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Abstract 
It is now recognized that many geomaterials have nonlinear failure envelopes. 
This non-linearity is most marked at lower stress levels, the failure envelope 
being of quasi-parabolic shape. It is not easy to calibrate these nonlinear fail-
ure envelopes from triaxial test data. Currently only the power-type failure 
envelope has been studied with an established formal procedure for its de-
termination from triaxial test data. In this paper, a simplified procedure is 
evolved for the development of four different types of nonlinear envelopes. 
These are of invaluable assistance in the evaluation of true factors of safety in 
problems of slope stability and correct computation of lateral earth pressure 
and bearing capacity. The use of the Mohr-Coulomb failure envelopes leads 
to an overestimation of the factors of safety and other geotechnical quantities. 
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1. Introduction 

Comprehensive literature reviews on nonlinear envelopes can be found in [1] [2] 
and a repetition here will be superfluous. A nonlinear or curved failure envelope 
is shown in Figure 1. The friction angle ϕ is a continuously varying quantity. The 
non-linearity of failure envelopes is most marked at lower stress levels, the failure 
envelope being of quasi-parabolic shape [3]. The most commonly used nonlinear  
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Figure 1. Curved failure envelope. 

 

envelope is the power-type envelope 
1

1
m

o
t

στ τ
σ

 ′
= + ′ 

 or ( )na bτ σ ′= +  where  

τ = shear stress on failure arc; σ ′  = effective normal stress on failure arc = σ − 
u; σ = total normal stress; u = pore water pressure; σt = tensile strength of geo-
material; τo = cohesion of geomaterial; m is a constant. In the alternative repre-
sentation a, b, and n are constants with the case of a = 0 being common and de-
notes a purely granular geomaterial. This had been used in several studies on 
slope stability [4] [5] [6]. Investigations carried out by Anyaegbunam [2] revealed 
that the power-type equation is a valid envelope for soil for all n > 0 (except n = 
0.5) if 

( ) ( )
1

2 2 11 2 na b n n − > −                        (1) 

prior to this discovery the power-type equation was affirmed to be a valid envelope 
for n > 0.5 only [2] [5]. 

Additionally, it was discovered that the quadratic equation  

( )0.5a bτ σ ′= +                          (2) 

can only be a legitimate failure envelope if 
2

4
ba ≥                             (3) 

a and b are parameters in the equation of quadratic failure envelope. 
The aims of this manuscript are to 
1) Calibrate the modified Maksimovic nonlinear failure envelope from triaxial 

test data; 
2) Develop a simplified procedure for calibrating the polynomial type failure 

envelope from triaxial test data; 
3) Develop a simple methodology for calibrating the power-type failure enve- 

lope from triaxial test data; 
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4) Produce a simpler procedure for calibrating the power-type failure envelope 
equivalent to the Hoek-Brown failure envelope using triaxial test data; 

5) Compute the lateral earth pressure for a material with modified Maksi-
movic failure criterion; 

6) Determine the factor of safety of a slope made of material with modified 
Maksimovic criterion; 

7) Determine the factor of safety of a slope made of material with Hoek- 
Brown criterion. 

This work has never been presented in the literature before. As had been men-
tioned real soil envelopes are nonlinear and the calibration of these nonlinear 
envelopes will help in determining the true response of soils. The accurate cali-
bration of the Maksimovic failure envelope from triaxial test data has never been 
attempted before. The influences of nonlinearity on lateral earth pressure and 
factor of safety of slope with material made of modified Maksimovic law have 
never been attempted before and are quite difficult to implement. 

2. Methodology 

The calibration of a nonlinear failure envelope from triaxial test data is a prob-
lem of considerable difficulty [2] [7] [8]. To ease the calibration the formulas de-
rived first by Balmer [9] come in handy. 

They are: 

1 3
3

1

3

1

σ σ
σ σ

σ
σ

′ ′−′ ′= + ′∂
+

′∂

                       (4) 

1 3 1

1 3

3

1

σ σ σ
τ

σ σ
σ

′ ′ ′− ∂
= ′∂ ′∂+

′∂

                       (5) 

where σ' and τ have their previous meanings, 1σ ′  = effective major principal 
stress at failure, 3σ ′  = effective minor principal stress at failure. 

Given a set of experimental determined ( 3σ ′ , 1σ ′ ) values then the normal stress 
and shear stress on the failure plane can be calculated from Equations (4) and 
(5) respectively. 

It could be shown that  

1

3

1 sin
1 sin

Nϕ
σ ϕ
σ ϕ
′ ′∂ +
= =

′ ′∂ −
                      (6) 

where ϕ′  = the effective instantaneous friction angle. 
These authors deduced that the effective instantaneous cohesion c' is given by 

3 1
1 3

1 3

1
2

c
σ σ

σ σ
σ σ

 ′ ′∂ ∂′ ′ ′= − ′ ′∂ ∂  
                   (7) 

Equation (7) does not seem to exist in the literature. Fu and Liao (2010) seems 
to have derived the effective instantaneous cohesion for Hoek-Brown criterion 
that requires iteration to obtain. 
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2.1. Calibration of Modified Maksumovic Failure Envelope 

Maksimovic’s [10] failure criterion has been determined to be excellent for rock-
fill. 

According to Srbulov [11] this failure envelope provides the best fit to expe-
rimental data over a very wide stress range unlike the power-type envelopes that 
give low angle of friction at large normal stresses. 

Maksimovic [10] proposed a hyperbolic failure law for rock-fills that can be 
expressed as 

1
2 3

1tan a
a a

τ σ
σ

 
′= + ′+ 

                    (8) 

which has three parameters that needs to be determined. a1, a2 and a3 are related 
to the Maksimovic’s parameters by φB = a1, Δφ = 1/a2, PN = a2/a3. The determina-
tion of a1, a2 and a3 is not straight forward at all. The parameters were deter-
mined for the experimental data presented in test No. O of Holtz and Gibbs [12] 
for a sample containing 20% gravel at a relative density of 50% shown in Table 
1. It was discovered that the original Maksimovic [10] law Equation (8) does not 
provide an excellent match to the data. 

Therefore a modified Makumovic hyperbolic law, that provided an improved 
match, was proposed namely 

1
2 3

tan a
a a

στ σ
σ

 ′
′= + ′+ 

                    (9) 

For a drained test on a granular material σ σ′ = . By using Equations (4) and 
(5) values of σ and τ are computed in Table 1. Simple finite difference approxi-
mation has been used to compute values of 1 3σ σ∂ ∂ . These seem to be crude 
approximations but in practice have been found to give excellent results. 

By substituting for the largest values of σ and τ in Table 1, a relationship is 
derived between the constants, namely. 

1
2 3

arctanm m

m m

a
a a

σ τ
σ σ

 
+ =  +  

                 (10) 

with σm = 1105.69 and τm = 814.85. 
 

Table 1. First two columns: Test data O from page 20 of Holtz and Gibbs (1952). 

σ3 
KNm−2 

σ1 

KNm−2 
∂σ1/∂σ3 

σ 
KNm−2 

τ 
KNm−2 

24.2 114.8 4.37 41.02 35.16 

44.9 204.90 5.14 70.94 59.07 

89.0 447.8 3.76 164.35 146.14 

174.6 692.8 3.63 286.49 213.21 

345.7 1380 3.90 556.77 416.84 

690.0 2703 3.84 1105.69 814.85 
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To obtain the best values of a2 and a3 the method of least squares is used. To 
implement the least squares method Equation (9) should be expressed as 

2 3

1arctan
y a a

a

σ σ
τ
σ

= = +
  − 
 

                 (11) 

Applying the method of least squares it is obtained that 

2 3 i ia N a yσ =+ ∑ ∑                     (12a) 

2
2 3i i i ia a yσ σ σ+ =∑ ∑ ∑                  (12b) 

where subscript i will run from 1 to N = number of data points which is 6 in this 
case. Equation (12) can be solved to obtain 

( )3 22

N y y
a

N

σ σ

σ σ

−
=

−

∑ ∑ ∑
∑ ∑

,                 (13a) 

3
2

y a
a

N
σ−

= ∑ ∑                      (13b) 

The best fit values of a2 and a3 should be obtained as follows: A certain value 
of a1 near one is chosen and then values of a2 and a3 are calculated as shown 
above. Equation (10) is used to calculate another value of a1. if the chosen and 
the calculated a1 are equal then the correct solutions have been obtained. If they 
are different, then, another iteration should be done. 

When the above routine is implemented it is obtained that the parameters for 
the modified Maksimovic failure law for the triaxial data given in Table 1 are 

1 1.0a = , 2 64.35a = − , 3 2.6837a = − . 

The Mohr-Coulomb approximation to Table 1 is  

11.42 0.7269τ σ= +                     (14a) 

with a SEE of 28.73. SEE = the standard error of estimate calculated from 

( )2
1 1SE 1E predN

σ σ= −∑
 

The modified Maksumovic approximation to Table 1 is 

tan 1.0
64.35 2.6837

στ σ
σ

 = − + 
               (14b) 

with a slightly lower SEE of 28.04 and the envelope passing through τ = 0 as re-
quired. The modified Maksimovic failure envelope would give a better factor of 
safety when the stability of geomaterial of shallow depth is considered. In Figure 
2 the M-C and M-M failure envelopes are compared. In Table 2 is shown the 
data for test W of Holtz and Gibbs [12] for a sample containing 20% gravel at a 
relative density of 70%. The Mohr-Coulomb approximation to Table 2 is  

31.95 0.7542τ σ= +                     (15a) 

with a SEE of 31.82. 
The modified Maksimovic approximation to Table 2 is 
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Figure 2. The M-C and M-M failure envelopes are compared wrt Mohr circles of Test 
data O. 

 
Table 2. Test data W from page 21 of Holtz and Gibbs (1952). 

σ3 
KNm−2 

σ1 

KNm−2 

22.8 192.5 

45.5 280.1 

88.3 523.7 

173.9 825.9 

347.0 1572 

691.0 2886 

 

tan 1.0
254.55 2.7241

στ σ
σ

 = − + 
              (15b) 

with a lower SEE of 23.78. This time around the difference is clear. The two en-
velopes are compared in Figure 3. 

2.2. Calibration of Polynomial Failure Envelope 

Yuanming et al. [13] derived a cubic polynomial σ − τ failure envelope for frozen 
sandy clay from σ3 − σ1 triaxial test data shown in Table 3. In this case effective 
normal stress = total normal stress. They calibrated the coefficients of the poly-
nomial via a not really straightforward procedure. It is the purpose of this sec-
tion to illustrate a much simpler procedure for doing the calibration. 

Yuanming et al. [13]’s procedure was proceeded by a derivation by regression 
of a σ1 − σ3 relation (Equation (16)) that enables an analytical determination of 
∂σ1/∂σ3 but these authors used a finite difference approximation for ∂σ1/∂σ3. 

( ) 3 3
1 1

o
atm

b
P

o c
T

K σ σ
σ σ

σ
 

= + 
 

                  (16) 
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Figure 3. The M-C and M-M failure envelopes are compared wrt Mohr circles of Test 
data W. 

 
Table 3. Test data for frozen sany clay at −6˚C from Yuanming et al. (2010) page 51. 

σ3 
MNm−2 

σ1 

MNm−2 
σ3 

MNm−2 
σ1 

MNm−2 

0.0 2.285 5.0 11.877 

0.3 3.289 6.0 12.924 

0.6 4.155 8.0 14.924 

0.8 4.726 10.0 17.161 

1.0 5.308 12.0 19.381 

2.0 7.392 14.0 20.795 

3.0 9.541 16.0 22.571 

4.0 11.140 18.0 24.953 

 
where σc and σT are the uni-axial compressive and tensile strengths of the speci-
men respectively. 

Ko and bo are experimental parameters. Equation (16) is not needed in this 
study. 

Using Equations (4) and (5) on Table 3 a set of values of σ and τ are obtained. 
Let the cubic polynomial failure envelope be  

2 3
1 2 3 4b b b bτ σ σ σ= + + +                    (17) 

Applying the method of least squares regression directly to this the following 
4 equations are obtained 

2 3
1 2 3 4Nb b b bτ σ σ σ= + + +∑ ∑ ∑ ∑              (18a) 

2 3 4
1 2 3 4b b b bστ σ σ σ σ= + + +∑ ∑ ∑ ∑ ∑           (18b) 

2 2 3 4 5
1 2 3 4b b b bσ τ σ σ σ σ= + + +∑ ∑ ∑ ∑ ∑           (18c) 
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3 3 4 5 6
1 2 3 4b b b bσ τ σ σ σ σ= + + +∑ ∑ ∑ ∑ ∑           (18d) 

where N is number of data points and the subscripts have been deleted without 
loss of meaning. 

When Equations (18a) to (18d) are solved for the constants b1 to b4 it is ob-
tained that 

3
1 2 3 4 0.6549, 0.6690, 0.04815, 1.0773 10b b b b −= = = − = ×  

Yuanming et al. [13] obtained 1 0.6667b = , 2 0.6290b = , 3 0.0423b = − ,  
3

4 0.90 10b −= ×  
The two sets of constants can be seen to be approximately the same. 
According to this paper the polynomial envelope is  

2 3 3  0.6549 0.6690 0.04815 1.0773 10τ σ σ σ−= + − + ×  
The standard error of estimate was determined to be SEE = 0.3727. The Mohr- 

Coulomb envelope is determined to be 2.036 0.0969τ σ= +  with an SEE = 1.1870. 
Thus, the Polynomial envelope provides a better fit to the experimental data. It is 
believed that the procedure used to do the calibration here is much more simpler 
and readily understood than the method of Yuanming et al.’s. A Q basic com-
puter program [14] was used for doing all the relevant calculations and this pro-
gram is available from the corresponding author on request. Figure 4 shows the 
Mohr circles of the experimental data of Table 3 and the associated M-C and 
polynomial failure envelopes. 

2.3. Calibration of the Power-Type Failure Envelope 

The power-type failure envelope takes the form ( )na bτ σ= + . A somehow com-
plicated procedure for calibrating the power-type failure envelope has been giv-
en in Baker [1] and Anyaegbunam [2]. In Table 4 is shown experimental data 
lifted from Anyaegbunam [2]. 

 

 

Figure 4. Mohr circles of the experimental data of Table 3 and the associated M-C and 
polynomial failure envelopes. 
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Equations (4) and (5) are used to obtain the corresponding σ and τ values at 
failure. The power-type equation is then expressed as 

1  na bσ τ+ =                         (19) 

By assuming several values of n Equation (19) is subjected to least squares re-
gression for each value of n. The value of n that yields the minimum SEE is cho-
sen as the correct failure envelope. This has been programmed in the afore men-
tioned QBASIC 4.5 program for the automatic determination of n, a and b. For 
the data of Table 4 it is obtained that ( )0.7480.389 2.61τ σ= +  with an SEE of 
0.25 that is almost exact match to the experimental data. This agrees almost ex-
actly with Anyaegbunam [2] that gave ( )0.7480.439 2.612τ σ= +  using a more 
complicated procedure. The Mohr-Coulomb envelope for the data of Table 4 is 

29.44 0.3812τ σ= +  that corresponds to ( )arctan 0.3812 20.9ϕ = = ˚. Figure 5 
shows the Mohr circles of the experimental data of Table 4 and the associated 
linear M-C and power-type failure envelopes. 

2.4. Calibration of the Power-Type Failure Envelope  
for the Hoek-Brown Criterion 

Hoek and Brown [15] presented a useful and practical equation for the insitu  
 

Table 4. Consolidated undrained test data for a sample of laterite from Table 2 of Any-
aegbunam (2015). 

σ3 
KNm−2 

σ1 

KNm−2 

69.0 225.8 

138 383.7 

276 664.4 

 

 

Figure 5. Mohr circles of the experimental data of Table 4 and the associated linear M-C 
and power-type failure envelopes. 
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strength of rock mass. The 2002 version of this equation [16] (the modified Hoek- 
Brown criterion) is: 

3
1 3

b
ci b

ci

m
s

η
σ

σ σ σ
σ

 
= + + 

 
                   (20) 

where 
GSI 100exp
28 14b im m

D
− =  − 

, 
GSI 100exp

9 3bs
D

− =  − 
 

( ) ( )1 1 exp GSI 15 exp 20 3
2 6

η = + − − −  
 

where GSI is the Geological Strength Index, D is the disturbance factor, σci = the 
compressive strength of the intact rock, mi is a material constant of the intact 
rock. 

The Hoek-Brown criterion can be expressed simply as 

( )1 3 3
ησ σ κσ β= + +                      (21) 

where 
1 1

b cim ηκ σ
−

=  and 
1

b cis ηβ σ=  

Letting 3F κσ β= +  and 12den F ηκη −= +         (22a, b) 

then it can be shown that 

3
F

den
σ σ= +  and 

1
2

1F den F
den

η

ητ

+

−= −           (23a, b) 

Equations (23a, b) are the exact parametric (implicit) equations of the Mohr 
envelope of the H-B criterion. These equations with σ3 as the paramaeter are not 
very much useful in practice because the value of τ are not easily calculated from 
that of σ, vice versa. Hence, it is necessary to determine a single equation con-
necting τ and σ. 

The H-B criterion utilized herein have the following constants σci = 40 MN/m2, 
mi = 10, GSI = 45, D = 0.9 with the rest calculated to be mb = 0.281, η = 0.508, sb 
= 1.616 × 10−4. 

The Hoek-Brown equation cannot be directly used in slope stability analysis 
because it is defined in terms of principal stresses. Considerable difficulty is en-
countered when Hoek-Brown equation is used directly in strength-reduction fi-
nite element type of slope stability analysis [17] [18] hence it will useful to obtain 
its Mohr envelope for use in limit equilibrium analysis. Baker [1] shows that the 
power-type failure envelope ( )na bτ σ= +  provides an excellent fit to the Hoek- 
Brown criterion in the Mohr (σ-τ) plane. Therefore the Mohr envelope ob-
tained in this section is of the power-type. Equation (21) has been used to de-
rive Table 5 and Equations (23a and b) was used in the program to obtain 
values of σ and τ. 

Figure 6 shows the Mohr circles of the H-B criterion and the associated Power- 
type envelope and M-C envelope. The derived power-type envelope has the equ-
ation ( )0.684353.3 22.343τ σ= +  with a SEE of 6.63. The Mohr-Coulomb enve- 
lope has the equation 159.86 0.8014τ σ= +  or ( )159.86 tan 38.71τ σ= + ˚  with 
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Table 5. Data for Hoek-Brown criterion specified in the text. 

σ3 
KNm−2 

σ1 

KNm−2 

0.0 474.2 

20.0 671.6 

40.0 831.1 

80.0 1095.5 

160.0 1519.8 

300.0 2114.8 

440.0 2619.1 

614.0 3176.5 

 

 

Figure 6. Mohr circles of the H-B criterion and comparison with linear M-C and nonli-
near power-type failure envelopes. 

 
a SEE = 123.94. The envelopes derived in Anyaegbunam [2] namely  

( )0.684357.302 22.337τ σ= +  with a SEE = 5.77 and the M-C fit of c = 157.0 KN/m2 
and φ = 38.7˚ with a SEE = 131.77 can be seen to be in excellent agreement. The 
method used in this paper can be seen to be much simpler and readily understood 
than Anyaegbunam [2]. Deng et al. [17] presented an approximate limit equili-
brium technique for slope stability analysis using the Hoek-Brown criterion. 

3. Influence of Nonlinearity of Failure Envelope  
on Geotechnical Computations 

3.1. Passive Pressure on a Smooth Wall Due to Soil with Modified 
Maksimovic Law Derived from Table 2 

This shall be illustrated for a 2.0 m smooth high wall that is a portion of a wall 
embedded in homogeneous soil of unit weight γ = 18 KN/m3. The vertical stress, 
which is the minimum principal stress, is given by σ3 = γz(i) where z(i) = vertical 
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distance from the ground surface. Assume that the wall height is divided into a 
number of divisions such that σ3 can be denoted by σ3(i) and that the number of 
divisions is num. On the basis of a Mohr-Coulomb law the passive pressure at a 
given point is given by ( ) ( )1 3 2MC i i N C Nϕ ϕσ σ= + . where C and φ are the  

M-C shear strength parameters and 2tan
4 2

Nϕ
ϕπ +


= 


. C = 31.95 KN/m2, tanφ 

= 0.7542, a1 = 1.0, a2 = −254.55, a3 = −2.7241. 
The pseudo code for evaluating the passive pressure according to the modified 

Maksimovic law will be as follows: 
Dimension the variables 

set i = 1: eps = 0.001 
450 compute σ3(i): set σ3 = σ3(i)’ 450 is line numbering in the code 

compute σ1MC(i): set ( )1 1MC MC iσ σ=               (24) 

Let σn = normal stress on the failure arc. Estimate σn as σn1. 

( ) ( )1 1 3 1 30.45 sinn MC MC MCσ σ σ σ σ ϕ = + − − 
 

where MCϕ  = M-C friction angle ϕ  

500 1
1 1

2 3 1

tan n
n

n

a
a a

σ
τ σ

σ
 

= + + 
 

Let d
d

der τ
σ

=  

( )

2
2 1

2 2
1 12 3 1

1n

n nn

a
der

a a
στ τ

σ σσ

 
= + + 

+    
21t derτ= +  

From Figure 1 it could be shown that 

2 2
2 3n n t tσ σ σ τ= = + − −  

If i = num + 1 then END 
If 2 1n n epsσ σ− >  then 1 2n nσ σ= : goto 500 
If 2 1n n epsσ σ− ≤  then ( )1 3 2i tσ σ= + : 1i i= + : goto 450 
In Figure 7 are shown the Passive pressures calculated for M-C and M. M. 

material having test data W. 
The M-C soil has a passive force and moment of 401.4 KN/m and 353.1 

KNm/m at the base of the wall. The M.M. soil has a passive force and moment of 
284.3 KN and 203.5 KNm/m at the base of the wall which are 29.2% and 42.4% 
less than the M-C values respectively. This is usually the case for short walls that 
are less than 6.0 m in height. 

3.2. Factor of Safety of a Slope with Material Governed by a Modified 
Maksimovic Law and Comparison with M-C Equivalent 

It is proposed to determine the factor of safety of a 45˚ homogeneous slope of  
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Figure 7. Passive Pressures of soil with M-C and M.M. envelopes for test data W. 
 

height 10 m via a Maksimovic material model and M-C material model using the 
Bishop simplified technique [19]. 

The material models were those derived from the triaxial data of Table 2 and 
are follows: For the M-C model: C = 31.95 KN/m2, ϕ = 37.02˚ and for the M. M. 
model: a1 = 1.0, a2 = −254.55, a3 = −2.7241. 

After the soil mass is divided into vertical slices the Bishop method for M-C 
material is given by 

( ) tan1
sin tan tancos 1

i i i
s

i i i
i

s

c h u
F

h
F

γ ϕ
γ α α ϕ

α

′ ′+ −
=

′ 
+ 

 

∑∑
           (25) 

where Fs = factor of safety, hi = midheight of slice i, αi = inclination of base of 
slice i, u = pore pressure on base of slice i. 

The Bishop method for modified Maksimovic (M.M.) material is given by 

1
2 3

1 tan
sin cos

i i
s

i i i i

F a
h a a

σ σ
γ α α σ

′ ′ 
= + ′+ 

∑∑
           (26) 

where iσ ′  is obtained for each slice from the equation 

( )1
2 3

tan tan 0i i
i i i i

s i

a h u
F a a
σ σ

σ α γ
σ

′ ′ 
′ + + − − = ′+ 

          (27) 

The factor of safety Fs is determined by assuming an initial value of Fs and 
calculating iσ ′  from Equation (27). Thereafter iσ ′  are substituted into Equa-
tion (26) to re-calculate Fs. The calculation of Fs using the Bishop method on a 
M.M. material model does not exist in the literature. 

Using the M-C material model and 10 slices, the following results are ob-
tained: Fs = 2.40 with the critical toe circle of radius 14.75 m centered at (−0.64, 
14.74) with a central angle of 68.8˚. Using the M.M. material model the Fs = 1.64  
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Table 6. Comparison of Fs via Deng et al.’s H-B LEM and this paper’s H-B power-type 
LEM Bishop method. 

H β Deng’s method This paper’s method 

15 30˚ 2.570 2.586 

15 45˚ 1.905 1.903 

15 60˚ 1.482 1.453 

 
with the critical toe circle of radius 16.87 m centered at (−4.46, 16.27) with a 
central angle of 52.8˚. The use of the M.M. material model is seen to have a 
strong influence on the calculated factor of safety which is seen to be smaller. 

Unfortunately the M.M. law has not been used for stability calculations by 
other authors and comparison of the results herein cannot be compared with 
previous results. 

3.3. Factor of Safety of Slope Using Deng et al.’s Approximate LEM 
with Hoek-Brown Parameters Compared with This Paper’s 
Rigorous Hoek-Brown Method 

Deng et al. [17] developed an approximate limit equilibrium method (LEM) with 
Hoek–Brown parameters for determining the factor of safety of a rock slope. 

The H-B parameters of the rock slope are D = 0, GSI = 100, mi = 10, σci = 140 
KNm−2, α = η = 0.5. mb and sb are calculated from Equation (20). The rock unit 
weight is γ = 23 KN/m3. 

Also, 
( )

( )( )

1

4 8
4

2 1 2

b
b b b b b

cm ci

mm s m s s
α

α
σ σ

α α

−
  + − − +    =

+ +
        (28) 

0.91

3max 0.72 cm
cm H

σ
σ σ

γ

−
 

=  
 

                   (29) 

3σ  values are listed from values of 0 to 3maxσ  and the H-B relation is used to 
calculate corresponding values of 1σ . From these the power-type equivalent to 
this Hoek-Brown law is deduced by section (3.4) to be ( )0.643134.53 14.431τ σ= + . 
The derived SEE = 1.26. In Table 6 is shown the results of factors of safety of 
slope stability obtained via the two methods. The F.S. for a slope using the pow-
er-type envelope was obtained using a modification of the method of Charles 
and Soares [20]. The F.S. of a slope using Deng et al.’s method was obtained us-
ing Equation (18) of their paper. The calculated factors of safety can be seen to 
be close except when β > 60˚ when they differ appreciably as Deng et al. discov-
ered. 

4. Conclusion 

Four Mohr failure envelopes have been presented and the methods of for deriv-
ing them from experimental triaxial test data have been explained. The method 
for computing the passive resistance for granular soil with M.M. (modified Mak-
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simovic) envelope is presented. In addition, the influence of a M.M. envelope on 
the factor of safety of slope is presented and it is shown that the use of a M.M. 
material model results in a significant reduction in the calculated factor of safety. 
Also, it is shown that the factors of safety of rock slope obtained by this paper’s 
power-type approximation and LEM are close to Deng et al.’s factors of safety 
using H-B approximation and LEM. A computer program written in QBASIC 
version 4.5 for doing all the calibrations has been developed by the authors and 
is available on request from the corresponding author. This program is a useful 
contribution to geotechnical engineering practice. 
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