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Abstract 
The sandstone relics of probable Cretaceous age found around Tohoun show 
an extensional tectonics imprint associated with the Atlantic opening. This 
imprint consists of normal fault networks well expressed on two sites of out-
crop and corresponds to three fracturing episodes materialized by families of 
conjugated planes striking E-W, NW-SE, and NE-SW. Striated plane data 
analysis shows three extensional axes successively N-S, NE-SW and NNW-SSE. 
The reconstructed paleostress tensors can be attributed to pre- to syn-rift phas-
es responsible for the development of primary basin structures in the Gulf of 
Guinea. This preliminary analysis, concerning only fractures in the basal se-
quence relics, remains to be extended to the entire Togolese coastal basin to a 
better definition of the Atlantic dynamic.  
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1. Introduction 

Highly eroded sandstone formations, which have been previously related to the 
upper sequences (“Continental Terminal”) of the Togo coastal basin, outcrop 
in the Tohoun-Tado area (South-East Togo). By their isolated position in the 
Pan-African basement area, these formations appear as relics related to an At-
lantic transgression. The works of [1] attribute a hypothetical Cretaceous age to 
these formations allowing considering them as outliers of transgressive phases 
that are much older than those that were at the origin of the Neogene “Conti-
nental Terminal” deposits. 

In the Tohoun sandstones, which should be considered equivalent to those at 
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Adakplame in Benin [2], is expressed a dense network of fractures generally 
represented by “tectoglyphes” (varied marks visible on the slickenside allowing 
to specify the sense of fault throw) bearing planes indicating normal fault move-
ment [3]. Here we analyzed striated planes in the framework of the search for 
Atlantic extension markers in the Gulf of Guinea basin. In fact, the Tohoun-Tado 
sandstone formations constitute evidence of the primary phases of the Togolese 
coastal sedimentary basin development. As the upper sequences, these forma-
tions bear fracture network very probably linked to the Atlantic dynamic. But, 
up to now, in the Togolese coastal basin, as in the whole Gulf of Guinea basin, 
fracture networks studies for paleostress determination have never been tackled. 
Furthermore, extension models have been proposed without stress evidence [4] 
[5]. That explains the initiative of this fault planes analysis in the Tohoun sand-
stone relics. These deposits could have recorded the imprints of early tectonic 
episodes that have oriented the Atlantic extension especially in the Togolese 
portion of the Gulf of Guinea basin. 

2. Geological Setting 

In the West-African sub-region (Figure 1), geological suites belong to: 
 The West-African Craton (WAC), consisting of Archean to Paleoproterozoic 

assemblages and stabilized since the end of the Eburnean orogeny (2000 ± 
200 Ma; [6]), 

 The Neoproterozoic to Paleozoic megasequences of Taoudeni and Volta ba-
sins, 

 The Pan-African belts (600 ± 50 Ma) overlapping the WAC and its cover, 
 And the Meso-Cenozoic internal (Iullemmeden basin) or coastal (Senegal- 

Mauritania basin, Ivory Coast basin, Gulf of Guinea basin and Benue trough) 
basins. The coastal basins history is linked to the Atlantic opening.  

The geology of the South Togo consists of a meso-cenozoic sedimentary cover 
relying unconformably on a Pan-African gneisso-migmatitic basement. The se-
dimentary cover is the Togolese portion of the regional Gulf of Guinea basin 
(Figure 1). 

2.1. The Pan-African Basement 

The Togolese coastal basin basement corresponds to part of the western domain 
of the so-called “internal zone” of the Pan-African Dahomeyides belt [7]. It con-
sists of gneisso-migmatitic units associated with rare late Pan-African granitic 
intrusions [8] [9] [10]. These lithostuctural units containing ortho- or para-derived 
petrographic rocks are considered to be of Eburnean age (2000 ± 200 Ma; [6]), 
remobilized during the Pan-African orogeny (600 ± 50 Ma; [11] [12]). They 
represent the frontal part of the Benino-Nigerian Shield that collided with the 
eastern margin of the WAC during the ultimate stage of the Dahomeyides edifi-
cation [7]. The fracture network in the gneisso-migmatitic units is attributed to 
the two last Pan-African deformation phases [13] [14] [15]. These major frac-
tures have probably influenced the coastal basin setting up. 
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Figure 1. Synthetic map, extracted from the geological maps of Togo [10] and Benin [16], 
showing the lithological organization of the Benino-Togolese costal basin (Gulf of Benin 
basin) and location of the Tohoun-Tado sandstone formations. 1 = Pan-African base-
ment; 2 = Maastrichtian deposits; 3 = Paleocene deposits; 4 = Paleocene to lower Eocene 
deposits; 5 = Lower Eocene deposits; 6 = Middle Eocene deposits; 7 = Oligo-
cene—Miocene deposits; 8 = “Continental terminal” deposits; 9 = fluvio-lacustrine and 
marine deposits; 10 = Major fractures; 11 = synthetic cross-section location. 

2.2. The Meso-Cenozoic Cover 

The Meso-Cenozoic cover of the Togolese coastal sedimentary basin is defined 
as a monoclinal mega-sequence with very low dip to the SE where it approaches 
600 m thickness (Figure 2). Both basement and sedimentary cover are com-
partmentalized by normal faults. Formations outcrop in NE-SW trending paral-
lel bands corresponding to different stages of marine evolution [4]. These out-
crops become blurred toward the north of the basin by an erosional limit beyond 
which occur outliers of the Tohoun-Tado Sandstones (Figure 1). 
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Figure 2. Synthetic cross-section showing the litho-structural organization of the Togo-
lese coastal sedimentary basin in the SW (see Figure 1) according to [17] Project report 
slightly modified. 1 = Pan-African basement; 2 = Cretaceous deposits; 3 = Paleocene de-
posits; 4 = Eocene deposits; 5 = “Continental terminal” deposits; 6 = Fault plane; 7 = 
supposed fault plane. 
 

According to [4] and [18], the mega-sequence of the Togolese coastal basin 
consists of three series, namely:  

1) The lower series or “Tabligbo Group”, consisting, from base to top, of 
Campanian-Maastrichtian detrital deposits (sands and sandstones), Paleocene- 
Eocene limestones and laminated mudstones; 

2) The middle series of lower to middle Eocene age, called the “Hahotoe- 
Kpogame phosphatic Complex” [4], bringing together, from bottom to top, phos-
phatic marls, phospharenites (phosphate deposits in exploitation) and phosphatic 
mudstones; 

3) The upper series (upper Eocene to Quaternary) representing the “Conti-
nental terminal s.l.” and consisting of sandy clay detrital deposits with pebbly 
horizons. The latter, is separated from the preceding series by an erosion surface 
(Figure 2).  

The genesis and evolution of the Togolese coastal basin, like its West African 
equivalents, are associated with the process of the opening of the South Atlantic 
equatorial segment. This opening occurred in the global dynamic of the disloca-
tion of Gondwana that separated the African and South American continents 
since the Lower Cretaceous [19]-[29]. For [30], these basins have several tecto-
no-sedimentary similarities. They are made of continental (fluvio-lacustrine) 
pre- to syn-rift valley filling deposits overlain by marine sediments generally 
transgressive on anterior deposits. Basin filling generally ends with a detrital 
continental series. 

3. Main Lithological Characteristics of Tohoun Sandstones 

The Tohoun-Tado sandstones occupy the summits of two elliptical interfluves 
oriented WNW-ESE over a length of 6 to 8 km (Figure 3). These transboundary 
outcrops are encountered several kilometers from the northern limit of the 
coastal basin. Similar relics have been mapped in Benin [2] [16]. In Togo, the 
Tohoun-Tado Sandstones have been considered as formations of the “Conti-
nental terminal” [10] [31]. The works of [1] show that they should rather be  
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Figure 3. Geological map of the study area showing the lithological components of the 
Pan-African basement and outcrops of Tohoun-Tado sandstones [10] [16]. 
 
attached to the coastal sedimentary basin basal formations. The entire sandy se-
quence is subdivided into two units separated by an erosional disconformity. 
The lower unit is called “Tado Sandstones” and the upper unit “Tohoun Sand-
stones”.  

In this work the fracture network data has been analyzed. The data was col-
lected from Tohoun outcrops (Figure 3) where the sequence is more complete 
and the striated planes clearly expressed and well preserved. 

On the architectural plan, the Tohoun Sandstone outcrops are tower-like, 
with a dark color attributed to a carpet covering of lichens (Figure 4(a)). The li-
thological characteristics are perturbed by intense erosion, ferruginization and 
dissolution phenomena at the origin of pseudo-karsts. 

Strong oblique and cross-bedding stratifications are clearly visible (Figure 
4(b)). Fresh rocks are generally massive and characterized by an intergrowth of 
veinlets with whitish and sometimes little carbonated siliceous infill (Figure 4(c)). 
They are pale yellowish-brown, with a brown patina and saccharoidal alteration.  
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Figure 4. Some characteristic aspects of sandstone outcrops of Tohoun: (a) -Tower-like 
sandstone outcrops; (b) -Oblique and cross-bedding stratifications; (c) -Highly eroded 
sandstone outcrop with whitish and siliceous infill veinlets. 
 
The texture is heterogranular, medium to coarse grained or micro-conglomeratic 
with centimetric quartz pebbles. [1] has described traces of bioturbation in the 
sandstones. 

4. Analysis of the Fracture Networks 
4.1. Methodology 

Two faulted sites were studied. The first site (N07˚03'13.7''; E01˚36'39.6'') in-
cludes sandstone outcrops attributed to the lower members of the sequence. The 
planes surveyed bear striations whose geometry indicates normal fault movements 
(Figure 5(a)) associating a more or less important strike-slip fault displacement 
(oblique slip fault, Figure 5(b)), or exclusively strike-slip fault (Figure 5(c)). 
Outcrops at the second site (N07˚02'12.5''; E01˚37'36.5'') belong to the upper 
member of the sandstone sequence and only show normal fault type striated 
planes (Figure 5(d)).  

Several plane directions make up the fracture networks at the two sites. Based 
on the intersection criteria and superposition of incompatible striae [32] [33] 
[34], the planes are attributed to many fracturing episodes. A total of 334 striated 
planes were recorded. From this fault population, only 163 planes are retained 
considering conformity with movement criteria [35]. The measurements were 
first subjected to manual stereographic processing to complete striae characteri-
zation. 
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Figure 5. Some striated planes in the Tohoun sandstones. (a) -NW-SE normal fault 
plane; (b) -NE-SW oblique slip fault plane; and (c) -NW-SE sinistral strike-slip fault 
plane on site 1; (d) -NE-SW normal fault plane on site 2. 
 

Data on the striated planes were processed using the numerical calculation 
software Tectonics FP 1.75 [36]. This software requires as inputs, the geometric-
al parameters of planes (Dip direction/dip) and striae on planes, as well as fault 
type and the precision for each plane measurement. Three methods are proposed 
for the calculation of tensors namely: 1) Direct Inversion [37] [38] [39] [40]; 2) 
Numerical Dynamical Analysis (NDA; [41], review in [42]); and the 3) Dihedra 
calculation [43] [44] [45]. The Direct Inversion methods are used for inherited 
faults systems [44] [46], while the NDA allows determining the parameters of 
deformation axes rather than stressing characteristics. Thus we have chosen the 
third method (Dihedra calculation) which is recommended for conjugated fault 
systems [43] [47] [48]. After the treatments, the states of the paleostresses ob-
tained for each system or fracturing episode are synthesized in Table 1.  

At site 2, the intersection criteria allowed to establish a relative chronology of 
at least three episodes of development of striated planes (Figure 6). The first ep-
isode is represented by the E-W to WNW-ESE (N80 to N100) planes. The 
second generation expresses itself in the NW-SE to NNW-SSE (N120 to N160) 
directions and finally, the last generation corresponds to the NE-SW (N40 to 
N70) planes. The same generations of normal faults were recorded at site 1, but 
one notes the presence of families of NE-SW dextral and NW-SE sinistral strike 
slip faults. Each generation of normal faults is considered as a system allowing 
determination of the responsible theoretical stress tensor. The system of strike 
slip faults at the site 1 is considered to be a set of fault reactivation planes linked 
to the last episode. These planes were analyzed separately. 
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Figure 6. Sandstone outcrop at site 2 showing fracture network corresponding to three 
episodes of fracturing respectively materialized by E-W (1), N-S to NW-SE (2) and NE-SW 
(3) plane directions. The planes of precocious generations with siliceous infill are inter-
sected by the last planes. This intersection indicates dextral strike-slip fault displacement 
which really corresponds to the horizontal lateral throw of normal faulting. 
 
Table 1. Synthesis of striated planes analysis at the two faulted sites of Tohoun sand-
stones: the table summarizes for each site the geographic coordinates, the type of fault 
(TF) analyzed (NF = normal fault, SF = strike-slip fault), the directions of family planes 
(D), the number of striated planes analyzed (Nb), and the direction and dipping of prin-
cipal stress axis (σ1, σ2 and σ3) obtained. 

Site 
Coordinates 

TF D Nb σ1 σ2 σ3 
Longitude Latitude 

1 E01˚36'39.6'' N07˚03'13.7'' 

NF NW-SE 24 171-86 314-03 044-02 

NF NE-SW 09 253-64 075-26 344-00 

NF E-W 12 036-85 268-03 177-04 

SF NE-SW + NW-SE 13 087-06 315-81 178-07 

2 E01˚37'36.5'' N07˚02'12.5'' 

NF NW-SE 18 079-76 301-11 209-09 

NF NE-SW 44 277-85 063-04 153-03 

NF E-W 19 319-85 098-04 188-04 

4.2. Results 

Site 1 
The striated planes recorded at the site 1 have medium to high dips (40˚ to 

80˚) in many directions. The pitch of striae and associated tectoglyphes allow 
identifying normal, normal strike-slip and strike-slip faults. The network is made 
up of three major normal fault directions which correspond to three conjugated 
fault systems associated with different fracturing episodes. The NW-SE planes 
are more represented than the NE-SW and E-W normal faults. The stress ten-
sors determined for each system are the following: 
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 The system of E-W conjugated normal faults express a subvertical maximum 
principal stress axis σ1, oriented N036-85 and a minor stress σ3 oriented 
N177-04 (Figure 7(a)); 

 The second generation system of NW-SE conjugated normal faults corres-
ponds to a paleostress tensor with principal axes σ1 N171-86 and σ3 N044-02 
(Figure 7(b)); 

 All the NE-SW normal faults assume a tensor with paleostresses σ1 N253-64 
and σ3 N344-00 (Figure 7(c)).  

The strike-slip faults are organized in a system of conjugated families with 
NE-SW (N40 to N70) dextral and NW-SE (N115 to N130) sinistral planes. This 
system of strike-slip faults seems to correspond to a tensor of paleostresses, with 
subhorizontal σ1 and σ3 oriented N087-06 and N178-07 respectively (Figure 
7(d)). 

Site 2  
Sandstones belonging to the upper member of the sequence (“Tohoun Sand-

stones”) bear decimetric to decametric normal fault planes in E-W, NW-SE and 
NE-SW directions. Thus, in the image of site 1, site 2 shows imprints of the three 
fracturing episodes. Stress tensor is also determined for each episode. 

The primary episode is expressed by the E-W planes generally filled in by a 
greyish brown to blackish fine grained ferruginous sandstone. Analysis of the 
system of normal faults indicates a tensor of paleostresses with subvertical σ1 
N319-85 and σ3 N188-04 (Figure 7(e)). 
 

 

Figure 7. Stereograms (lower hemisphere projection) resulting from striated plane analy-
sis using Tectonics FP 1.75 software [36]. The three extension episodes in the Tohoun 
sandstones correspond successively to the paleostress axes constructed in stereogram (a), 
(b), (c), (d) at site 1, and (e), (f), (g) at site 2. The principal stress axes are σ1 (red stars 
with 6 branches), σ2 (yellow stars with 5 branches) and σ3 (blue stars with 4 branches). 
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The second episode corresponding to several NE-SW striking planes filled 
with whitish silica, results from a tensor with σ1 N079-76 and σ3 N209-09 
(Figure 7(f)). 

The last concretization of fault tectonics is defined by a population of planes 
with NE-SW directions. These planes suggest the principal stress axes σ1 N277-85 
and σ3 N153-03 (Figure 7(g)). 

5. Synthesis and Discussions 

The fracture network in the sandstone formations around Tohoun contains 
three distinct conjugated normal fault systems. At both faulted sites studied, 
these systems are defined in the E-W (N80-N100), NW-SE (N120-N160) and 
NE-SW (N40-N70) directions and are interpreted as successive fracturing epi-
sodes. Analysis of fault families of each system allowed identifying the tensors of 
paleostresses that guided the network development. Thus, the first episode ma-
terialized by the E-W normal faults system corresponds to a N-S (σ3 N177 to 
N188) extension. The second episode represented by the NW-SE conjugated 
normal faults symbolizes a NE-SW extension with subhorizontal σ3 N44 (site 1) 
or N209 (site 2). The greatest majority of the NE-SW planes mark the impact of 
the last fracturing episode in the sandstones. On the two sites, the latter episode 
results from a NNW-SSE (σ3 N153 and N164) extension. It’s to this episode that 
one can attribute the strike-slip faults present at site 1 and which are interpreted 
as fault reactivation of previous planes. 

In summary, the entire fracture network present in the Tohoun sandstones 
results from a distentional tectonics that is decomposed into three episodes dur-
ing which the σ3 stress seems to have evolved around the N-S axis. From the 
first to the third episode, the direction of stretching reconstructs successively 
N-S NE-SW and NNW-SSE. This extension in three episodes can be associated 
with the early phases of the Togolese coastal basin or more widely the develop-
ment of the Gulf of Guinea basin. These are the pre- to syn-rift phases of the ge-
nesis of Cretaceous big lakes [22] [24]; phases with a dynamic probably hesitant 
and not uniform from one sector to the other. 

In the context of the Togolese coastal basin, the importance of this distensive 
tectonics had been underscored since the works of [19]. The basin architecture 
and its paleogeographic evolution denote the essential role of fracturing [4] [10] 
[18]. The principal directional network components have been defined, but only 
[3] gives some indications of distension axes. On a regional scale, the extension 
axes responsible for the fracture network can be integrated into the system of 
paleostresses of the first phases of continental separation in the Gulf of Guinea. 
In the South-East of Ghana for example, [13] recorded a few tectoglyphe bearing 
post-Pan-African normal faults indicating a SE-NW extension probably asso-
ciated with the precursor tectonics of Jurassic rifting. In the offshore basin in 
Ghana, the structure established by [49] and the Aptian pull-apart basin exten-
sion model of [5] appear to be in conformity with a NE-SW stretch axis. Also, 
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concerning the branch of the Benue graben, [22] has identified a NE-SW syn-rift 
stretch axis. 

In the case, these preliminary results of microtectonics analysis of the Atlantic 
opening and extension markers in the Tohoun sandstone relics are a first. Thus, 
for a better interpretation of the reconstructed paleostress axes, a study of the 
fracture network at the scale of the entire Togolese coastal basin would be ne-
cessary. 
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