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Abstract 
In this presentation we present the Green’s functions and density of states for 
the most frequently encountered 2D lattices: square, triangular, honeycomb, 
kagome, and Lieb lattice. Though the results are well known, we hope that its 
derivation performed in a uniform way provides some pedagogical value. 
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1. Introduction 

Fermionic lattice models are widely used not only as a purely theoretical tool but 
also as a basis for investigation and modelling of physical properties of real ma-
terials [1]. Despite their relative formal simplicity—the Hamiltonians of many of 
them can be written down as bilinears of fermionic operators—analytical calcu-
lation of the lattice Green’s functions can present substantial difficulties. 

In general, the lattice Green’s functions of systems are ubiquitous [2] [3] [4] 
in solid state physics, appearing in problems of lattice vibrations, spin wave 
theory of magnetic systems, localized oscillation modes at lattice defects, com-
binatorial problems in lattices [5], and flux calculations in lattice percolation 
[6]. Lattice Green’s functions are also central to the theory of random walks on 
a lattice [7] [8], and to the calculation of the effective resistance of resistor 
networks [9]. 

The lattice Green’s functions are of central importance for understanding the 
electronic behavior of perfect crystalline solids. It also provides the basis for un-
derstanding the electronic properties of real, imperfect crystalline solids, since 
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the imperfections can be treated as a perturbation. Lattice Green’s functions are 
also important for calculating RKKY interaction [10] [11] [12] [13]. 

We will now consider several popular 2D lattices calculate Green’s functions 
and density of states (DOS). Yielding the same results, the derivation of these 
results performed in a uniform way and being presented in one place delivers 
some pedagogical value. 

In all cases we’ll consider the models with the nearest neighbour hopping only, 
the amplitude of the hopping we’ll take to be 1, so the Hamiltonian will be  

†
i j

ij
H c c= ∑                             (1) 

where †c  and c are electron creation and annihilation operators, and the sum-
mation in Equation (1) is with respect to nearest neighbor pairs. The period of 
the lattice we’ll also take to be equal to 1. 

2. Square Lattice 

In the wave vector representation, the Hamiltonian for the square lattice is  

( ) ( ) 2cos 2cos .x yH k k= = +k k
 

                (2) 

The site diagonal matrix element of the Green’s function is  

( )
( ) ( )

( )
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             (3) 

Employing the identity  

( ) ( )
2 2

sign1 d
2 cos

a
a b

a b a b

θ
θ

π

−π +π
= >

−
∫               (4) 

to perform integration with respect to yk , we obtain for 4E < −  or 4E >   

( )
( )

( )
( )( )( )
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1 2

d1
2 2cos 4
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−

π

−π −

∫

∫



            (5) 

where 1
2
Ec = + , 1

2
Ed = − + . For 4E < −  we may use the identity [14] 

( )( )( )( ) ( )( )
( )d 2 ,

a

b

x K k
a x x b x c x d a c b d

=
− − − − − −

∫      (6) 

where a b c d> > > , K is the complete elliptic integral of the first kind, and  

( )( )
( )( )

.
a b c d

k
a c b d
− −

=
− −

                       (7) 

In our case 1a = , 1b = − ; hence we obtain  

( )( ) 4a b c d− − =  

https://doi.org/10.4236/graphene.2021.101001


E. Kogan, G. Gumbs 
 

 

DOI: 10.4236/graphene.2021.101001 3 Graphene 
 

( )( )
2

.
4

Ea c b d− − =                       (8) 

Thus we get for 4E >   

( ) 2 4 .g E K
E E

 = π 
 



                      (9) 

We can analytically continue the Green function from the part of real axis 
4E < − . For 4 4E− < <  we have 1k > . Hence we should put 0E i += + , 

that is k acquires infinitesimal imaginary part 0i + , and we may use the identi-
ties [4] 

( ) 2

1 1Im 0 1K k i K
k k

+  
 + = − −   

 
              (10) 

( ) 1 1Re 0K k i K
k k

+   + =     
                  (11) 

to get [4] 

( ) ( )
2

2

1 1Im 0 1 .
162

g i Kρ +

π π

 
   = − + = −   

 


 



          (12) 

The DOS is presented on Figure 1. 

3. Triangular Lattice 

Let 1a , 2a  and 3a  be the three periods of the triangular lattice adding up to 
zero. The Hamiltonian in the wave vector representation is  

( ) ( ) 1 2 32cos 2cos 2cos ,H k k k∆ ∆= = + +k k            (13) 

where i ik ≡ ⋅a k . The site diagonal matrix element of the Green’s function is ( 1k  
and 2k  are the components of k  in the oblique coordinate system) 

( )
( ) ( )

( )
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Figure 1. DOS for the square lattice. 
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(We used the transformation suggested in Ref. [8]). Employing the identity (4) 
to perform integration with respect to 2k  we obtain for 6E >  or 2E < −  

( ) ( )
( )
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where [15] 

1 3
2

1 3
2

Ea E

Eb E

= + + +

= + − +
                       (16) 

For 6E >  we may use the identity [14] 

( )( )( )( ) ( )( )
( )d 2 ,

c

d

x K k
a x b x c x x d a c b d

=
− − − − − −

∫        (17) 

where a b c d> > > , and  

( )( )
( )( )

.
a b c d

k
a c b d
− −

=
− −

                      (18) 

From Equation (16) follows  

( )( ) 4a b c d r− − =  

( )( ) ( ) ( )31 1 3 ,
4

a c b d r r− − = − +                  (19) 

where  

3 .r E= +                           (20) 

Thus we get for 6E >  [16] [17] 

( )
( ) ( ) ( ) ( )
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3 2 1 2 3 2 1 2

1 4 .
1 3 1 3

rg E K
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∆

 
 =
 − + − + π

         (21) 

We can analytically continue the Green function from the part of real axis 
6E > . For 2 6E− < <  we have 1k > . Hence we should put 0E i += + , that 

is k acquires infinitesimal imaginary part 0i + , we may use the identities (10), 
(11) and take into account that  

( )( )3

2

3 111 .
16

r r
rk

− +
− =                     (22) 

For 3 2E− < <  the value of k become imaginary. We may use the identity 
[18] 

( ) ( ) ,K ik Kκ κ′=                       (23) 

where 
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2 2

1, .
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k k
κ κ ′= =

+ +
                  (24) 

In our case 

( )( )3 4

4 ,
3 1

r
r r

κ =
− +

                    (25) 

and we reproduce DOS for the triangular lattice [16] 
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The DOS is presented on Figure 2. 

4. Honeycomb Lattice 

The honeycomb lattice can be considered as a triangular lattice with a basis of 
two lattice points. The tight binding Hamiltonian for the electrons is  

( )1 2 3

†ˆ H.c,H a b b b+ + += + + +∑ n n n n
n

δ δ δ              (29) 

where 1 2 3, ,δ δ δ  are the vectors connecting an atom with its nearest neighbors. 
Going to wave vector representation we obtain  

( )†ˆ ˆ ,H H= Ψ Ψ∑ k k
k

k                     (30) 

where 
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Figure 2. DOS for the triangular lattice. 
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Taking into account that 1 2 3− = aδ δ , 2 3 1− = aδ δ , 3 1 2− = aδ δ , we obtain 
the spectrum as 

( ) ,Xν ν= kk                         (32) 

where 1ν = ± , and  

( )1 2 32 cos cos cos 3.X k k k≡ + + +k                (33) 

The dispersion law can be written in the form  

( ) ( )3 .ν ν ∆= + k k                      (34) 

The Green’s function is  

( )
( )1 22 2

1 d d .
2 3H

Eg E k k
E k

π π

π π− −
∆

=
− −π ∫ ∫ 

            (35) 

Thus we obtain  

( ) ( )22 3 .Hg E Eg E∆= −                     (36) 

For the density of states we obtain  

( )22 3 .Hρ ρ∆= −                       (37) 

Actually, Equations (36) and (37) become completely obvious after we square 
the Hamiltonian (31) to get  

( ) ( )
( )

2 3 0ˆ .
0 3

H ∆

∆

 + 
=  + 




k
k

k
                (38) 

The DOS is presented on Figure 3. 

5. Kagome Lattice 

The kagome lattice can be considered as a triangular lattice (which we consider 
to be identical to the lattice introduced above for the honeycomb lattice) with a 
basis of three lattice points. The Hamiltonian is 

( ) ( ) ( )3 3 2 2 1 1 1

† † †ˆ H.c ,H a b b a c c b c c+ − + − + + −
 = + + + + + + ∑ n n n n n n n n n

n
δ δ δ δ δ δ δ  (39) 

where 2i i= aδ  are the vectors connecting the nearest neighbors. 
 

 

Figure 3. DOS for the honeycomb lattice. 
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Going to wave vector representation we obtain 

( )†ˆ ˆ ,H H= Ψ Ψ∑ k k
k

k                       (40) 

where 

( )

3 2

3 1

2 1

0 cos cos
2 2

ˆ 2 cos 0 cos .
2 2

cos cos 0
2 2

k k

k kH

k k

    
   

   
    =    

   
             

k             (41) 

The spectrum is found from the equation  

( )ˆ ˆdet 0.I H− =                         (42) 

Calculating the determinant and taking into account that 1 2 3 0k k k+ + =  we 
may present the dispersion equation as  

( ) ( ) ( )22 2 1 0.X + − − + =       kk k k               (43) 

Thus we have a flat band ( ) 2F = − k , and two dispersive bands  

( ) 1 .Xν ν= + kk                        (44) 

The Green’s function is  

( )
( ) ( )

1 2
1 22 2 2

d d1 1 1d d .
2 2 2 22

K
k k Eg E k k
E E E k

π π π π

π π π− π− − −
∆

−
=

−π
+

+ − −π∫ ∫ ∫ ∫ 
  (45) 

Comparing Equations (45) and (14) we obtain  

( ) ( ) ( )21 2 1 1 3
2Kg E E g E

E ∆
 = + − − − +

             (46) 

Hence 

( ) ( )22 2 1 1 3 .Kρ δ ρ∆
 = + + − − −                   (47) 

We see that apart from the δ-function peak, the DOS for the Kagome lattice is 
the DOS for the honeycomb lattice shifted by 1. The DOS is presented on Figure 
4. 
 

 

Figure 4. DOS for the kagome lattice. (The δ-function peak is omitted). 
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6. Lieb Lattice 

Consider now the Lieb lattice with the Hamiltonian 

( )

0 cos 0
2

ˆ 2 cos 0 cos .
2 2

0 cos 0
2

x

yx

y

k

kk
H

k
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  

  
  

k             (48) 

The spectrum of the Hamiltonian (48) is  

( ) ( ) 2 20, 2 cos cos .
2 2

yx
F

kk
ν ν

  = = +   
   
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The Green’s function is  

( )
( ) ( )

1 2
1 22 2 2

d d1 1 2d d .
2 42

L
k k Eg E k k
E E

π π π

− − − −

π

π π π πππ
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− −∫ ∫ ∫ ∫  k


    (50) 

Comparing Equations (50) and (3) we obtain  

( ) ( )21 2 4 .Lg E Eg E
E

= + −


                    (51) 

Hence  

( ) ( ) ( )
( )22

2
2

4
2 4 1 .

16K Kρ δ ρ δ
 − = + −

π
= + − 

 
 


   



      (52) 

The DOS is presented on Figure 5. 

7. Conclusions 

To summarize, we have expressed lattice Green’s functions and density of states 
for triangular and square lattice through the complete elliptic integral of the first 
kind in a uniform way. The Green’s functions were calculated analytically as 
functions of energy on the part of real axis, and then continued analytically on 
the whole complex plane. 
 

 
Figure 5. DOS for the Lieb lattice. (The δ-function peak is omitted). 
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We connected lattice Green’s functions and density of states for honeycomb 
and kagome lattices with those of the triangular lattice, and Green’s functions 
and density of states for Lieb lattice with those of square lattice. Exact expres-
sions for lattice density of states ought to be useful in dynamical mean field 
theory calculations [19]. 

We have also shown that the well known results for the wave functions of 
electrons in the vicinity of the Dirac points in the honeycomb lattice are not 
connected with the nearest-neighbor hopping approximation, but follow from 
the symmetry of the model. 

Acknowledgements 

The work on this paper started during E.K. visit to Max-Planck-Institut für Phy-
sik komplexer Systeme in December of 2019 and January of 2020. E.K. cordially 
thanks the Institute for the hospitality extended to him during then and for all 
his previous visits. G.G. would like to acknowledge the support from the Air 
Force Research Laboratory (AFRL) through Grant No. FA9453-21-1-0046. The 
authors are grateful to V.O. Ananyev for attracting attention to the paper [22]. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Komnik, A. and Heinze, S. (2017) Analytical Results for the Green’s Functions of 

Lattice Fermions. Physical Review B, 96, Article ID: 155103.  
https://doi.org/10.1103/PhysRevB.96.155103 

[2] Varma, V.K. and Monien, H. (2013) Lattice Green’s Functions for Kagome, Diced, 
and Hyperkagome Lattices. Physical Review E, 87, Article ID: 032109.  
https://doi.org/10.1103/PhysRevE.87.032109 

[3] Katsura, S., Morita, T., Inawashiro, S., Horiguchi, T. and Abe, Y. (1971) Lattice 
Green’s Function. Introduction. Journal of Mathematical Physics, 12, 892-895.  
https://doi.org/10.1063/1.1665662 

[4] Economou, E.N. (2006) Green’s Functions in Quantum Physics. 3rd Edition, 
Springer-Verlag, Berlin. 

[5] Guttmann, A.J. and Prellberg, T. (1993) Staircase Polygons, Elliptic Integrals, Heun 
Functions, and Lattice Green Functions. Physical Review E, 47, R2233-R2236.  
https://doi.org/10.1103/PhysRevE.47.R2233 

[6] Ziff, R.M. (1991) Flux to a Trap. Journal of Statistical Physics, 65, 1217-1233.  
https://doi.org/10.1007/BF01049608 

[7] Barber, M.N. and Ninham, B.W. (1970) Random and Restricted Walks. Gordon and 
Breach, New York. 

[8] Hughes, B.D. (1995) Random Walks and Random Environments. Volume 1: Ran-
dom Walks. Clarendon, Oxford. 

[9] Cserti, J. (2000) Application of the Lattice Green’s Function for Calculating the Re-
sistance of an Infinite Network of Resistors. American Journal of Physics, 68, 

https://doi.org/10.4236/graphene.2021.101001
https://doi.org/10.1103/PhysRevB.96.155103
https://doi.org/10.1103/PhysRevE.87.032109
https://doi.org/10.1063/1.1665662
https://doi.org/10.1103/PhysRevE.47.R2233
https://doi.org/10.1007/BF01049608


E. Kogan, G. Gumbs 
 

 

DOI: 10.4236/graphene.2021.101001 10 Graphene 
 

896-906. https://doi.org/10.1119/1.1285881 

[10] Sherafati, M. and Satpathy, S. (2011) RKKY Interaction in Graphene from Lattice 
Green’s Function. Physical Review B, 83, Article ID: 165425.  
https://doi.org/10.1103/PhysRevB.83.165425 

[11] Parhizgar, F., Sherafati, M., Asgari, R. and Satpathy, S. (2013) Ruderman-Kit- 
tel-Kasuya-Yosida Interaction in Biased Bilayer Graphene. Physical Review B, 87, 
Article ID: 165429. https://doi.org/10.1103/PhysRevB.87.165429 

[12] Zare, M. (2019) RKKY Plateau in Zero- and One-Dimensional Triangular Kagome 
Lattice Models. 

[13] Roslyak, O., Gumbs, G., Balassis, A. and Elsayed, H. (2020) Effect of Magnetic Field 
and Chemical Potential on the RKKY Interaction in the α-T3 Lattice. 

[14] Prudnikov, A.P., Brychkov, Yu.A. and Marichev, O.I. (1986) Integrals and Series, 
Vol. 2. Gordon and Breach Science Publishers, Amsterdam. 

[15] Henyey, F.S. and Seshadri, V. (1982) On the Number of Distinct Sites Visited in 2D 
Lattices. The Journal of Chemical Physics, 76, 5530-5534.  
https://doi.org/10.1063/1.442908 

[16] Hanisch, Th., Uhrig, G.S. and Muller-Hartmann, E. (1997) Lattice Dependence of 
Saturated Ferromagnetism in the Hubbard Model. Physical Review B, 56, 13960- 
13982. https://doi.org/10.1103/PhysRevB.56.13960 

[17] Moritz, B. and Schwalm, W. (2001) Triangle Lattice Green Functions for Vector 
Fields. Journal of Physics A: Mathematical and General, 34, 589-602.  
https://doi.org/10.1088/0305-4470/34/3/317 

[18] Erdelyi, A. (1985) Higher Transcendental Functions, Vol. II. McGraw-Hill Book 
Company, Inc., New York. 

[19] Georges, A., Kotliar, G., Krauth, W. and Rozenberg, M. (1996) Dynamical Mean-Field 
Theory of Strongly Correlated Fermion Systems and the Limit of Infinite Dimen-
sions. Reviews of Modern Physics, 68, 13-125.  
https://doi.org/10.1103/RevModPhys.68.13 

[20] Guinea, F., Peres, N.M.R., Novoselov, K.S. and Geim, A.K. (2009) The Electronic 
Properties of Graphene A. H. Castro Neto. Reviews of Modern Physics, 81, 109-162.  
https://doi.org/10.1103/RevModPhys.81.109 

[21] Landau, L.D. and Lifshitz, E.M. (1991) Quantum Mechanics. Pergamon Press, Ox-
ford.  

[22] Ananyev, V.O. and Ovchynnikov, M.I. (2017) On the Density of States of Graphene 
in the Nearest-Neighbor Approximation. Condensed Matter Physics, 20, Article ID: 
43705. https://doi.org/10.5488/CMP.20.43705 

 
 
 
 

https://doi.org/10.4236/graphene.2021.101001
https://doi.org/10.1119/1.1285881
https://doi.org/10.1103/PhysRevB.83.165425
https://doi.org/10.1103/PhysRevB.87.165429
https://doi.org/10.1063/1.442908
https://doi.org/10.1103/PhysRevB.56.13960
https://doi.org/10.1088/0305-4470/34/3/317
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.5488/CMP.20.43705


E. Kogan, G. Gumbs 
 

 

DOI: 10.4236/graphene.2021.101001 11 Graphene 
 

Appendix A: Why the Wave Functions of Electrons in  
Honeycomb Lattice Define What They Are? 

The results for the wave functions of electrons in the vicinity of the Dirac points 
in the honeycomb lattice (Equations (A9) and (A10) below) are well known [20]. 
In this appendix we want to emphasise the fact that these results are not con-
nected, as it is sometimes erroneously stated, with the nearest-neighbor hopping 
approximation, but follow from the symmetry of the model. 

Looking at Equation (33) we understand that to find minimal value of X k  
we should find minimal value of the sum of cosines of three numbers which add 
up to zero. This value is equal to −3/2 and is achieved when two of the numbers 
are 2π/3 and the third number is −4π/3 (the point K ), or when two of the 
numbers are −2π/3 and the third number is 4π/3 (the point ′K ). The bands 
touch each other at these points. 

The wave functions can be presented as  

( )
2

2

e1 ,
2 e

i

i

θ

ν θν

− 
 Ψ =
 
 





k

k
k                     (A1) 

where 

( )Arg e .ii
iθ ⋅= ∑

k
k

δ                       (A2) 

Making substitution 

,= +k K q                           (A3) 

expanding with respect to q  and keeping only the linear terms we obtain  

( )2 21 3 .
2 4i

i
X q= ⋅ =∑q a q                     (A4) 

Thus we have the conic point in the spectrum. 
In the same approximation  

( ) ( )e e ,i ii i
i

i i
i⋅ ⋅= ⋅ = + ⋅∑ ∑k K q n m qδ δ δ               (A5) 

where  

( ) ( )cos , sin .i i i i
i i

= ⋅ =∑ ∑n K m Kδ δ δ δ             (A6) 

One can easily check up that  

, .⊥ =n m n m                        (A7) 

Hence θ θ=q q , where θq  is the polar angle of q , the X axis being chosen in 
the direction of n. If we chose  

1 2

3

1 1 1 1,1 , , 1 ,
2 23 3

1 2 2,0 , , ,
33 3

   
= = −   

   
   

= − =   
 

π

 

πK

δ δ

δ
                (A8) 

then X axis is in the direction of 2δ . Hence Equation (A1) can be written as  
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( )
2

, 2

e1 .
2 e

i

i

θ

ν θν

− 
 Ψ =
 
 

q

q
K q                    (A9) 

For the ′K  point, the wavefunctions are obtained from those in Equation 
(A9) by permutation of the sublattices  

( ) ( )*
, ' , .q qν ν′Ψ = ΨK K                     (A10) 

The natural question appears: are Equations (A9) and (A10) connected to the 
simplest possible tight-binding model we have used? The answer is: No, these 
equations are general, and follow from the symmetry of the problem. In fact, the 
general tight-binding Hamiltonian for the honeycomb lattice is  

( ) ( ) ( )

( ) ( ) ( )*

e eˆ ,
e e

ii

i i

t t
H

t t

⋅ +⋅

− ⋅ + ⋅

 ′ +
 =
 ′+ 

∑ ∑
∑ ∑

k a dk a
a a

k a d k a
a a

a a d

a d a
        (A11) 

where the summation is with respect to all lattice vectors a , and a  is some 
arbitrary, but fixed iδ . The selection rule for matrix elements [21] gives  

( ) ( )e 0.it ⋅ ++ =∑ K a

a
a δδ                    (A12) 

In fact, we are dealing with the product of two functions. The function 
( )t +a δ  realizes the unit representation of the point symmetry group 3C  (the 

full symmetry group of the inter-sublattice hopping is 3vC , but the restricted 
symmetry is enough to prove the cancelation). As far as the function ( )ei ⋅ +K a δ  is 
concerned, rotation of the lattice by the angle 2π/3, say anticlockwise, is equiva-
lent to rotation of the vector K  in the opposite direction that is substitution of 
the three equivalent corners of the Brilluoin zone. Thus the exponent ( )ei ⋅ +K a δ  
realizes x iy−  representation of the group 3C . Because each of the multipliers 
in Equation (A12) realizes different irreducible representation of the symmetry 
group, the matrix element is equal to zero. Simply speaking, at a point K the 
sublattices become decoupled, and this explains the degeneracy of the electron 
states in this point (these points) or, in other words, merging of the two 
branches of the single Brilouin zone. 

Hence, for a general tight-binding model, the nondiagonal matrix element of 
the Hamiltonian (A11) is a linear function of q : ( )i+ ⋅c d q , invariant with re-
spect to rotation of q  by 2π/3 up to a q  independent constant. It immediate-
ly leads to the demands =c d , and ⊥c d  and we recover Equation (A9). 
Equation (A10) follows from Equation (A9) because of invariance of the system 
with respect to mirror reflections. 
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