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Abstract 
Green’s function is well-known, among others, in the application of ambient 
noise tomography methodologies that may demonstrate the potential of hy-
drocarbon entrapment in the study area. Here it is also shown to be of key 
importance in identifying the fractal dimension in the unified scaling law for 
earthquakes as well as in studying an explicit relationship of a future strong 
earthquake epicenter to the average earthquake potential score. Such studies 
are now in progress. 
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1. Introduction 

Seismic waves from earthquakes and/or artificial sources travel through the 
Earth carrying information about the Earth’s subsurface structure and proper-
ties. Aki [1] and Claerbout [2] contributed a lot to the development of the tech-
nique for seismic applications. A signal at location A can be cross correlated 
with a signal at location B to reproduce a virtual source-receiver pair. It has been 
demonstrated (e.g., [3]) that this cross correlation can reproduce the surface 
waves of the Earth’s impulse response, or the Green’s function, as if triggered by 
a point source. By studying the dispersion relation of these surface waves be-
tween multiple pairs of stations, surface wave tomography is possible [4]. 

It is the scope of this work to reveal the decisive importance of Green’s func-
tion in the study of earthquakes and in particular along the following two direc-
tions that are described in detail below, in Sections 2 and 3: First, the determina-
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tion of the fractal dimension of the earthquake epicenters projected onto the 
Earth’s surface, e.g. Fig. 7d of the work by Lei and Kusunose [5]. Second, the in-
terrelation between the epicenter of a future strong earthquake and the average 
earthquakes potential score (EPS) maps. 

Before proceeding, we emphasize that scale invariance methods such as fractal 
dimension, correlation dimension and multifractal spectrum have potential ap-
plications in emerging fields of science, engineering, and seismology. Numerous 
studies have been undergoing to study the applications in seismology, in partic-
ular, see references [6]-[24]. 

2. Additional Usefulness of Green’s Function 
2.1. Fractal Dimension of the Earthquake Epicenters Projected 

onto the Earth’s Surface 

We have recently [25] shown that an estimate of the epicenter location of a fu-
ture strong earthquake can be obtained by combining a new analysis of seismic-
ity termed natural time analysis [26] [27] [28] [29] with earthquake networks 
based on similar activity patterns [30] and earthquake nowcasting [31]-[38]. 
This is based on the construction of average EPS maps. 

A simple model was developed to understand the process of self-consistently 
averaging EPS e.g., see Fig. 5 of Reference [25]. To keep this model simple, we 
assume that all EQs occur practically in the center O of circular region of radius 
R. After a long enough period without a large EQ, the EPS takes the value of un-
ity for all points inside and, since we assumed that no other EQ takes place, the 
EPS will be zero outside it. Hence, the value of 〈EPS〉 at a point P lying at a dis-
tance d away from O simplifies to: 

( )
2

,
EPS

A d R
Rπ

=                         (1) 

where A(d,R) is the overlapping area of the two intersecting circles, equaled: 
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Hence, the value of “EPS” in polar coordinates (ρ, θ) with center at O equaled to: 
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for ρ < 2R and zero otherwise. If we now calculate the mean value of “EPS”: 
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in a circular region of radius R' > 2R, we obtain that: 

( )
2

, Rm R R
R

 ′ =  ′ 
                        (5) 

by virtue of the integrals: 
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The validity of the latter Equation is verified by assuming that EQs occur ac-
cording to the aforementioned simple model and, using the computer programs 
used for the calculation of the actual 〈EPS〉 maps shown in Fig. 4 of Reference 
[25], the numerically found mn(R,R') has the form: 

( ),
fd

n
Rm R R
R

 ′ =  ′ 
                      (8) 

When the quantity mn(R,R') was studied for the 〈EPS〉 maps of Fig. 4 of Ref-
erence [25] we find, df = 1.32. This value of df differed only slightly from the 
value df ≈ 1.2, which Bak et al. [39] found to describe the fractal dimension of the 
location of epicenters projected onto the surface of the Earth in a unified scaling 
law obeyed by the distribution of waiting times between EQs occurring in Cali-
fornia and ranging from tens of seconds to tens of years. 

2.2. On the Relation between Average EPS Maps and the Epicenter 
of a Future Strong Earthquake 

We now proceed to another usefulness of Green’s function. A self-consistent 
method of producing average EPS maps, also written 〈EPS〉 maps, using a radius 
R has been suggested and applied to the Eastern Mediterranean area in [25]. To 
construct such a map, one first estimates EPS for disks of radius R at the points 
( ),ij ijx y  of a lattice to obtain EPSij and then averages for each point ( )0 0 0 0

,i j i jx y  
the estimated EPS values within the same radius R, i.e., 

( )
( )0 0 0 0

0 0 0 0

, ; ,

,

1EPS , EPS
i j i j ij ijd x y x y R

i j i j ij
i j

x y
N

≤

= ∑              (9) 

where the summation is restricted to the lattice points whose distance 

( )0 0 0 0
, ; ,i j i j ij ijd x y x y  from the observation point is smaller than or equal to R, 

and N stands for the number of lattice points included in the sum. 
It has been shown that the study of 〈EPS〉 close to the epicenters of forthcom-

ing strong EQs exhibits a logarithmic dependence on R, reminiscent of the 
Green’s function of the Poisson equation in two dimensions, while the mean 
value EPS  of 〈EPS〉 over all the lattice points scales with R as a power law 
with an exponent df, i.e., EPS fdR∝ , see Section 3 and Equation (12) of Ref-
erence [25]. 

A clear relation between such made 〈EPS〉 maps and the epicenter of an im-
pending strong EQ has been observed in the respective regional studies of Ref-
erence [25]. 

3. Conclusions 

Green’s function, beyond its usefulness in the application of ambient noise to-
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mography methodologies that may demonstrate the potential of hydrocarbon 
entrapment in the study area, is shown to be of usefulness in the study of earth-
quakes along the following two directions: 

1) In the identification of the fractal dimension of the earthquake epicenters 
projected onto the Earth’s surface in the unified scaling law for earthquakes ob-
tained by Bak et al. [39], and 

2) The two-dimensional Green’s function has recently been recovered when 
investigating the relationship of a future strong earthquake epicenter to the av-
erage earthquake potential score. 

Such additional studies are now in progress in various areas due to their im-
portance. 

This importance is further strengthened by the fact that very recent aspects 
(see for example Reference [40]) are focused on the spatio-temporal variations of 
the correlation fractal dimension for earthquakes with magnitude M equal or 
greater than 2.5 in southern and Baja California to ascertain the incidence of 
seismic precursors before strong earthquakes [40]. 
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