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Abstract 
This study focuses on the determination of physical and mechanical characte-
ristics based on in vitro tests, by using field samples for the Kampemba urban 
area in the city of Lubumbashi. At the end of this study, we identified the soils 
according to their parameters, and established the geotechnical classification 
by determining their bearing capacity by the group index method using from 
the identification tests carried out. By using the AASHTO classification me-
thod (American Association for State Highway Transportation Official), the 
results obtained after our studies revealed five classes of soil: A-2, A-4, A-5, 
A-6, A-7 in a general way, and particularly eight subgroups of soil: A-2-4, 
A-2-6, A-2-7, A-4, A-5, A-6, A-7-5 and A-7-6 for the concerned area. The 
latter has given statistical analysis and deep learning based on multi-layer 
perceptron, the global values of the physical parameters. It’s about: 31.77% ± 
1.05% for the limit of liquidity; 18.71% ± 0.76% for the plastic limit; 13.06% ± 
0.79% for the plasticity index; 83.00% ± 3.33% for passing of 2 mm sieve; 
76.22% ± 3.2% for passing of 400 μm sieve; 89.07% ± 2.99% for passing of 
4.75 mm sieve; 70.62% ± 2.39% passing of 80 μm sieve; 1.66 ± 0.61 for the 
consistency index; −0.67 ± 0.62 for the liquidity index and 8 ± 1 for the group 
index. 
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Intelligence, Deep Learning, Multi-Layer Perceptron 

 

1. Introduction 

To build a stable and sustainable road or civil engineering structures, it is im-
perative to treat the supporting soil in order to increase its bearing capacity. This 
stage of soil treatment can be accomplished only if the different physical charac-
teristics of this soil are known. The study of the mechanical behavior of mate-
rials used in public works in general has been of interest to the scientific com-
munity for a very long time [1]-[9], among others. In geotechnical engineering, 
engineers use several systems to classify geomaterials by assigning them to each 
category by the similarity of their physical and/or mechanical properties a code.  

The municipality of Kampemba consists of the Kafubu, Bel-Air 1 and 2, Bon-
gonga, Industriel, Kigoma and Kapemba quarters, and has a total area of 
9,741,644.63 m2. This municipality is part of the square degree of the city of Lu-
bumbashi city between the parallels 11˚36'5.60'' and 11˚44'44.91'' of Northing 
(South Latitude), and the meridians 27˚29'59.31'' and 27˚33'19.57'' of Easting 
(East Longitude). 

The southern part of Katanga, which is part of our area of study, has a tropical 
climate with alternating two seasons, with a temperate and continental character 
linked to altitude but also to distance from the Indian and Oceanic Masses East 
and West 26, respectively [10] and annual rainfall is estimated at 1200 mm. The 
geology in place is described in Figure 1. This geological map is a necessary but 
not sufficient document to provide useful information to civil engineering pro-
fessionals in their quest for good behavior soils to erect different structures. 
Hence, the detailed study of the soils and the alteration state of different parts of 
the massive rock in order to arrive at the presentation of the geotechnical map 
was the subject of this article. It will serve as a guide for the Kampemba’s muni-
cipality civil engineers. 

Several soil classification works have already been done for some municipali-
ties in the city of Lubumbashi, including Kampemba [7] [11] [12] using different 
methods. This study was based on deep learning of inferential statistics and ar-
tificial intelligence based on the multilayer perceptron methods. 

In the context of this article, the first objective is to arrive in the geotechnical 
classification of the Kampemba’s municipality soils from the laboratory results. 
The second objective was to learn by deep learning the physical characteristics of 
the soils, and finally, the third objective was to identify the existing relationships 
between the physical parameters of the soils using statistical analyses and the 
perceptron multi-layer methods. 

2. Materials and Methods 
2.1. Sample Constitution 

In situ sampling was based on the following criteria: soil color, moisture, consis-
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tency, texture, structure and probable soil origin (natives? non-natives? nature of 
the bedrock?). 

The sampling points were superimposed on the administrative background of 
Figure 2. Two hundred ninety-three (293) samples were collected. This sam-
pling was based on the distribution of geological formations as shown on the 
geological map. For the learning of the system by artificial intelligence, 50% of 
samples were selected for learning and 50% for testing. 

2.2. Determinant Predictive Variables 

After the sampling campaign, there were followed by sieve analysis and consis-
tency limit testing according to AFNOR standards (NF 1997-1, 2005) [13] to 
find all baseline data. Consistency or Atterberg limits are determined only for 
the fine elements of a soil, i.e. the fraction passing through the 400 μm sieve [13] 
or 420 μm [14], as these are the only elements on which water acts by changing 
the consistency of the soil [15]. In the case of this article, the sieve used was 400 
μm. In practice, the liquidity limit ( LW ) is defined as the water content from  
 

 
Figure 1. Geological map of the area of study showing representativity of sampling. 
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Figure 2. Map of sampling set out on administrative entities. 
 
which a groove closes on 1 mm under 25 blows, the Casagrande cup was used 
for its determination. Its value was calculated by two methods: 
• the analytical method (Equation (1) and Equation (2)), 
• the graph based on the lower square right.  

These technics were verified using deep learning based on the multilayer per-
ceptron, used in artificial intelligence for regressions and predictions. 

0.121

25L
NW ω =  

 
.                          (1) 

with: “ω” water content and “N” the number of blows. 
The second analytical formula is that of the Washington State Highway De-

partment [16] [17] in which the liquidity limit is determined by a single measure 
corresponding to a number of blows between 17 and 36. 

101.419 0.3 logL NW ω
=

− ∗
.                      (2) 

For this study, the results found with the two methods are almost similar, but 
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with a relative error of 1.97%. 
In practice, the limit of plasticity (WP) is the water content of the spindle that 

breaks into small sections of 1 to 2 cm long at the moment when its diameter 
reaches 3 mm. If the sample breaks at different diameters, several successive tests 
are made and the least square line is drawn to determine the water content cor-
responding to the 3 mm diameter. 

The plasticity index “IP”, is the difference between the liquid limit and the 
plasticity limit. It gives an indication of the extent of the plasticity range. With 
this index, the soil can be classified according to its degree of plasticity. 

The sieve analysis made it possible to calculate the following predictive va-
riables: the content of fine particles (X80), the sieve passing of 400 μm (X400) and 
the sieve passing of 2 mm (X2). 

2.3. Geotechnical Classification of Soils 

Burmisterin [16] has established the following classification for soils: 
• 0PI = : non-plastic soil; 
• 1 5PI≤ < : light plasticity soil; 
• 5 10PI≤ < : low plasticity soil; 
• 10 20PI≤ < : medium plasticity soil; 
• 20 40PI≤ < : high plasticity soil; 
• 40PI > : very high plasticity soil. 

This rule was used in this work for the partial classification, as the materials 
are very heterogeneous and come from the alteration of several lithological and 
pedogenetics natures. For the global classification of soils, the method chosen 
was that of the AASHTO [18], which is based on sieve analysis, liquidity limit 
and plasticity limit such as: 
• when the test results required for classification are available, the groups are 

examined from left to right by successive elimination. The first group as far 
as possible to the left, that corresponds to the group searched for; 

• the plasticity index of subgroup A-7-5 is less than “WL − 30” and the plastic-
ity index of subgroup A-7-6 is higher than “WL − 30”; note that this classifi-
cation is completed by the group index method “Ig”, which is calculated from 
the results of the sieve analysis, liquidity limit “WL” and plasticity index “IP” 
tests by the Equation (3). 

( ) ( )( ) ( )( )200 20035 0.2 0.005 40 0.01 15 10 .g L PI X W X I= − + − + − −   (3) 

The calculation of this index defines the bearing capacity of a soil based on its 
identification tests. It can be used on the one hand to specify the classification of 
soils, and on the other hand, to evaluate the thickness of pavement sub-base lay-
ers according to the below formula of Steele in [16] without carrying out the 
CBR (Californian Bearing Ratio) tests [19]: 

[ ] 2

11 1cm
4 16g g

e
I I

= −
∗ ∗

.                       (4) 
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According to Steele, the strength of a pavement foundation implies that its 
thickness depends on five factors [17]: nature of the subsoil, drainage, compac-
tion, climate and the safety coefficient. The author gives the following classifica-
tion as a function of the thickness of the subgrade: 
• Null for a good subgrade (Ig = 0 or 1); 
• 10 cm for a fair subsoil (Ig from 2 to 4); 
• 20 cm for a bad subsoil (Ig from 5 and 9); 
• 30 cm for a very bad basement (Ig from 10 to 20). 

This thickness will have to be adapted to the conditions in Lubumbashi during 
the project study.  

In order to avoid repetitive operations in data processing, the geotechnical 
mapping computer program based on deep learning: complex artificial neural 
networks [7] created according to the AASHTO classification was used, whose 
user interface is shown in Figure 3. 

2.4. Analysis of the Data 

For this article, two methods were used: statistical methods and artificial intelli-
gence methods based on complex neural networks: Deep Learning. 

2.4.1. Statistical Methods 
1) Descriptive statistics 

 

 
Figure 3. Software interface for geotechnical soil classification using artificial neural net-
works [7]. 
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The statistical synthesizers used are: mean, first quartile, second quartile (me-
dian), third quartile, unbiased standard deviation, coefficient of variation, skew-
ness, kurtosis and 95% confidence interval. 

2) Inferential statistics 
For this analysis, the following tests were used: the box plot test for detecting 

outliers, the Kolmogorov-Smirnov test for normality, and discriminant factor 
analysis to highlight trends. Explanation and prediction of the membership of 
individuals in several geotechnical classes based on the explanatory variables, 
quantitative or qualitative, was done using discriminant factor analysis (DFA). 
This method, which is both explanatory and predictive, can be used for: 
• check on a two or three dimensional graph whether the groups to which the 

observations belong are distinct; 
• identify the characteristics of the groups on the basis of explanatory variables; 
• predict belonging group. 

The analysis of covariance (ANCOVA), which is a method of modelling a 
quantitative dependent variable using quantitative and qualitative explanatory 
variables in the linear model, to model the correlations presented in the correla-
tion and confusion matrices was used. Variables are said to be multi-collinear if 
there is a linear relationship between them. This is an extension of the simple 
case of collinearity between two variables. 

While Discriminant Factor Analysis (DFA) can detect the presence of mul-
ti-collinearity in the data (the number of non-zero factors less than the number 
of variables indicates the presence of multi-collinearity), it does not identify the 
variables responsible for it. 

In order to detect multi-collinearities and identify the variables involved, li-
near regressions of each of the variables in relation to the others must be carried 
out. It is then recommended to calculate: 
• The R2 of each of the models. If the R2 is 1, then there is a linear relationship 

between the dependent variable of the model (the Y) and the explanatory va-
riables (the X); 

• The tolerance of each model is (1 − R2). It is used in several methods (linear 
regression, logistic regression, and discriminant factor analysis) as criteria for 
filtering variables. If a variable has a tolerance below a fixed threshold (the 
tolerance is calculated by taking into account variables already used in the 
model), it is not allowed to enter the model because its contribution is neg-
ligible and could lead to numerical problems; 

• The VIF (Variance Inflation Factor) which is equal to the inverse of the to-
lerance. 

It can be useful to detect multiple collinearities within a group of variables in 
particular in the following cases: 
• To identify structures in the data and to derive operational decisions from 

them; 
• To avoid numerical problems in some calculations. 
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2.4.2. Deep Learning Methods 
A neural network is a mesh of several neurons organized by layers. The “S” 
neurons of a single layer are all connected to the “R” inputs. In this case, the 
layer is said to be fully connected. A weight “wi,j” is associated to each connec-
tion. The first index “i” (row) designates the number of neuron on the layer, 
while the second index “j” (column) specifies the number of input. The set of 
weights in a layer forms a matrix “w” of dimensions “S × R” (Figure 4). The 
mathematical model of an artificial neuron, shown in Figure 4, consists essen-
tially of an integrator that performs a weighted summation of its inputs. The re-
sult “n” of this sum is then transformed by a transfer function “f” which pro-
duces the output “a” of the neuron. The “R” inputs of the neuron correspond to 
the vector [ ]T1 2 Rp p p=p  , while 

T
1,1 1,2 1,Rw w w=   w   represents the vector 

of synaptic weight of the neuron [20] [21]. 
The output “n” of the integrator is given by the equations below: 

1,1 ‍ .R
j jj w p b

=
= −∑n                         (5) 

with “b” the activation bias or threshold of the neuron and “n” the activation 
level that is then transformed by a transfer function “f” that produces the output 
“a” of the neuron (Equation (6)). 

( ) ( )( ) ( ).t f t f w b= = −a n p                     (6) 

with “w” a matrix of synaptic weights and “t” time. 
Several activation functions are used to solve different problems. Since this is 

more of a regression problem (approximation of functions) for this paper, the 
functions that have been used are the following:  

 

 
Figure 4. Layer with S neurons. 
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• linear; 
• sigmoid; 
• hyperbolic tangents.  

For this type of problems, the multi-layer perceptron architecture was chosen. 
This is a static model, i.e. not considering time, because only the variables of 
soil’s nature were used in the analysis. These variables are intrinsic characteris-
tics of soils. 

3. Results 
3.1. Statistical Analysis 

Before using advanced methods of analysis, it is first necessary to discover the 
data in order to identify trends, detect anomalies or simply to have essential in-
formation such as the minimum, maximum, or average of a sample of data [22]. 
Table 1 and Table 2 show the synthetic values founded. Without distinction of 
geotechnical classes, the soils of Kampemba have the following geotechnical 
properties given in Table 1. The Confidence Interval has been calculated ac-
cording to student statistic at 95%. 

Table 2 and Table 3 provide details of all synthesizers of quantitative and qu-
alitative variables. 

The coefficient of variation of all variables is greater than 15%. This reflects 
significant variability in the sample (the materials are very heterogeneous); 
hence the mean alone is not a good summary of the whole sample. The distribu-
tion of values is asymmetric for all variables:  
• the liquidity limit, the plasticity limit and all the sieve analysis parameters 

admit a left-hand asymmetry while; 
• the plasticity and group index admit a right-hand asymmetry.  

With respect to the flattening of the curve:  
• the liquidity limit, the plasticity limit, the plasticity index, the fine particle 

content, the sieve passing of 400 μm and 2 mm shows a platicurtic or hypo-
normal curve; 

• the sieve passing of 4.75 mm shows a leptocurtic or hypernormal curve while; 
• the group index shows a normal distribution. 

 
Table 1. Synthesis of Kampemba’s soil nature parameters. 

Predictive variables Average Confidence Interval 

WL (%) 31.77 ±1.05 

WP (%) 18.71 ±0.76 

IP (%) 13.06 ±0.79 

X80 (μm) 70.62 ±2.39 

X400 (μm) 76.22 ±3.2 

X2 (mm) 83.00 ±3.33 

X4.75 (mm) 89.07 ±2.99 

Ig 8 ±1 
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Table 2. Descriptive statistics of quantitative geotechnical variables. 

Statistics WL WP IP X2 (mm) X400 (μm) X4.75 (mm) X80 (μm) IC IL Ig 

Number of observations 293 293 293 293 293 293 293 293 293 293 

Number of missing values 0 0 0 0 0 0 0 0 0 0 

Sum of weights 293 293 293 293 293 293 293 293 293 293 

Minimum 0.000 0.000 0.000 0.000 0.000 0.000 0.000 −8.394 −87.900 0.000 

Maximum 57.810 38.460 45.700 100.000 100.000 100.000 100.000 88.900 9.394 45.000 

Frequency of minimum 3 4 3 20 20 20 7 1 1 59 

Frequency of maximum 1 1 1 55 21 103 1 1 1 1 

Range 57.810 38.460 45.700 100.000 100.000 100.000 100.000 97.295 97.295 45.000 

1st Quartile 26.570 14.780 9.350 78.991 66.533 95.548 63.352 0.833 −0.617 1.000 

Median 32.750 18.600 13.210 98.672 86.862 99.786 75.000 1.214 −0.214 7.000 

3rd Quartile 37.755 22.590 16.775 99.846 95.213 100.000 85.368 1.617 0.156 12.000 

Sum 9307.781 5480.716 3827.065 24,317.702 22,332.138 26,098.290 20,692.495 487.004 −197.004 2328.000 

Mean 31.767 18.706 13.062 82.996 76.219 89.073 70.623 1.662 −0.672 7.945 

Variance (n) 82.781 43.334 47.075 834.030 773.649 675.135 432.516 28.661 28.637 48.161 

Variance (n − 1) 83.064 43.483 47.236 836.886 776.298 677.447 433.997 28.759 28.735 48.326 

Standard deviation (n) 9.098 6.583 6.861 28.880 27.815 25.983 20.797 5.354 5.351 6.940 

Standard deviation (n − 1) 9.114 6.594 6.873 28.929 27.862 26.028 20.833 5.363 5.360 6.952 

Variation coefficient 0.286 0.352 0.525 0.348 0.365 0.292 0.294 3.221 −7.959 0.873 

Skewness (Pearson) −0.437 −0.127 0.651 −1.831 −1.556 −2.804 −1.430 14.836 −14.850 1.145 

Skewness (Fisher) −0.439 −0.127 0.654 −1.840 −1.564 −2.818 −1.437 14.913 −14.926 1.151 

Skewness (Bowley) −0.105 0.022 −0.040 −0.887 −0.418 −0.904 −0.058 0.027 −0.042 −0.091 

Kurtosis (Pearson) 0.773 0.742 1.939 2.223 1.454 6.619 2.057 237.893 238.181 2.615 

Kurtosis (Fisher) 0.808 0.776 1.994 2.283 1.500 6.754 2.113 242.023 242.317 2.681 

Standard error of the mean 0.532 0.385 0.402 1.690 1.628 1.521 1.217 0.313 0.313 0.406 

Lower bound on mean (95%) 30.719 17.947 12.271 79.669 73.015 86.080 68.228 1.046 −1.289 7.146 

Upper bound on mean (95%) 32.815 19.464 13.852 86.322 79.422 92.065 73.018 2.279 −0.056 8.745 

Standard error of the variance 6.874 3.599 3.909 69.261 64.247 56.066 35.918 2.380 2.378 3.999 

Lower bound on variance (95%) 71.080 37.209 40.421 716.147 664.301 579.711 371.384 24.610 24.589 41.354 

Upper bound on variance (95%) 98.374 51.497 55.942 991.132 919.378 802.307 513.987 34.059 34.031 57.233 

 
Table 3. Descriptive statistics of qualitative geotechnical variables. 

Variables Number of categories Mode Frequency mode Categories 

Classification according 
to argilosity and  
compressibility 

7 
Mineral clays with 

low plasticity 
135 

Mineral clays with low plasticity 

Mineral clays with medium plasticity 

Mineral clays with moderate plasticity 

Plastic mineral clays 

Mineral silts with intermediate compressibility 

Mineral silts with medium compressibility 

Mineral silts with low compressibility 
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Continued 

Classification according 
to plasticity 

6 
Medium plasticity 

flooring 
172 

Non-plastic soil 

Low plasticity soil 

Lightly plastic soil 

Medium plastic soil 

Highly plastic soil 

High plastic soil 

Classification according 
to load-bearing capacity 

4 Very bad basement 114 

Good basement 

Bad basement 

Passable basement 

Very bad basement 

Classification AASHTO 8 A-6 143 

A-2-4 

A-2-6 

A-2-7 

A-4 

A-5 

A-6 

A-7-5 

A-7-6 

 
The distribution of observations “box-plot” in Figure 5 represents the dis-

tance between Q1 and Q3 of the sample. The horizontal line inside the box 
represents the median and the “+” represents the mean. The vertical lines on 
each side of the box extend to the minimum and maximum values of the sam-
ple. 

The limits at which data can be considered potentially outliers are represented 
by the lower limit Q1 − 1.5 (Q3 − Q1) and the upper limit Q1 + 1.5 (Q3 + Q1). 

These box plots show almost no outliers in our statistical series. The analyzed 
variables are asymmetric due to a very high heterogeneity of the studied site’s 
soils. Figures 6-8 show the frequency pie charts of the qualitative variables. 

The clays contained in the soils of the Kampemba’s municipality are mostly 
kaolinitic. Depending on the state of alteration and anthropic conditions, illites 
are also represented giving the soils a high plasticity. Note here the absence of 
montmorillonites in the soils of this sector. This mineralogical identification of 
the clays was carried out using the Casagrande abacus cited in numerous publi-
cations. 

Figure 7 shows that the soils of Kampemba are very bad for foundation lay-
ing, they are the soils with medium plasticity. Only a few sites in this municipal-
ity with lateritic soils show good soils with low plasticity (Kigoma and Industrial 
quarters) (Figure 7). 

According to the AASHTO classes, Kampemba’s soils have the geotechnical  
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Figure 5. Mono variable box-plot diagrams showing mean, maximum and minimum 
values of used variables. 
 

 
Figure 6. Classification according to the nature of the clays contained in the soils of 
Kampemba. 
 
properties given in Table 3. Soils of class A-6 constitute the modal class. Soils 
class of A-2 correspond to lateritic soils in this municipality. 

Given the very high heterogeneity of these soils, a discriminant factor analysis 
(DFA) was carried out in relation to the AASHTO classification. The results are 
shown in Table 4. 

With CI: Confidence Interval. 
By geotechnical soil classes, some variables follow the normal law according to 

the Kolmogorov-Smirnov test:  
o Soils A-6: only the sieve analysis parameters do not follow the normal law; 
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Figure 7. Classification according to the plasticity and bearing capacity of Kampemba’s soils. 

 

 
Figure 8. AASHTO classification of Kampemba’s soils. 

 
Table 4. Discriminant factor analysis by AASHTO class. 

 
WL (%) WP (%) IP (%) X2 (%) X400 (%) X4.75 (%) X80 (%) Ig 

Value CI Value CI Value CI Value CI Value CI Value CI Value CI Value CI 

A-2-4 28.27 4.24 19.51 4.86 8.76 0.82 42.80 13.96 34.21 6.62 68.05 13.01 24.88 8.11 0 0 

A-2-6 30.63 3.52 17.51 2.90 13.12 1.71 46.31 19.05 34.43 10.51 73.51 20.16 18.45 9.42 0 0 

A-2-7 41.07 1.30 25.97 3.18 15.10 3.31 59.82 51.32 38.27 29.26 70.86 54.08 11.51 19.52 0 0 

A-4 20.61 2.23 17.46 2.26 3.15 0.40 92.51 7.01 84.31 6.57 95.53 3.37 72.83 3.46 0 0 

A-5 44.06 46.17 34.75 47.18 9.31 1.01 98.58 18.05 97.80 27.97 99.58 5.36 91.98 18.73 12 13 

A-6 32.69 0.78 18.04 0.85 14.65 0.44 88.18 3.95 81.91 3.85 93.31 4.19 75.52 2.55 10 9 

A-7-5 45.94 3.78 32.55 1.70 13.42 2.41 71.39 45.10 68.93 43.85 71.42 45.12 79.98 9.17 13 4 

A-7-6 42.26 1.07 26.15 1.10 16.12 1.19 70.10 21.85 63.42 19.91 74.24 22.02 74.78 7.63 12 2 

 
o Soils A-5, A-2-6, A-2-7: all parameters follow the normal law; 
o Soils A-7-6: the parameters that follow Gauss law are WP, IP, X80 and Ig; 
o Soils A-7-5: the parameters which follow the Gaussian law are WL, WP, IP, 

X400, X80 and Ig; 
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o Soils A-4 and A-2-4: no variable follows the normal law. 
The first test carried out to detect correlations between the variables is the one 

based on the Pearson correlation matrix presented in Table 5. 
Since the value of R2 alone is not sufficient to demonstrate statistically signifi-

cant correlations, deep learning is performed further down using artificial neural 
networks. These methods make it possible to approximate all the functions that 
may exist between the variables whatever the distribution law of each of them.  

The results of the global statistics of multi collinearity are shown in Table 6. 
These results show the following collinear variables without distinction of geo-
technical soil class: 
• The passing of 2 mm and 400 μm (variance inflation factor VIF > 10); 
• The liquidity and consistency index. 

Multi-collinearity analysis by soil class shows that AASHTO classes with an 
index of 5 have several variables that are more self-correlated than others (Table 
7). 

3.2. Deep Learning of the Physical Characteristics of Kampemba’s  
Soils 

As defined in [20], a neuron is a bounded nonlinear function. This method has 
made it possible to test different functions. Only the function “Exponential Li-
near Unit elu: f(x) = alpha × (exp(x) − 1) for x < 0, f(x) = x for x ≥ 0” in the hid-
den layers and outputs gave a small error between known and predicted values 
(Table 8). By increasing the hidden layers and the number of neurons, perfor-
mance deteriorate. The selected model is the one that used a hidden layer with 
eight neurons based on the AASHTO classification. 
 
Table 5. Inter-variable correlation matrix using Pearson test. 

 WL WP IP X2 (mm) X400 (μm) X4.75 (mm) X80 (μm) IC IL Ig 

WL 1          

WP 0.660 1         

IP 0.693 −0.084 1        

X2 (mm) −0.058 −0.080 0.000 1       

X400 (μm) −0.059 −0.101 0.018 0.970 1      

X4.75 (mm) −0.081 −0.129 0.017 0.926 0.885 1     

X80 (μm) 0.047 −0.018 0.080 0.412 0.557 0.182 1    

IC −0.042 0.111 −0.162 −0.176 −0.171 −0.202 −0.014 1   

IL 0.049 −0.105 0.165 0.177 0.172 0.204 0.013 −1.000 1  

Ig 0.674 0.100 0.798 0.203 0.286 0.082 0.572 −0.103 0.106 1 

 
Table 6. Global multi-collinearity statistics. 

X Y R2 VIF Tolerance 

X2 (mm) X400 (μm) 0.94 17.20 0.06 
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Table 7. Multi-collinearity statistics by class AASHTO. 

A-2-4 

X Y R2 VIF Tolerance 

WL WP 0.99 69.73 0.014 

X2 (mm) X400 (μm) 0.90 10.02 0.100 

A-2-6 

X Y R2 VIF Tolerance 

X2 (mm) X400 (μm) 0.93 14.85 0.067 

A-2-7 

X Y R2 VIF Tolerance 

X2 (mm) X400 (μm) 0.93 14.26 0.070 

A-4 

X Y R2 VIF Tolerance 

X2 (mm) X400 (μm) 0.97 32.51 0.031 

X2 (mm) X4.75 (mm) 0.92 12.33 0.081 

A-6 

X Y R2 VIF Tolerance 

X2 (mm) X400 (μm) 0.93 14.46 0.069 

A-7-5 

X Y R2 VIF Tolerance 

WL IP 0.95 19.89 0.050 

X2 (mm) X400 (μm) 0.99 75.03 0.013 

X2 (mm) X4.75 (mm) 1.00 221,566.25 0.000 

X400 (μm) X4.75 (mm) 0.99 75.31 0.013 

A-7-6 

X Y R2 VIF Tolerance 

X2 (mm) X400 (μm) 0.97 35.22 0.028 

X2 (mm) X4.75 (mm) 0.94 17.71 0.056 

X400 (μm) X4.75 (mm) 0.92 11.79 0.085 

 
Table 8. Regressions with multilayer perceptron. 

Input (X) Output (Y) RMSE [%] Model 

WL WP 49 Figure 9 

WL, IP 
X80 

Ig 
42: after 50 iterations 

38: after 1500 iterations 
Figure 10 

 
The model in Figure 9 shows that: A-4 soils have inhibitory activity due from 

their very low to zero plasticity, which leads to an increase in bias; plastic soils 
(those with index 6 and 7) enhance synaptic activities. 
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Figure 9. Synaptic weights of the model ( )P LW f W= . 

 

 
Figure 10. Synaptic weights of the model ( )80, ,g L PI f W I X= . 

 
The model in Figure 10 shows that: soil consistency characteristics have an 

important activity in the evaluation of the group index; granularity has a predo-
minant effect on soil classes with an index of 4; network performance is improved 
by removing data from geotechnical classes that inhibit synaptic activities. 
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These methods made it possible to confirm the different correlations identi-
fied between the variables by the statistical methods.  

3.3. Geotechnical Mapping of the Area 

Figure 11 shows the final geotechnical map of the municipality of Kampemba 
after all statistical and deep learning analyses.  

With the help of the AASHTO classification, the soils of Kampemba are di-
vided into eight major groups, which are identified in detail in the following 
geotechnical classes arranged according to the increasing group index: The sta-
tistical analyses made it possible to determine the values of various parameters 
taken into account in the study as presented below: 
• A-2-4 soils: this material is classified as silty gravels and sands (medium or 

steep clay type with the presence of illites and kaolinites). It is a soil with low 
plasticity and good subsoil for construction according to its group index, and 
having the following “WL” as parametric values: 28.27% ± 4.24%; WP: 19.51% ± 
4.86%; IP: 8.76% ± 0.82%; X2 (mm): 42.80% ± 13.96%; X400 (μm): 34.21% ± 
6.62%; X4.75 (mm): 68.05% ± 13.01%; X80 (μm): 24.88% ± 8.11%; Ig: 0; 

 

 
Figure 11. Final geotechnical map of the area of study. 
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• Soils A-2-6: this material is classified as clayey gravel and sand (a type of stiff 
clay with the presence of kaolinites). It is a soil with average plasticity and 
good subsoil according to its group index, and having the following WL as 
parametric values: 30.63% ± 3.52%; WP: 17.51% ± 2.90%; IP: 13.12% ± 1.71%; 
X2 (mm): 46.31% ± 19.05%; X400 (μm): 34.43% ± 10.51%; X4.75 (mm): 73.51% 
± 20.16%; X80 (μm): 18.45% ± 9.42%; Ig: 0; 

• Soils A-2-7: this material is classified as clayey gravels and sands (medium or 
steep clay type with the presence of illites and kaolinites). It is a soil with low 
plasticity and good subsoil according to its group index, and having the fol-
lowing WL as parametric values: 41.07% ± 1.30%; WL: 25.97% ± 3.18%; IP: 
15.10% ± 3.31%; X2 (mm): 59.82% ± 51.32%; X400 (μm): 38.27% ± 29.26%; 
X4.75 (mm): 70.86% ± 54.08%; X80 (μm): 11.51% ± 19.52%; Ig: 0; 

• Soils A-4: this material is classified as silty soils (consisting of sand and stiff 
clay with the presence of kaolinites). It is a soil with sometimes low plasticity 
(bad subsoil), sometimes light, and even non-plastic, considered as good 
subsoil according to its group index, and having WL as parametric values: 
20.61% ± 2.23%; WP: 17.46% ± 2.26%; IP: 3.15% ± 0.40%; X2 (mm): 92.51% ± 
7.01%; X400 (μm): 84.31% ± 6.57%; X4.75 (mm): 95.53% ± 3.37%; X80 (μm): 
72.83% ± 3.46%; Ig: 0; 

• Soils A-5: this material is classified as silty soils (medium clay type with illites 
present). It is a soil with low plasticity and very poor subsoil according to its 
group index, and with the following parametric values: 44.06% ± 46.17%; WP: 
34.75% ± 47.18%; IP: 9.31% ± 1.01%; X2 (mm): 98.58% ± 18.05%; X400 (μm): 
97.80% ± 27.97%; X4.75 (mm): 99.58% ± 5.36%; X80 (μm): 91.98% ± 18.73%; Ig: 
12 ± 13;  

• Soils A-6: this material is classified as clayey soils (composed of medium or 
steep clay with the presence of illites and kaolinites). It is a soil with some-
times high plasticity (very bad subsoil) and sometimes average considered as 
bad subsoil according to its group index, and having WL as parametric values: 
32.69% ± 0.78%; WP: 18.04% ± 0.85%; IP: 14.65% ± 0.44%; X2 (mm): 88.18% 
± 3.95%; X400 (μm): 81.91% ± 3.85%; X4.75 (mm): 93.31% ± 4.19%; X80 (μm): 
75.52% ± 2.55%; Ig: 10 ± 1; 

• Soils A-7-5: this material is classified as a clay soil (type of plastic clay with 
the presence of illites). It is a medium plasticity soil. They constitute very 
poor subsoil according to its group index, and have the following the para-
metric values: WL: 45.97% ± 3.78%; WP: 32.55% ± 1.70%; IP: 13.42% ± 2.41%; 
X2 (mm): 71.39% ± 45.10%; X400 (μm): 68.93% ± 43.85%; X4.75 (mm): 71.42% 
± 45.12%; X80 (μm): 79.98% ± 9.17%; Ig: 13 ± 9; 

• Soils A-7-6: this material is classified as a clay soil (type of plastic clay like 
A-7-6). It is a soil of medium to high plasticity, considered as very bad sub-
soils according to its group index. They are characterized by: WL: 42.26% ± 
1.07%; WP: 26.15% ± 1.10%; IP: 16.12% ± 1.19%; X2 (mm): 70.10% ± 21.85%; 
X400 (μm): 63.42% ± 19.91%; X4.75 (mm): 74.24% ± 22.02%; X80 (μm): 74.78% 
± 7.63%; Ig: 10 ± 2. 
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4. Conclusions 

According to the AASHTO classification, the soils of the municipality of Kam-
pemba are divided into five major groups (A-2, A-4, A-5, A-6 and A-7) which 
are further subdivided into eight subgroups with the following geotechnical 
characteristics:  
o Soils A-2-4: this material is classified as gravelly sands with silt having a 

group index of Ig = 0; 
o Soils A-2-6: this material is classified as gravelly sands to clays with a group 

index of Ig = 0; 
o Soils A-2-7: this material is classified as gravelly sands with active clays with a 

group index of Ig = 0; 
o Soils A-4: this material is classified as loamy to sandy soils with a group index 

of Ig = 0; 
o Soils A-5: this material is classified as plastic loamy to sandy soils with a 

group index of Ig = 12 ± 13;  
o Soils A-6: this material is classified as clayey to sandy soils with a group index 

of Ig = 10 ± 1; 
o Soils A-7-5: this material is classified as an active clayey to sandy soil with a 

group index of Ig = 13 ± 9; 
o Soils A-7-6: as above, this material is also classified among active clayey to 

sandy soils with a group index of Ig = 10 ± 2. 
A-2 are good quality soils, i.e. good for supporting the foundations of the var-

ious civil engineering works. Soils of groups A-4 and A-5 are also good for lay-
ing foundations but are remarkably vulnerable to liquefaction, erosion and 
leaching, which will require treatment to ensure safe operation. However, soils 
of Groups A-6 and A-7 (A-7-5 and A-7-6) are not good soils for foundation, but 
may still have other advantages as they form impermeable substrates. It should 
be noted that A-6 soils are good substrates if their group index is low. Among 
other things, they can be considered as a usable reserve of clay for pottery, as a 
source for the production of ceramic materials, stabilised clay bricks and refrac-
tory materials.  

Artificial intelligence methods based on deep learning using the multilayer 
perceptron have confirmed the inter-variable correlations identified by statistical 
methods. These techniques are widely used now in engineering, because they al-
low detecting any functions linking the variables. Statistical methods are often 
limited to linear correlations using the Pearson matrix, i.e. limited to two va-
riables, one as input (X) and the other as output (Y). The artificial intelligence 
technic shows another advantage of identifying geomaterials from non-quantitative 
dataset based on labels of training samples. 

The mechanical behavior of civil engineering infrastructures is correlated with 
the behavior of the materials making up the supporting soil. It is therefore very 
important to identify the supporting soil and to control its behavior. The present 
work is therefore an important scientific tool in this sense. One of the scientific 
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interests of this study is to contribute to the identification and choice of quality 
materials that can be used in public works in the area of the study. 
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