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License (CC BY 4.0). h indl distributi fi h h
http://creativecommons.org/licenses/by/4.0/ The Lindley distribution, after [1] [2], has one parameter. In recent years the

Lindley distribution has been the subject of many generalizations, we report

some of them among others: one with two parameters [3], a two-parameter

weighted one [4], the generalized Poisson-Lindley [5], the extended Lindley [6]
and a transmuted Lindley-geometric distribution [7]. Several generalizations of
the Lindley distribution can be found in a recent review [8]. The Lindley distri-
bution is useful in modeling biological data from grouped mortality studies [4]
[9] and the first application to astrophysics of the Lindley distribution has been
done for the initial mass function (IMF) for stars and the luminosity function for
galaxies [10]. The IMF is routinely modeled by the lognormal distribution and
therefore the following question naturally arises. Can a Lindley distribution or a
generalization be an alternative to the lognormal fit for the IMF? In order to
answer the above question Section 2 reviews the notion of statistical sample and
Lindley distribution, Section 3 reviews five generalizations of the Lindley distri-
bution, Section 4 introduces the double Lindley distribution and Section 5 fits

the six new Lindley distributions to four samples for the mass of the stars.
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2. Preliminaries

We report some basic information on the adopted sample and on the original
Lindley distribution with one parameter.

2.1. The Sample

The experimental sample consists of the data X, with /varying between 1 and n;

the sample mean, X, is

X==Y X, (1)

2 =1 3(x %Y, ®)

and the sample 7th moment about the origin, X, is

1 n

%= 2(x) 3)

n °

2.2. The Lindley Distribution with One Parameter

The Lindley probability density function (PDF) with one parameter, f (), is

c’e ™ (x+1).

f(x;c)= Toe Xx>0,c>0 (4)

where x>0 and c¢>0.
The cumulative distribution function (CDF), F(x),is

F(x;c):l—(1+c—xje°x; x>0,c>0. (5)
1+c
C2
At x=0, f(O):1 and is not zero.
+c

The average value or mean, u, is

u(c)= : (6)

the variance, o2, is

7 :cz+4c+2

- (7)
c?(1+c)’
The rth moment about the origin for the Lindley distribution, g, is
, cT(r+2)+c¢"T(r+1)
Uy = : (8)
1+c
where
_ [Pa-tyz-1
(z)= [ et dt, ©9)
is the gamma function, see [11]. The central moments, x, , are
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2¢®+12¢? +12¢c+4
My = 3 3 (10a)
c’(1+c)
9¢* +72¢3 +132c? + 96¢ + 24
My = (10b)

c*(1+c)
More details can be found in [2].

3. Generalizations of the Lindley Distribution

We review the statistics of the Lindley distribution with two parameters, power,
generalized, new generalized and new weighted.

3.1. The Lindley Distribution with Two Parameters

The Lindley PDF with two parameters TPLD [3] is

c’(b+x)e™

f(x;b,c)= 11
( ) bc+1 (1)
where x>0, ¢>0 and bc>-1.The CDF of the TPLD is
b 1 —CX
F (xcb)—1- PEXXFYe™ (12)
bc+1
The average value or mean of the TPLD is
bc+2
b,c)=——, 13
u(bc) c(bc+1) (13)
and the variance of the TPLD is
2.2
Uz(b,C)ZM. (14)
c?(bc+1)
The mode of the TPLD is at
Mode = 2=2C (15)
C

see Equation (2.3) in [3]. The rth moment about the origin for the TPLD, 4/, is
¢ 'br(r+1)+c T (r+2)

= . 16
H bc+1 (10
The two parameters b and ccan be obtained by the following match
=X (17a)
o? =52, (17b)

which means

—(s2 + YZ)(Y\/—ZSZ +2%°% — 232)

b= . (18)
(7\/—252 Py sz)(ZY 28?1 2%° )
and
. 2X ++/-2s% +2X%°
C= —— . (19)
ST+ X
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3.2. The Power Lindley Distribution
The power Lindley PDF with two parameters (PLD) according to [3] is

cb2(1+x )xC g
f(x;b,c)= o1 , (20)

where b, cand x > 0. The CDF of the PLD is

(—bxC -b —1)e"°xc +b+1

F(x;c,b)= 21
( ) b+1 1)

The average value or mean of the PLD is

c-1

[b‘“c +hec+b™ JF[C h 1)
C
u(bc)= (b+1)c : (22)
and the variance of the PLD is
NA

o’ (b,c)=—, 23
(b.e)=o4 (23)

where

2 2c-2 2
NA=—b 2" (F(C—HD cz+b2°11“(c+2jbc _p ¢ (r[in c?
C C C
—-2+C —-2+C 2
—2(r(—°+1D b e cltb © r( jb 2 — 2% ( (—CHD c
Cc C C (
2 -2+
+2b7% F(C+2)bc b2 F(C+2jc —2(r(°—+1)j b cc
C C C
—2+¢ 2
+b r(”zj Z—bz“(r(—”lD +2b2011“(—c+2jc,
C C C

and
DA=(b+1)"c? (25)
The mode of the PLD is at
—cb+./1+(b?>+4)c® +(-2b-4)c +2c-1
Mode = \/ ( ) ( ) . (26)
2ch
The rth moment about the origin for the PLD is
b e F(r:cj b CF(HCZCJ

b+1

The two parameters b and c of the PLD can be found by numerically solving the

nonlinear system given by Equation (17a) and Equation (17b).

3.3. The Generalized Lindley Distribution

The generalized Lindley PDF with three parameters (GLD) according to [12] is
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b?(bx)* ™ (cx +a)e™

f(x;a,b,c)= 28
( ) (c+b)r(a+1) (28)
where a, b, cand X > 0. The CDF of the GLD is
F(xa,c,b)
e—l/be (Xa/z (Cba/z + ba/2+1) M e (bX) + ba+1xae—1/2bx (a + 1)) (29)

(c+b)I'(a+2) '
where M, (z) is the Whittaker A/ function, see [11]. The average value or
mean of the GLD is

b
y(a,b,c)=%, (30)

and the variance of the GLD is
_ ab®+2cha+c*a+2ch+c’

?(a,b,c) = . 31
o (abe) b?(c+b)° ey

The hazard rate function, h(x;a,b,c), of the GLD is
h(x;a,b,c)
~ —b*x*(ex+a)e ™ (a+1) (32)
e Y22 (cb¥? +072 )M g a0 (DX) + X707 (a+1)e ™ — (c+b) T (a+2)’

and Figure 1 reports an example. Here the CDF, Equation (29), and the hazard
rate function, Equation (32), are reported in closed form in contrast to what was
asserted by [12]. The mode of the GLD is at

0.4
0.8 0.6

1 X

Figure 1. Plot of the three-dimensional surface of the hazard rate function when 6 = 3
and ¢=0.5.
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_ 2182 2 2 2 2_4
Mode — ab+ac+\/ab ;ba bc+a‘c abc. (33)
c

The rth moment about the origin for the GLD is

r(r+ a)(b”ca +ber+ b’”la)

= , 34
H (c+b)I(a+1) Gy

and in particular the third moment is
, T(3+a)(ab+ac+3c) (35)

ol (c+b)r(a+1)b’

The three parameters a, b and ¢ of the GLD can be obtained by numerically

solving the following three non-linear equations

u=x (36a)
cl=52 (36b)
=X (36¢)

3.4. The New Generalized Lindley Distribution

The new generalized Lindley PDF with three parameters (NGLD) according to
[13]is

(Ca+1Xa71F(b) + Cbxb—lr(a))e—cx

f(x;a,b,c)= , 37
(xabc) {1+ o) (a)T(b) (37)
where a, b, cand X > 0. The CDF of the NGLD is
NB
F(x;a,c,b)= , 38
(ae0) = r s T (as2) G9)
where
NB =T (b+2)x*c*"e *a+T(a+2)x’c’e®b-T'(b+2)cl(a+1,cx)a
+T(b+2)x*c* e +T(a+2)xc’e™™ —T'(b+2)cl(a+1,0x) (49)
+T(b+2)F(a+2)c-T(a+2)T(b+1,cx)b+T(b+2)I(a+2)
-T'(a+2)(b+1,cx)
where F(a, Z) is the incomplete Gamma function, defined by
n(a,z)=["t""edt, (40)
see [11]. The average value of the NGLD is
ac+b
a,b,c)= , 41
“( ) c(l+c) (41)
and the variance of the NGLD is
2 2 2
Gz(a’blc):ac—Zabc+ac +bcz+ac+bc+b (42)
c’(1+c)
The rth moment about the origin for the NGLD is
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, ¢ (r+a)l(b)+c T (r+b)l'(a)
He = (L+0)(a)1(b) ' “)

and the third moment is
I'(3+a)I'(b)c+TI(3+b)r(a)
c*(1+c)r'(a)r'(b)

’

Hy =

(44)

The three parameters a, b and c of the NGLD are obtained by numerically solv-
ing the three non-linear Equation (36a), Equation (36b) and Equation (36a).

3.5. The New Weighted Lindley Distribution

The new weighted Lindley PDF with two parameters (NWL) according to [14] is
—c?(1+b)*(1+ x)(—1+ g o )e’cx

f(x;b,c)= , 45
(xib.c) b(cb+b+c+2) 49
where b, cand x > 0. The CDF of the NWL is
F(x;c,b)=L, (46)
b(cb+b+c+2)
where
NC = —e %b2cx + e *hex — e b — 26 *pex + e e
+e ey _ e p? _ 26 %he — e %cx + blc + e ¢ (47)
26 %h—e ¥c+b? +ch+re X g 4 op,
The average value of the NWL is
2 2
y(a,b,c):bc+2b +3cb+6b+2c+67 (48)
(cb+b+c+2)c(1+b)
and the variance of the NWL is
o’(abc)= ND > 5 (49)
c’(bc+b+c+2)"(1+b)
where
ND = b*c? + 4b“c + 4b%? + 2b* +18b% + 7b°c® +12b° + 32b%c (50)
+6bc? + 24b% + 30bc + 2¢? + 24b +12¢ +12.
The rth moment about the origin for the NWL is
NE
= 51
Hr b(bc+b+c+2) (51)
where
NE = —[c“bl‘r (%} +b [%) c'r—c'bir+ct " (—1:) b)

_c“b2+br(l:)bj c'—cb?-2cbr-2c-"h-2cb-cr (52)

—c —c‘“jr(1+ r).
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The two parameters b and cof the NWL can be found by numerically solving the
nonlinear system given by Equation (17a) and Equation (17b).

4. The Double Truncated Lindley Distribution

Let Xbe a random variable defined in [x,,X, |; the double truncated (DTL) ver-

sion of the Lindley PDF with one parameter, f,(X;c,X,X,), is
c’e ™ (x+1)

e cx, —evex, +eMc—e " Me+e™™ —e

f (X%, %,) = (53)

o
where the effect of the double truncation increases the parameters from one to
three, see [15]. The double truncated Lindley distribution with scale, which has
four parameters, was introduced in [10].

Its CDF, F (x;b,c,x,X,),is

F(xb,c,x,x,)= NF = (54)

((—1+ (=%, —D)c)e™ +(1+(x +1)c)e™)

where

NF :—e°(x'”“)(—(l+(xI +1)c) e ) —(1+(x+1)c)(1+(x, +1)c)e ™)
(55)
+((1+(x +1)c)e ) 114 (x, +1)c)(1+(xI +1)c)).

The average value, 4 (C,X,X,),is
(%%, )
(2 + (xf + xu)c2 +(2x, +1)c)e°x' —g% (2+(x|2 + X )02 +(2x, +1)c) (56)
B —c((—1+(—xu —1)c)e™ +e™ (1+(x, +1)c)) '

The sth moment about the origin for the DTL, (¢, X;,X, ), is
NG

(¢, %, X, )= , 57
#(e0%,) ((1+(x, +1)c)e™™ —(1+(x, +1)c)e )(r+1) (57)
where
NG = —x//%e /2 (c“/2 +c(r +1)) M2 2012 (CX)
+ (c“/2 +c 2 (r+ 1))e’1’2““ XM o 0y (CX, ) (58)

+e(r+ 1)(e’°*' X e o xlj”).

The three parameters which characterize the DTL can be found in the following
and let
Xq) 2 Xz 22 X, denote their order statistics, so that X, = max (X, X,,",X, )

way. Consider the sample of stellar masses X = X, X,,*-, X,

X(m =MiN(X,X,, X, ) . The first two parameters X, and X, are

X=Xy Xy = Xy (59)

The third parameter ¢ can be found by solving the following non-linear equation

14,(C, %, %, ) =X. (60)

DOI: 10.4236/ijaa.2020.101004

46 International Journal of Astronomy and Astrophysics


https://doi.org/10.4236/ijaa.2020.101004

L. Zaninetti

5. Application to the IMF

We report the adopted statistics for four samples of stars which will be subject of
fit, with the lognormal, the Lindley generalizations and the double truncated
Lindley.

5.1. The Involved Statistics

The merit function x® is computed according to the formula

» (T, -0,
;{2:2( i T |) , (61)

i=1

where 1 is the number of bins, T, is the theoretical value, and O, is the expe-
rimental value represented by the frequencies. The theoretical frequency distri-
bution is given by

T, = NAX p(X), (62)

where Nis the number of elements of the sample, A, is the magnitude of the
size interval, and p(x) is the PDF under examination.
A reduced merit function y2, is evaluated by

lrzed le/NF, (63)

where NF =n—k isthe number of degrees of freedom, 2 is the number of bins,
and k is the number of parameters. The goodness of the fit can be expressed by
the probability @, see equation 15.2.12 in [16], which involves the degrees of
freedom and x°. According to [16] p. 658, the fit “may be acceptable” if
Q >0.001.

The Akaike information criterion (AIC), see [17], is defined by

AIC =2k -2In(L), (64)

where L is the likelihood function and & the number of free parameters in the

model. We assume a Gaussian distribution for the errors and the likelihood
2

function can be derived from the y° statistic L oc exp(—%} where #? has

been computed by Equation (65), see [18] [19]. Now the AIC becomes
AIC =2k + 42 (65)

The Kolmogorov-Smirnov test (K-S), see [20] [21] [22], does not require bin-
ning the data. The K-S test, as implemented by the FORTRAN subroutine
KSONE in [16], finds the maximum distance, D, between the theoretical and the
astronomical CDF as well the significance level P, see formulas 14.3.5 and
14.3.91n [16]; if P > 0.1, the goodness of the fit is believable.

5.2. The Selected Sample of Stars

The first test is performed on NGC 2362 where the 271 stars have a range
1.47M,>M >0.11IM_, see [23] and CDS catalog J/MNRAS/384/675/Table 1.
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Table 1. Numerical values of ;(fed , AIC, probability Q, D, the maximum distance be-
tween theoretical and observed CDF, and P, significance level, in the K-S test of the

lognormal distribution, see Equation (66), for different mass distributions. The number
of linear bins, n, is 20.

Cluster parameters AIC p Q D P
NGC 2362 =05, u, =-055 37.6 1.86 0.014 0.073 0.105
NGC 6611 =103, u, =-126 71.2 373 131x107 0.093 0.049
y Velorum =05, u,=-108 55.1 2.84 5.08x107° 0.092 0.033

Berkeley 59 o =049, 4, =-092 549 282 549x10° 011  646x10°

The second test is performed on the low-mass IMF in the young cluster NGC
6611, see [24] and CDS catalog J/MNRAS/392/1034. This massive cluster has an
age of 2 - 3 Myr and contains masses from 1.5M_ >M >0.02M, . Therefore the
brown dwarfs (BD) region, ~0.2M, is covered.

The third test is performed on y Velorum cluster where the 237 stars have a
range 1.31IM_>M >0.15M_, see [25] and CDS catalog J/A + A/589/A70/Table
5.

The fourth test is performed on young cluster Berkeley 59 where the 420 stars
havearange 2.24M_>M >0.15M_, see [26] and CDS catalog J/A]/155/44/Table
3.

5.3. The Lognormal Distribution

Let X be a random variable defined in [0,]; the Jognormal PDF, following [27]
or formula (14.2) in [28], is

e
PDF(x;m,0)=——F+—, (66)
( ) Xo 21
where m is the median and o the shape parameter. The CDF is
J2(=In(m)+In(x
CDF(x;m,a):l+lerf ! ( (m)+In( )) , (67)
2 2 2 o
where erf(x) is the error function, defined as
2 x 2
erf (x)=—=| e dt, (68)
( ) \/; Jlo
see [11]. The average value or mean, E(X), is
1.
E(X;m,c)=me? , (69)
the variance, Var(X), is
Var =g (e"2 —1)m2, (70)
the second moment about the origin, E*(X), is
E(Xz;m,a):mzez”z. (71)
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The statistics for the lognormal distribution for these four astronomical samples

of stars are reported in Table 1.

5.4. The Generalizations of the Lindley Distribution

The statistics for the Lindley distribution and its generalizations are reported in
the following tables: Table 2 for the Lindley distribution with one parameter,
Table 3 for the TPLD, Table 4 for the PLD, Table 5 for the GLD, Table 6 for the
NGLD and Table 7 for the NWL. The best fit for NGC 2362 is obtained with the
PLD, see Figure 2.

The best fit for NGC 6611 is obtained with the Lindley PDF with one parame-

ter, see Figure 3.

Table 2. Numerical values of ;(fed , AIC, probability Q, D, the maximum distance be-
tween theoretical and observed CDF, and P, significance level, in the K-S test of the

Lindley distribution with one parameter for different mass distributions. The number of
linear bins, n, is 20.

Cluster parameters AIC p Q D P
NGC 2362 c=2.05 95.57 5.03 3.36 x 107*2 0.248 2.93x 107"
NGC 6611 c=294 38.35 2.01 0.0053 0.077 0.161
7 Velorum  c=3.18 90.59 4.66 5.86 x 107! 0.322 323 x 1072
Berkeley 59 c=276 149.6 7.76 6.35 x 1072 0.323 524 x 107

Table 3. Numerical values of #?2,, AIC, probability Q, D, the maximum distance be-
tween theoretical and observed CDF, and P, significance level, in the K-S test of the

TPLD distribution with two parameters for different mass distributions. The number of
linear bins, n, is 20.

Cluster parameters AIC 75 Q D P
NGC 2362 b=-0.099,c=4.2 72.94 3.83 6.8x 1078 0.129 1.76 x 107*
NGC 6611 b=0.043,c=4.32 59.11 3.06 1.23x 107 0.098 0.033
y Velorum b=-0.035c=5.81 67.74 3.54 5x 1077 0.14 8x107°
Berkeley 59 b =-0.032,c =4.75 81.47 4.3 2.35%x 107° 0.167 8.62 x 107!

Table 4. Numerical values of #?2,, AIC, probability Q, D, the maximum distance be-
tween theoretical and observed CDF, and P, significance level, in the K-S test of the

PLD distribution with two parameters for different mass distributions. The number of li-
near bins, n, is 20.

Cluster parameters AIC i Q D P
NGC 2362 b=2.66,c=228 28.87 1.38 0.128 0.053 0.39
NGC 6611 b=3.33c=127 53.53 2.75 8.88x 107° 0.087 0.08
7y Velorum b=464,c=164 1062 5.67 8.59 x 1071 0.16 2% 107
Berkeley 59 b=348,c=154  117.1 6.28 8x 107! 0.187  237x107%
DOI: 10.4236/ijaa.2020.101004 49 International Journal of Astronomy and Astrophysics


https://doi.org/10.4236/ijaa.2020.101004

L. Zaninetti

Table 5. Numerical values of ;(fed , AIC, probability Q, D, the maximum distance be-
tween theoretical and observed CDF, and P, significance level, in the K-S test of the

GLD distribution with three parameters for different mass distributions. The number of
linear bins, n, is 20.

Cluster parameters AIC p Q D P
NGC 2362 a=4.80,b=8.38c=12.01 37.63 1.86 0.016 0.064 0.2
NGC 6611 a=14,b=48c=8 64.34 343  1.96x10° 0.105 0.017

y Velorum a=2.53b=06.5c=0.00046 83.08 4.53 1.25x107° 0.15 2.8x107°

Berkeley 59 a=22b=509c=1 1006 556 8.6x107 0179 2.93x 107"

Table 6. Numerical values of ;(fed , AIC, probability Q, D, the maximum distance be-
tween theoretical and observed CDF, and P, significance level, in the K-S test of the
NGLD distribution with three parameters for different mass distributions. The number of

linear bins, n, is 20.

Cluster parameters AIC p Q D P

NGC2362 a=7.34,b=157,c=10.61 48.64 2.5 54x10™*  0.075 0.086
NGC6611 a=3.14,b=-0.36,c=6.24 111.08 6.18 Ix10™ 0225 922x107"
y Velorum a=4.19,b=1151¢c=12.2 50 2.58 34x10™*  0.101 0.014

Berkeley 59 a=5.73,b=19.57,c=14.46 54.14 2.83 8.1x107° 0.086 32x107°

Table 7. Numerical values of ;(fed , AIC, probability Q, D, the maximum distance be-
tween theoretical and observed CDF, and P, significance level, in the K-S test of the
NWL distribution with two parameters for different mass distributions. The number of

linear bins, n, is 20.

Cluster parameters AIC 22 Q D P
NGC 2362 b =0.008,c =3.889 59.72 3.09 9.85x 107° 0.155 3.33x10°°
NGC 6611 b=157,c=3.77 68.46 3.58 3.81x 1077 0.12 42x107
7 Velorum b=0.0027,c =5.86 79 416  62x107 0.195 1.86 x 108
Berkeley 59 b=0.007,c=5.015  95.13 506 9x107% 0.19 473 x 107"

The best fit for y Velorum is obtained with the lognormal PDF, see Figure
4.

The best fit for the young cluster Berkeley 59 is obtained with the NGLD, see
Figure 5.

5.5. The Double Truncated Lindley

The statistics for the DTL with three parameters are reported in Table 8. Figure
6 reports the CDF of the DTL for NGC 6611 which is the best fit of the various
distributions here analysed for this cluster.

6. Conclusion

In this paper we explored five generalizations of the Lindley distribution as well
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Table 8. Numerical values of y?2,, AIC, probability @, D, the maximum distance between theoretical and observed CDF, and
P

s » significance level, in the K-S test of the DTL for different mass distributions. The number of linear bins, n, is 20.

Cluster parameters AIC Ko Q D P
NGC 2362 c=161, x =012, x, =161 156.7 8.86 1.75x 1072 0.115 1.2x 107
NGC 6611 c=271, x=0019, x, =146 45.38 231 0.0015 0.061 0.395
y Velorum c=481, x =0158, x,=1.317 45.89 2.34 1.3x 107 0.064 0.269
Berkeley 59 c=3.93, x =016, x, =224 78.57 4.26 7.73 x 107° 0.134 4.35x 1077

T T T T T T T T
'9) - |
0
)
.6 8 L -
C
)
5
O
()
|-
Y— oL u
o 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

data

Figure 2. Empirical PDF of mass distribution for NGC 2362 cluster data (273 stars + BDs)
when the number of bins, n, is 20 (steps with blue full line) with a superposition of the
PLD (red dashed line). Theoretical parameters as in Table 4.

40

30
T
P
1

frequencies

data

Figure 3. Empirical PDF of mass distribution for NGC 6611 cluster data when the num-
ber of bins, 1, is 20 (steps with blue full line) with a superposition of the Lindley PDF with
one parameter (red dashed line). Theoretical parameters as in Table 2.
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data

Figure 4. Empirical PDF of mass distribution for y Velorum cluster data when the
number of bins, n, is 20 (steps with blue full line) with a superposition of the lognormal
PDF (red dashed line). Theoretical parameters as in Table 1.

100
T

frequencies

50
T

1

data
Figure 5. Empirical PDF of mass distribution for the young cluster Berkeley 59 when the
number of bins, n, is 20 (steps with blue full line) with a superposition of the NGLD (red
dashed line). Theoretical parameters as in Table 6.

DF

-1 -0.5
Log10(x)

Figure 6. Empirical CDF of mass distribution for NGC 6611 cluster data (blue dotted line)
with a superposition of the DTL CDF with one parameter (red line). Theoretical parame-
ters as in Table 8.
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Table 9. Best fits: Name of the cluster, name of the distribution, D, the maximum dis-

tance between theoretical and observed CDF, and P, , significance level, in the K-S test.

Cluster Best fit D P
NGC 2362 PLD 0.053 0.39
NGC 6611 DTL 0.061 0.395
y Velorum DTL 0.064 0.269
Berkeley 59 NWL 0.086 32x107°

1 R 1 R 1 N 1 R 1 R 1
0.6 0.8 1 1.2 1.4 1.6
X

Figure 7. Part of the empirical CDF of mass distribution for NGC 6611 cluster data
(orange circles) with a superposition of the DTL CDF with one parameter (black full line),

the lognormal (red dashed line), the Lindley with one parameter (green dot-dash-dot-dash
line) and the TPLD (blue dot line).

the double truncated Lindley distribution against the lognormal distribution. For
each IMF of the four clusters here analysed, the distribution which realizes the
best fit is reported in Table 9. The above table allows concluding that the Lind-
ley family here suggested produces better fits than does the lognormal distribu-
tion. Figure 7 reports the CDF for NGC 6611 as well as four fitting curves.
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