 4Q S≥  and ( )1 0F − > , then 1,20 1 1λ− < < ; 
2) when 2Q < −  and 2 4Q S≥ , then 1,2 1λ > ; 
3) when 2Q >  and 2 4Q S≥ , then 1,2 1λ < − ; 
4) when ( )1 0F >  and ( )1 0F − < , then 1 1λ >  and 2 1λ < ; 
5) when ( )1 0F =  and 0, 2Q ≠ − , then 1 1λ =  and 2 1λ ≠ ; 
6) when ( )1 0F =  and 0Q =  or −2, then 1,2 1λ = ; 
7) when ( )1 0F − =  and 2Q ≠ , then 1 1λ = −  and 2 1λ ≠ − ; 
8) when ( )1 0F − =  and 2Q = , then 1,2 1λ = − ; 
9) when 0 1S< <  and 2 4Q S< , then 1,2λ  is a pair of complex roots and 

1,2 1λ < ; 
10) when 1S >  and 2 4Q S< , then 1,2λ  is a pair of complex roots and 

1,2 1λ > ; 
11) when 1S =  and 2 2Q− < < , then 1,2λ  is a pair of complex roots and 

1,2 1λ = . 
Let 
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( )1
i i iA B

r
µ

δ
= − + , ( )( )i i ie A e Bω = + + ,  

for 1,2i = . 
Theorem 2.2 All of topology types for the fixed points ( )1,2iE i =  are listed 

in Table 1. 
Proof. Thecharacteristic equation corresponding to the Jacobian matrix of 

fixed point 1,2E  is 
( ) 2 0F Q Sλ λ λ= + + = , 

where 

( )( )tr 2i iQ J E r eδ µ= − = − , ( )( ) 2det i iS J E dω= = − , 

for 1,2i = . 
Therefore, from lemma 2.1, we easily obtain the conclusion of Table 1 of the 

theorem. 

3. Analysis of Bifurcation at Fixed Point E0 

Theorem 3.1 When ( ) { }1, | 2d d dβ δβ∈ = = − , system(5) undergoes a su-
percritical flip bifurcation at point ( )0 0,0E , i.e., as δβ  goes from less than 2 
to more than 2, system (5) bifurcates out a stable period-2 orbit at the fixed 
point ( )0 0,0E . 

Proof. When ( ) { }1, | 2d d dβ δβ∈ = = − , characteristic values 1 1λ = − , 

2 5 2λ δβ= − +  and 2 1λ ≠ . Denote 2dε δβ= + −  and select ε  as the bi-
furcation parameter. Therefore the mapping (6) becomes 
 
Table 1. The topology types for the fixed points ( )1, 2iE i =  

conditions topology types 

2 2 2 2
i

e e
r r

µ
δ δ
− +

< < , 

{ } ( )22 21max 0, 2 1 2
4i i ir e d r e dδ µ ω δ µ− + − < ≤ − +  

stable node 
or 

( )2 24 1 2
i

d e
r

µ
δ

− +
< , 

( )22 2 21max , 2 1
4 i id r e d dδ µ ω − + < ≤ + 

 
 

2 2
i

e
r

µ
δ
−

< , ( )22 211 2
4i id r e dω δ µ+ < ≤ − +  

unstable node 
or 2 2

i
e

r
µ

δ
+

> , ( )22 211 2
4i id r e dω δ µ+ < ≤ − +  

22 1
i

e d
r

µ
δ
+ −

> , 20 2 1i ir e dω δ µ< < − + −  saddle 

( )2 2 21max 1 , 2
4i id r e dω δ µ > + − + 

 
 unstable focus 

22 1i ir e dω δ µ= − + −  
non-hyperbolic 

 22 2 2 2 1i i
e e d

r r
µ ω

δ δ
− +

< < = +  
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( ) ( )

( ) ( )

1

1

r k x
d r x x dy

x k bx
r k yy

d r y y dx
k by

ε δ δ

ε δ δ

 − 
− + + + + +   +    −  − + + + + + 

+ 

 .                  (7) 

The Taylor expansion of mapping (7) is 

( )

( )
( )( )

2

3

2

1
1

,
1 1

r b
xx d d x k O x y

y d d y r b
y

k

δ
ε

ε δ

− + 
 − − −      + +    − − −  − +    
 
 

 .    (8) 

We get the Jacobian matrix 

( )0

1
1

d d
J E

d d
ε

ε
− − − 

=  − − − 
, 

characteristic values  

1 21, 2 1dλ ε λ ε= − − = − − −  

and the corresponding eigenvectors  

( ) ( )1,1 , 1, 1τ τ− .                         (9) 

From the eigenvectors the following transformation is obtained 

1 1
1 1

x u
y v

    
=    −    

 

and it can transform (8) into the following mapping (ε is treatedas an indepen-
dent variable) 

( ) ( )
( ) ( )( )

2 2

3

1
1 0 0

0 2 1 0 ,2 1
0 0 1

0

r b
u vu u k

v d v O u vr b
uv

k

δ
ε

ε δ
ε ε

− + 
+ − −          − − − + + − +          

       
 

 . (10) 

From center manifold theorem, the stability of mapping (10) in small neigh-
borhood of ( ) ( ), 0,0u v =  can be determined by single parameter mapping, 
which satisfies 

( ) ( ) ( ) ( ) ( ){ }30,0 , , | , , 0,0 0, 0,0 0locW u v R v h u h Dhε ε= ∈ = = = .      (11) 

Suppose the central manifold is as follows 

( ) ( )( )32 2, ,v h u Au Bu C O uε ε ε ε= = + + + .              (12) 

Then 

( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

2 2

3

1
1 , ,

2 1
2 1 , , ,

r b
h u u h u

k

r b
d h u uh u O u

k

δ
ε ε ε

δ
ε ε ε ε

− + 
− − + + 

 
− +

= − − − + +

     (13) 

From (10), (12) and (14), we get  
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0A B C= = = . 

Then 

( ) ( )( )3
, ,v h u O uε ε= = .                    (14) 

The mapping (10) restricted to the central manifold (14) is 

( ) ( ) ( ) ( )( )321
: , 1 ,

r b
T u f u u u O u

k
δ

ε ε ε
− +

= − − + + .      (15) 

Thus 

( ) ( )
( )

2 2

2
0,0

0,0 0, 0,0 1, 2 2 0,f f f ff
u uuε ε

 ∂ ∂ ∂ ∂
= = − + = − ≠ ∂ ∂ ∂ ∂∂ 

 

( )

( )2 22 22 3

2 3 2

0,0

2 11 1 0.
2 3

r bf f
u u k

δ  +   ∂ ∂ + = ≠   ∂ ∂     
 

Therefore, from [6] we know that system (5) undergoes a supercritical flip bi-
furcation at point ( )0 0,0E . 

Theorem 3.2 When ( ) ( )2
1, | 2
3

d d dβ δβ ∈ = = − 
 

  and 1d ≠ , 1δβ ≠ − , 

system(5) undergoes a subcritical flip bifurcation at point ( )0 0,0E . 

Proof. When ( ) ( )2
1, | 2
3

d d dβ δβ ∈ = = − 
 

  and 1d ≠ , 1δβ ≠ − , we have 

( )1 2
1 1 2 , 1
3

λ δβ λ= − = −  

and 1 1λ ≠ . Similar to Theorem 3.1, the proof of this theorem can be obtained 
and will be omitted. 

Theorem 3.3 When ( ) { }3, | , 0d d dβ δβ β∈ = = − <  and 1d ≠ , system(5) 
undergoes atranscritical bifurcation at point ( )0 0,0E . 
Proof. When ( ) { }3, | , 0d d dβ δβ β∈ = = − <  and 1d ≠ , we have 

1 21, 1 2 1λ λ δβ= = + ≠ . 

Set d δβ ε= − +  and chose ε as the bifurcation parameter, thus mapping (6) 
is written in the following form 

( ) ( )
( )

2 21

1 0 0
2 1

0 1 2 0
0 0 0

r b
u v

ku u
r b

v d v uv
k

δ

ε
δ

ε
ε ε ε

− + 
+ 

 −    
 − +    − − +      
     

      
 
 

 .      (16) 

Similar to the proof of theorem 3.1, one-dimensional equations under the re-
striction of a central manifold is obtained 

( ) ( ) ( ) ( )( )321
: , 1 ,

r b
T u f u u u O u

k
δ

ε ε ε
− +

= − + + .       (17) 
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We have 

( ) ( ) ( )0,0 0, 0,0 1, 0,0 0,f ff
u ε
∂ ∂

= = =
∂ ∂

 

( ) ( ) ( )
2 2

2

2 1
0,0 0, 0,0 1 0.

r bf f
k uu

δ
ε

− +∂ ∂
= ≠ = − ≠

∂ ∂∂
 

Therefore, from [7] we know that system (5) undergoes atranscritical bifurca-
tion at point ( )0 0,0E . 

Theorem 3.4 When ( ) 4
1, | , 0
3

d d dβ δβ β ∈ = = − < 
 

 , system(5) under-

goes a pitchfork bifurcation at point E0. 

Proof. When ( ) 4
1, | , 0
3

d d dβ δβ β ∈ = = − < 
 

 , we have 

1 2
21 , 1
3

λ δβ λ= − = . 

Set ( )1
3

d δβ ε= − +  and chose ε as the bifurcation parameter, thus mapping 

(6) is written in the following form 

( ) ( )
( )

2 21
2 1 0 0

0 1 0 2 1
0 0

0

r b
u vu d u k

v v r b
uv

k

δ
ε

ε δ
ε ε ε

− + 
+ − +          − + +  − +          

       
 

 .   (18) 

Similar to the proof of theorem 3.1, one-dimensional equations under the re-
striction of a central manifold is obtained 

( ) ( ) ( ) ( )( )
22 2

33
2

1
: , 1 ,

r b
T u f u v v O u

k d
δ

ε ε ε
+

= − + + − + .       (19) 

Then we have 

( ) ( ) ( )0,0 0, 0,0 1, 0,0 0,f ff
u ε
∂ ∂

= = =
∂ ∂

 

( ) ( ) ( ) ( )22 22 2 3

2 3 2

6 1
0,0 0, 0,0 1 0, 0,0 0.

r bf f f
uv v k d

δ
ε

+∂ ∂ ∂
= = − ≠ = − ≠

∂ ∂∂ ∂
 

Therefore, from [8] we know that system (5) undergoes a pitchfork bifurcation 
at point ( )0 0,0E . 
Theorem 3.5 When 1d =  and 1δβ = − , system (5) undergoes fold-flip bifur-
cation at point E0.  
Proof. When 1d =  and 1δβ = − , we have 1 1λ = , 2 1λ = − . Let  

1, 1q d r δβ= − = +  

and chose q and r as the bifurcation parameter. Then mapping (6) may be 

( ) ( ) ( )

( ) ( ) ( )

2 1

2 1

r k x
q r r x x q y

x k bx
r k yy

q r r y y q x
k by

δ δ

δ δ

 − 
− − − + + +   +    −  − − − + + + 

+ 

 .       (20) 
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The Taylor expansion of mapping (20) is 

( )

( )
( )( )

2

3

2

1
2 1

,
1 2 1

r b
xx q r q x k O x y

y q q r y r b
y

k

δ

δ

− + 
 − − +      + +    + − −  − +    
 
 

 .  (21) 

We get the Jacobian matrix 

( )0

2 1
1 2

q r q
J E

q q r
− − + 

=  + − − 
. 

The characteristic values of ( )0J E  are 

1 21, 3 1q r q rλ λ= − − + = − − −  

and the corresponding eigenvectors are  

( ) ( )
T T

T T
1 2 1 2

1 1 1 11,1 1,1 , ,
2 2 2 2

, , ,q q p p   = = − = = −   
   

 

which satisfy  

( ) ( )
( ) ( )

0 1 1 1 0 2 2 2

T T
0 1 1 1 0 2 2 2

1 1 2 2 1 2 2 1

, ,

, ,

, , 1, , , 0,

J E q q J E q q

J E p p J E p p

p q p q p q p q

λ λ

λ λ

 = =
 = =
 = = = =

 

where ,⋅ ⋅  is scalar product. Therefore, any vector ( )T,X x y=  can be uni-
quely expressed as 

1 1 2 2X q qξ ξ= +  

where 1ξ  and 2ξ  can be calculated by the following equation 

1 1

2 2

, ,

, .

p x

p x

ξ

ξ

 =


=
 

Then the mapping (21) can be rewritten in the following form with the new 
coordinates 1ξ  and 2ξ  

( )( )
2 2

31 1 1 20 1 02 2
1 2

2 2 2
11 1 2

1 11 0
,2! 2!

0 1
g g

O
h

ξ β ξ ξ ξ
ξ ξ

ξ β ξ ξ ξ

 + +      + +      −        

 , (22) 

where  

1 2, 3 ,q r q rβ β= − − = − −  

( ) ( ) ( )
20 02 11

2 1 2 1 1
, , 0,

r b r b r b
g g h

k k k
δ δ δ− + − + − +

= = = ≠  

11 20 02 0, for 3.ij ijg h h g h i j= = = = = + =  

Then from the result of [9] we know that system (5) undergoes Fold-flip bifurca-
tion at point E0. 
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