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Abstract 
This paper proposes to apply the genetic algorithm and the firefly algorithm 
to enhance the estimation of the direction of arrival (DOA) angle of electro-
magnetic signals of a smart antenna array. This estimation is essential for 
beamforming, where the antenna array radiating pattern is steered to provide 
faster and reliable data transmission with increased coverage. This work pro-
poses using metaheuristics to improve a maximum likelihood DOA estimator 
for an antenna array arranged in a uniform cuboidal geometry. The DOA es-
timation performance of the proposed algorithm was compared to that of 
MUSIC on different two dimensions scenarios. The metaheuristic algorithms 
present better performance than the well-known MUSIC algorithm. 
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1. Introduction 

For a long time, antennas have been passive elements in communication sys-
tems. However, with the development of telecommunications involving cellular, 
multimedia and Wi-Fi systems, the necessity of enhancing the capacity of 
TX-RX systems, system performance and transmitted power has emerged. 

Smart antennas are antenna arrays capable of dynamic identification of spatial 
signal signatures, such as the direction of arrival (DOA) of the signal. They are 
also called adaptive antennas because of the ability to suppress noise and inter-
ference. These antennas can be used to calculate beamforming vectors, which are 
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used to track and locate the antenna beams of mobile users and thus improve the 
signals received [1]. 

An antenna by itself is not smart, so the term “smart antennas” refers to a 
group of antennas combined with smart signal processing algorithms. Figure 1 
presents a generic illustration of these systems.  

An antenna array is a set of sensors connected in a particular geometric ar-
rangement in a signal processing system. This system should be able to combine 
the signals from each antenna to achieve high directivity and increased signal 
gain. In general, the arrangements are usually physically fixed. Signal processing 
algorithms take into account both signal and antenna array characteristics [1]. 

By estimating the incidence angle (DOA) of the electromagnetic waves in an 
antenna array, it is possible to estimate the position of the signal source. The 
DOA angle is the direction in which electromagnetic source radiation is located. 
This DOA angle is important for adjusting the weight of each antenna in the ar-
ray to favor a specific direction and attenuate noise and interfering signals. The 
DOA estimation is a basic and central issue in sensor array signal processing, 
and it can be applied in many fields such as radar, sonar, communications. 

The DOA estimation assists in beamforming techniques. This process consists 
of adjusting the antenna array to favor a given irradiation angle. Figure 2 
presents a diagram with an antenna array receiving a flat wavefront. A signifi-
cant weight w is assigned to the signal received by each antenna to produce the 
desired output y. The weight values are adjusted according to the DOA angle, 
favoring a certain direction of arrival. In Figure 2, the DOA angle is represented 
by θ . 

The beamforming technique enables directing the antenna radiation in a par-
ticular direction. In this way, the system capacity is increased, and the energy 
used may be reduced. Figure 3 compares two irradiation diagrams: one from an  
 

 
Figure 1. Smart antennas: array of antennas combined with a smart signal processing 
system. Source: adapted from [2]. 
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Figure 2. X(t) signals received by each antenna, with certain significance level w, to pro-
duce the output signal y. Source: adapted from [3]. 
 

 
Figure 3. Comparison of the radiation diagram of an omnidirectional antenna (case 1) 
with that of a smart antenna (case 2). Source: adapted from [3]. 
 
omnidirectional antenna and the other from a smart antenna. It can be noted 
that there is a greater directivity of antenna irradiation in case 2, thus favoring 
users and suppressing any noise coming from other directions. 

The authors in [3] [4] present an approach for DOA estimation based on the 
maximum likelihood estimator. These techniques exhibit satisfactory perfor-
mance when compared to other well-known algorithms in the field. In [5], the 
authors compare the performance of DOA estimation by considering selected 
antenna array geometries, thus demonstrating their advantages and disadvan-
tages. 

The multiple signal classification (MUSIC) algorithm is known in the litera-

https://doi.org/10.4236/ijcns.2020.138008


G. L. Filho et al. 
 

 

DOI: 10.4236/ijcns.2020.138008 124 Int. J. Communications, Network and System Sciences 
 

ture as a robust and simple implementation algorithm. It is based on the ortho-
gonality between the vectors that make up the direction matrix and the eigen-
vectors associated with the lowest eigenvalues of the correlation matrix, which 
correspond to the noise incident on the network elements. The method estab-
lishes a search mechanism for peak values of an established function [6]. 

The purpose of parameter estimation in processing noise-contaminated sig-
nals arriving from sensor arrays is to estimate parameters such as the DOA, the 
carrier wave propagation velocity or the temporal and spectral properties of sig-
nals such as amplitude, phase and frequency [7]. In this procedure, the number 
of wave sources, the arrangement geometry and statistical models of the signal 
and noise are known. 

This work proposes to apply metaheuristic algorithms to enhance DOA esti-
mation techniques by considering a function based on the maximum likelihood 
estimation technique as a function of evaluation [8]. The heuristic algorithms 
used are the genetic algorithm [9] and the firefly algorithm [10]. The perfor-
mance results of these two algorithms are compared with those of the MUSIC 
algorithm. Heuristic algorithms are considered to be effective approaches for 
super-resolution DOA estimations such as Deterministic Maximum Likelihood 
(DML which are involved in nonlinear multi-dimensional optimization [11]. 

2. DOA Estimation 

Flat wave incidence estimation using sensor arrays is an important topic in the 
field of signal processing. The sensor array consists of a set of sensors with a 
certain geometric arrangement in space. It is generally considered that this ar-
rangement consists of identical and omnidirectional sensors; in other words, all 
sensors have the same gain regardless of the direction of wave incidence. All 
signals captured by the sensors are simultaneously sampled spatially. The sample 
vector in the array output is called the snapshot. 

The estimated DOA value decreases as the signal-to-noise ratio (SNR) de-
creases the proximity of the incident angles increases and the number of sensors 
decreases. 

In mobile communications, the estimation of the incidence angle mainly aims 
to achieve interference cancellation by forming an appropriate radiation pattern, 
which favors the reception of signals coming from one direction and at the same 
time nullifies interfering signals from other directions [2]. 

2.1. Signal Model and Arrangement Geometry 

The signal source can be understood as any user transmitting data. Suppose that 
the m-th source produces a flat wave, as given by Equation (1).  

( ) ( )
( )2

e
m
C k m

m
j t r t

M mf t F t
ω φ

ϑ
π 

− + 
 =                      (1) 

where ( )mF t  is the amplitude of a signal varying with time; m
Cω  is the carrier 

wave frequency; mϑ  is the wavelength in the propagation direction; kr  is the 
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distance to the origin of a coordinate system; and mφ  is the wave’s phase. ,k mR  
can be defined as a scalar representing the distance traveled between two sensors 
by the m-th source wavefront [4]. 

The signal captured by the k sensor due to the wave generated by the m source 
is given by Equation (2). 

( ) ( )
( ),

2

, e
M
C K M M

M
j t r t

k m Mx t F t
ω φ

ϑ
π 

− + 
 =                     (2) 

Consider a signal model with K sensors located in positions 1 2, , , Kk k k
  

  and 
M incident flat waves in unit vector directions 1 2, , , MU U U

  

 . The value of M is 
known. The output of each sensor at time n (snapshot), considering the additive 
noise ( )ne , can be modeled according to Equation (3) [12]. 

 ( ) ( ) ( )n n n= +y x e                           (3) 

Figure 4 shows the array geometry used in this work. It consists of 64 sensors 
arranged 4 × 4 × 4. The arrangement of the antenna is cuboidal, and the distance 
between each sensor is calculated according to the signal’s source frequency. 

2.2. Deterministic Maximum Likelihood Estimator 

The maximum likelihood estimator (MLE) is a parameter estimation method 
that is well known in the literature. Parameter estimates are effectuated directly 
from noise-degraded signal samples. The MLE is obtained from the probability 
density function of the sample vector. The advantage of the ML estimation is 
that it can be used to solve many complicated problems [8]. 

In this work, a variation of the MLE, called DMLE or deterministic maximum 
likelihood estimator, is adopted. As will be shown in this section, after some al-
gebraic manipulations, this criterion leads to the minimization of a cost function  
 

 
Figure 4. Cuboidal antenna array geometry (4 × 4 × 4). 
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that depends on the autocorrelation matrix of the samples. The minimum point 
is determined by m-dimensional searches. 

The function to provide deterministic maximum likelihood estimation, FDMLE, 
is obtained from the probability density function of the sample vector and a pa-
rameter vector in the so-called likelihood function, ( )L τ . This function is 
maximized by τ , which is a generic parameter vector specified for each prob-
lem [13]. 

In this work, the noise present in the data vector ( )y n  given by Equation (3) 
is considered to be white Gaussian noise with zero mean and variance 2σ . This 
consideration also makes ( )y n  itself a random Gaussian process, with the 
mean given by ( ) ( )nωA s  and the correlation matrix given by 2σ I . ( )ωA  is 
the array of direction vectors, and ( )s n  is the vector with complex amplitudes 
for the n-th snapshot. 

The maximum likelihood function, for this case, is defined by [14]:  

 ( )( ) ( ) ( ) ( ) ( ) 2 22 2

1
, , e

N K n n
DMLE

n
L n ω σσ σ

− − −

=

π=∏ y A ssω           (4) 

where ω  is the vector of signal frequencies; 2σ  is the noise variance; and K is 
the number of sensors (antennas) in the array. 

According to [4], maximum likelihood estimates are defined as the arguments 
that minimize the negative of the log of Equation (4). Thus, we have: 

 ( )( ) ( )( )2 2
10, , log , ,DMLE DMLEl n L nσ σ = −  s sω ω             (5) 

Normalizing by N and neglecting some constant terms, we have: 

 ( )( ) ( ) ( ) ( ) ( ) 22 2
10 2

1

1, , log
N

DMLE
n

l n M n n
N

σ σ ω
σ =

= + −∑s y A sω       (6) 

Given the three independent parameters ω , ( )ns , and 2σ , ω  is fixed to 
estimate the other two parameters, as shown in [14]. The parameters ( )ns  and 

2σ  are calculated by Equation (7) and Equation (8).  

 2 1 ˆˆ Atr
K

σ ⊥ =  P R                          (7)  

 ( ) ( ) ( )
1

ˆ H Hn n
−

=s A A A y                      (8) 

where “tr” denotes the matrix trace, R̂  is the covariance matrix of the samples 
and A

⊥P  is an orthogonal projector given by Equation (9).  

 ( ) 1H H
A K

−⊥ = −P I A A A                       (9) 

where KI  is the K-order identity matrix. 
Substituting Equations (7) and (8) into (6), we obtain the following equation:  

 ( ){ }( )ˆ arg minDMLE DMLEF
ω

ω ω=                  (10) 

where 

 ˆ
DMLE AF tr ⊥ =  P R                       (11) 
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FDMLE is a function that provides the deterministic maximum likelihood esti-
mation (DMLE) of the parameter w, and it is also used as the evaluation func-
tion of the genetic algorithm and firefly algorithm. 

3. Metaheuristic Algorithms 

Most of the conventional optimization algorithms are deterministic, and among 
them are those that are based on function gradient information. An example is 
the Newton-Raphson method, which exhibits good performance for well-behaved 
functions [15]. However, regarding highly nonlinear, nonconvex, nondifferenti-
able, and nonsmooth problems, these gradient-based deterministic problems 
present convergence problems and often become stuck in local minima. 

To circumvent this problem, it is necessary to use algorithms that are not 
based on the gradient of the function, such as stochastic algorithms. These algo-
rithms, also called heuristic algorithms, randomly search for the best solution. 
This search is often somewhat targeted and ensures that the method uncovers a 
good solution [10]. Even if these algorithms do not offer an optimal solution, 
they can approach the overall optimal result and provide a good solution. 
Another positive point is that they are less affected by the behavior of each 
problem, making them more robust for many applications [10] [16]. 

In this work, two metaheuristic algorithms are utilized: the genetic algorithm 
(GA) and the firefly algorithm (FA). 

3.1. Genetic Algorithm (GA) 

One type of metaheuristic algorithm is the genetic algorithm. The genetic algo-
rithm refers to a computational model that mimics the natural evolution based 
on Darwin’s theory of biological evolution, such as heredity, mutation, natural 
selection and recombination. 

Genetic algorithms are implemented in such a way that a population of ab-
stract representations of the solution is selected in search of better solutions. 
Genetic algorithms use probabilistic rules in their steps to determine the indi-
viduals of the population, following a probability density function, such as nor-
mal or uniform distribution, and not deterministic rules. The set of possible so-
lutions of a genetic algorithm is called population. The population is made up of 
individuals, which in turn are composed of genes. Each individual is an abstrac-
tion of a possible solution so that the number of individual genes depends on 
each problem [9]. 

The genetic algorithm includes selection, crossover and mutation steps. In the 
selection stage, the best individuals are chosen as the parents. In [9], some ways 
to make this selection are presented, such as addicted roulette or tournament. In 
the crossover stage, there are combinations of the genes of the individuals cho-
sen to be the parents in order to generate a new individual. Mutation is a mod-
ification added to the new individual’s genes, which introduces new types of 
genes into the population, thereby increasing the search space and avoiding local 
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minimal [9]. 
In this work, a genetic algorithm was implemented to estimate the parameters 

φ  and θ  (DOA arrival angle) in a cuboid antenna array in a three-dimensional 
space. At the beginning of the developed algorithm, an initial population of 
thirty arbitrarily chosen individuals is generated, in which each individual has 
two genes. Each gene represents one of the parameters being estimated (φ  and 
θ ), as shown in Figure 5. Individuals are then evaluated by an objective func-
tion, which orders individuals from the smallest error to the largest error, that is, 
from the best to the worst individual. The valuation function used was FDMLE, 
based on the maximum likelihood criterion. 

The stopping criterion of this algorithm was specified as the maximum num-
ber of generations. In this work, the maximum number of 100 generations was 
arbitrarily adopted. The technique of elitism was also inserted, that is, the main-
tenance of the best individual of the previous generation in the next generation. 
This approach ensures that, in the worst case, the worst individual of a given 
generation will still be better than or equal to the best individual of the previous 
generation. Therefore, elitism contributes to the algorithm converging to a good 
solution. 

Next-generation parent selection occurs by tournament, where k individuals 
are chosen at random, and the best two will be the parents of a next-generation 
individual. The process is repeated until there are enough parents to keep the 
number of next generation individuals equal to that of the previous generation. 
The number k of individuals is determined by the τ  parameter. This parameter 
defines the percentage of the total population that will participate in the tour-
nament. In this work, 70%τ =  was adopted; that is, from the thirty individuals 
of the population, twenty-one are randomly chosen for each tournament. This 
value attempts to contribute to a better choice of parents and simulates natural 
selection that acts on biological species. The most able parents produce more 
children, but the less able parents can also generate descendants. Priority should 
be given to individuals with an evaluation function, without completely disre-
garding those individuals with extremely low evaluation functions. If 100%τ =  
is used, there is an increase in selection pressure and a risk of premature con-
vergence, which causes the algorithm to fail to yield good results. 

The exchange of genes between parents for the generation of children occurs 
in the crossing stage. A number η  is randomly chosen, which is the probability 
decision variable. The value of η  decreases with increasing generations but is a 
random value, as shown in Figure 6. If η  is greater than β , where β  is a 
random number between 0 and 1, the child will receive the gene from the first 
parent and otherwise will receive the gene from the second parent. This process  
 

 
Figure 5. Genetic algorithm individuals with their two genes, θ  and φ . 
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Figure 6. Decreased crossover rate with increasing generations. 

 
occurs until the child has the same number of chromosomes as the parents. Fig-
ure 7 presents an example of the crossing between two individuals to generate a 
child with genes from both parents. Therefore, if η  equals zero, the child rece-
ives the gene from the first parent, and if η  equals one, the child receives the 
gene from the second parent. 

In the mutation stage, a modification in a given gene occurs to perform the 
exploration of the search space. The procedure for changing the mutation rate 
was similar to the crossover rate case, although in an increasing direction (the 
mutation rate was increased, as opposed to the crossover rate, which was de-
creased). In this stage, it was defined that in the first generation, there is a 1% 
chance of individuals mutating and a 10% chance in the final generation. If there 
is a mutation, a mutation ∆  that is applied to the gene is drawn. In this work, 

5%∆ =  was adopted; that is, when mutation occurs, each gene can have its 
value changed by up to 5%. 

The new population is made up of parent-born children, plus the best indi-
vidual of the previous generation (through elitism). The individuals are then 
evaluated again using FDMLE, and the algorithm is restarted. 

3.2. Firefly Algorithm 

There are several types of heuristic algorithms; it is currently estimated that 
there are over forty [17]. Many of these algorithms are inspired by the natural 
behaviors of some animals, such as swarms, ant colonies, bees, beetles and birds 
[18]. These algorithms utilize the principle of using a social behavior presented 
in a species and, from it, with their certain simplifications, elaborating mathe-
matical codes to solve engineering problems [17]. 
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Figure 7. Generic example of crossing between two individuals in the genetic algorithm. 
 

The firefly algorithm was developed by Xin-She Yang and is based on the ob-
servation of the flashing firefly lights [10]. Bioluminescence is a biochemical 
process that produces light. For fireflies, this process has the following purposes: 
to serve as a mating ritual; to attract prey; and to function as a warning sign of 
nearby predators [19]. Therefore, the light signals of fireflies are of paramount 
importance for their survival. From this behavior of fireflies, a heuristic optimi-
zation algorithm called the firefly algorithm [10] was modeled. 

As already mentioned, real fireflies are flying insects that glow using biolumi-
nescence, presumably to attract mates. Each firefly may glow with a different in-
tensity. In the firefly algorithm, fireflies that are better, that is, have a smaller er-
ror, emit a light with greater intensity. The better the representation of its objec-
tive function is in relation to the problem to be optimized, the closer this firefly 
is to the global minimum and the more intense the brightness is. In this way, 
other fireflies will also be attracted to brighter fireflies (close to the global mini-
mum) and move away from lower luminosity fireflies (farther from the global 
minimum). 

Light intensity is known to decrease according to the square of the distance 
[10]. Therefore, fireflies, although attracted to light, have a limited view of the 
bioluminescence of other fireflies. Equation (12) represents the luminous inten-
sity G(r) as a function of a distance r.  

 ( ) 2
sG

G r
r

=                            (12) 

where Gs is the light intensity of the source and r is the distance from the source. 
Considering a light absorption coefficient γ  for a fixed distance r, one can 

write the light intensity G according to Equation (13).  

 0e rG G γ−=                           (13) 

where G is the original light source. 
The expression 2

sG r  exhibits a singularity at 0r = . Then, by combining 
this expression, which takes into account the effect of light scattering as a func-
tion of the inverse square of distance, with the expression of light absorption, 
one can approximate them in a Gaussian form according to Equation (14): 

 
2

0e rG G γ−=                          (14) 

The attractiveness of a firefly 1x  to other fireflies nv  is proportional to the 
light intensity of the fireflies nv  that the 1x  firefly can see. The attractiveness 
β  of one firefly for another is defined according to Equation (15). 
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2

0e rγβ β −=                          (15) 

where 0β  is the attractiveness at 0r = . 
To calculate the distance between any two fireflies iv  and jv , the Euclidean 

distance is used in a three-dimensional space. Moving a firefly i closer to a firefly 
j (which has superior brightness) is defined according to Equation (16). 

( )2

0e ijr
i i i j ip p p pγβ αε−= + − +                     (16) 

The term ( ), ,i i i ip x y z=  is the rectangular coordinate of the firefly. The 
second term of Equation (16) is related to attractiveness. The third term refers to 
a randomness added to the motion, so α  is the randomness parameter (weight) 
and iε  is the vector of random numbers obtained from any probability distri-
bution function [20]. If 0α = , the movement has no randomness. On the other 
hand, if 0 0β =  and 0α ≠ , every move is random. 

Choosing the parameters of the firefly algorithm depends on the problem to 
be optimized. However, there are some suggestions in the literature that apply to 
most cases [10]. It is suggested that 0 1β = , [ ]0,1α ∈  and [ ]0,1,10γ ∈ . 

Interestingly, in the case of 0γ → , the attractiveness β  tends to become 
constant with a value of 0β . This would equate to there being no absorption of 
light by light; i.e., the light does not decrease in all space. Therefore, the light of a 
firefly can be seen throughout the room, and a very bright spot can easily be 
found. On the other hand, if γ → −∞ , then 0β → . This is the equivalent of all 
fireflies being unattractive to each other and their movements just being ran-
dom. 

To simplify the firefly algorithm, three rules were adopted: 1) it is assumed 
that all individuals are attracted to all others (there is no difference in sexuality); 
2) the higher the brightness of a firefly is, the greater its attractiveness, such that 
it decreases with increasing distance due to the absorption of light by the me-
dium; and 3) the brightness of a firefly is affected by its evaluation function (ob-
jective function), i.e., the better the value of its function is, the brighter the firefly. 
The brighter fireflies move (are attracted) to the other brighter fireflies [10]. 

Algorithm 1 summarizes the firefly algorithm developed in this paper.  

4. Results 

To perform the first simulations, a fixed position of the source was defined with 
50θ =   and 50φ = −  . As an evaluation criterion and comparison between al-

gorithms, the square root of the mean square error (RMSE) between the real an-
gle and the estimated angle is used for different SNRs, according to Equation 
(17). Table 1 presents the algorithm parameters considered in this work. These 
parameters were chosen arbitrarily, according the recommendations of [9] [21]. 
Several values were tested, and finally, those presented in Table 1 perform the 
smallest error. 

 ( ) ( )2 2RMSE real estimate real estimateθ θ φ φ= − + −             (17) 
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Algorithm 1. FA implemented to estimate flatwave arrival angles. 

 
 
Table 1. Algorithm parameters. 

Algorithm Parameters Value 

 Number of Fireflies 30 

 Number of Generations 100 

Firefly Randomness factor α  0,5 

 Attractiveness factor β  1 

 Light absorption factor γ  5 

 Individual number 30 

 Number of Generations 100 

 Tournament Size 70% 

Genetic Initial Mutation Rate 1% 

 Final Mutation Rate 10% 

 Δ Mutation 5% 

 Initial Crossover Rate 80% 

 Final Crossover Rate 20% 

 
Figure 8 shows the FDMLE surface for all θ  and φ . This surface is an ideal 

case without any Gaussian noise, even though there are some local minima. In 
this work, one surface was generated for each SNR.  

Since the signal sent from the source is degraded by white Gaussian noise, 100 
experiments were performed for each SNR to ensure that the DOA angle estima-
tion is not a particular case of specific noise and to show the robustness of the 
algorithms. The RMSE x SNR graphs (Figure 9) display the average RMSE for 
the 100 experiments. Obviously, the lower the RMSE value is, the closer the es-
timated angles are to the actual angles (smaller error). 
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Figure 8. FDMLE surface for all θ  and φ . 
 

It is possible to observe in Figure 9 that the firefly algorithm provides a 
smaller error than the MUSIC algorithm does for all SNRs from −10 dB to 10 dB. 
In addition, the genetic algorithm exhibits good performance, with a smaller er-
ror in general than that of MUSIC, except for some points with equal error such 
as SNR −2 dB. 

To ensure that we can state that the firefly algorithm and genetic algorithm 
have better performance than the MUSIC algorithm for the case with a cuboid 
array and a single source, more simulations were performed. These simulations 
aim to guarantee that the metaheuristc algorithms (firefly and genetic algorithms) 
provide smaller errors for all angles of the source. To do that, angles θ  and φ  
were varied from −90˚ to 90˚, one at a time, and the SNR was fixed at 0 dB. As 
shown in Figure 10, the φ  angle is fixed at −50˚, and θ  varies from −90˚ to 
90˚. It is observed that the firefly and genetic algorithms provide smaller errors 
for almost all θ  angles than the MUSIC algorithm does. To analyze the per-
formance with more accuracy, the mean error was calculated, as well as the 
standard deviation and minimum and maximum values, for all θ  angles. These 
values are presented in Table 2. They were obtained using Equation (17), and 
after that, it were calculated the mean, standard deviation, minimum and maxi-
mum value. It can be observed that the metaheuristic algorithms have smaller 
mean errors, standard deviations, and minimum and maximum errors than the 
MUSIC algorithm does. 

Following the same methodology as that for θ  variation, the φ  angle was 
also varied. Figure 11 presents the comparison of the performance of the algo-
rithms considered in this work. It is noted in Table 3 that, as in the previous 
case, the firefly and genetic algorithms also exhibit smaller errors than those of  
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Figure 9. Comparison of the estimation error of DOA of each algorithm versus SNR. 

 

 
Figure 10. Comparison of the estimation error of DOA of each algorithm with a fixed 
SNR and variable θ . 
 
Table 2. Estimation error of DOA of each algorithm with variable θ . 

RMSE MUSIC FA GA 

mean 2.3361 0.8935 1.3701 

std 3.6401 1.5379 1.9284 

min 0.5987 0.3835 0.4655 

max 11.8322 7.2246 9.1148 
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Table 3. Estimation error of DOA of each algorithm with variable φ . 

RMSE MUSIC FA GA 

mean 1.9594 1.3674 1.8717 

std 3.4799 2.3468 2.5104 

min 0.6667 0.4791 0.5052 

max 11.8322 8.0846 8.7718 

 

 
Figure 11. Comparison of the estimation error of DOA of each algorithm with a fixed 
SNR and variable θ . 
 
the MUSIC algorithm with respect to all statistical parameters (mean, standard 
deviation, minimum value, and maximum value). 

5. Conclusions 

In this work, it was proposed to apply the genetic algorithm and the firefly algo-
rithm to estimate the incidence angles of electromagnetic waves in a specific type 
of antenna array, the cuboid array. The evaluation function of the algorithms 
was based on the maximum likelihood criterion. The results showed that the al-
gorithms presented satisfactory results and were superior in most cases; that is, 
the algorithms provided smaller errors than those of the classic MUSIC algo-
rithm. 

It was also observed that the performance of heuristic algorithms is dependent 
upon their evaluation functions. It could be seen that with a decrease in the SNR, 
the FDMLE function exhibits a surface with more peaks and valleys so that heuris-
tic algorithms encountered more difficulty in finding the global minimum; be-
cause of that, they exhibited greater error. 
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In future work, we intend to investigate the performances of other heuristic 
algorithms in DOA angle estimation and to test and compare the performance of 
these heuristic algorithms with other evaluation functions. We also intend to in-
vestigate the applications of other artificial intelligence techniques, such as ar-
tificial neural networks and fuzzy controllers, in DOA angle estimation. 
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