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Abstract 
One of the major challenges that membrane manufacturers, commercial en-
terprises and the scientific community in the field of membrane-based filtra-
tion or reverse osmosis (RO) desalination have to deal with is system perfor-
mance retardation due to membrane fouling. In this respect, the prediction of 
fouling or system performance in membrane-based systems is the key to de-
termining the mid and long-term plant operating conditions and costs. De-
spite major research efforts in the field, effective methods for the estimation 
of fouling in RO desalination plants are still in infancy, for example, most of 
the existing methods, neither consider the characteristics of the membranes 
such as the spacer geometry, nor the efficiency and the day to day chemical 
cleanings. Furthermore, most studies focus on predicting a single fouling in-
dicator, e.g., flux decline. Faced with the limits of mathematical or numerical 
approach, in this paper, machine learning methods based on Multivariate 
Temporal Convolutional Neural networks (MTCN), which take into account 
the membrane characteristics, feed water quality, RO operation data and 
management practice such as Cleaning In Place (CIP) will be considered to 
predict membrane fouling using measurable multiple indicators. The tem-
poral convolution model offers one the capability to explore the temporal 
dependencies among a remarkably long historical period and has potential 
use for operational diagnostics, early warning and system optimal control. 
Data collected from a Desalination RO plant will be used to demonstrate the 
capabilities of the prediction system. The method achieves remarkable pre-
dictive accuracy (root mean square error) of 0.023, 0.012 and 0.007 for the 
relative differential pressure and permeates Total Dissolved solids (TDS) and 
the feed pressure, respectively. 
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1. Introduction 

Commercial RO Enterprises, membrane manufacturers and end-users are con-
fronted with two major problems in membrane-based water desalination utiliz-
ing reverse osmosis: 1) how to reliably monitor their membrane system perfor-
mance? and 2) how to detect system performance retardation in real-time due to 
that membrane fouling and scaling before irreversible membrane processes have 
happened, which have drastic implications on plant availability, energy, main-
tenance, and chemical cleaning costs. The current industry-standard performance 
analysis and evaluation technique are based on trending RO flux decline charac-
teristics of membranes via normalizing system operating data in accordance with 
the ASTM D-4516 standard method. This method is not sufficient for real-time 
anomaly detection in system performance. Reverse Osmosis (RO) membrane foul-
ing is a detrimental phenomenon that adversely affects the quantity and quality 
of the produced water, which are the vital metrics that account for economical 
and more efficient use of the RO plants. Knowing the status of the system with 
respect to system performance, membrane fouling or scaling at a very early stage 
is a prerequisite for positive control and has a direct positive impact on optimizing 
the total cost and the produced permeate quality (Hoek, Allred, Knoell, & Jeong, 
2008; Vera-Villalobos, Pérez, Contreras, Alcayaga, Avalos, Riquelme, & Silva- 
Aciares, 2020).  

Water managers can utilize the prediction of membrane fouling to make know-
ledgeable management and financial decisions. However, successful prediction 
of membrane fouling is very difficult due to many complex factors. For example, 
membrane characteristics, feedwater composition (nature and concentration of 
foulants) and operating conditions often have interactions with each other (Ruiz- 
Garcia & Ruiz-Saavedra, 2015), which makes the membrane fouling prediction 
more challenging. 

Recently, a great deal of research has been carried out in this field. Several 
fouling prediction tools and techniques have been developed to describe mem-
brane fouling (Taheri, Sim, Chong, Krantz, & Fane, 2015; Chai-Hoon, Moham-
mad, & Suja, 2015). The traditional and most widely applied fouling indices in 
RO systems are the Silt Density Index (SDI) and the Modified Fouling Index 
(MFI). However, these indices lack precision for small foulants (foulant agents < 
0.45 µm) (Asif, Tahar, Falath, & Farooque, 2021; Jin, Lee, Jin, & Hong, 2017) and 
do not consider membrane characteristics, feedwater composition (nature and 
concentration of foulants) and operating conditions. Therefore, recently many 
studies have focused on the assessment and prediction of membrane fouling us-
ing mathematical models, which can provide valuable information on membrane 
design, operation, maintenance, and process optimization. Unfortunately, it is 
difficult to isolate and identify the exact cause(s) of fouling in the closed envi-
ronment of a reverse osmosis system. Mathematically, no single model can suc-
cessfully predict membrane fouling, which involves various mechanisms and 
physical/chemical interactions. Especially, the prediction of membrane fouling 
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using phenomenological models is obstructed significantly due to the lack of 
suitable descriptions of the physicochemical phenomena. Modeling techniques 
based on the direct analysis of experimental data appear to be good alternatives 
to the techniques used phenomenological hypotheses such as knowledge-based 
models (Tong, Wu, Wang, Bai, Zhao, Luo, Mao, Ikuno, & Hu, 2020; Hwang, Oh, 
Choi, Nam, Lee, & Choung, 2009). Predictive mathematical models for mem-
brane fouling have not yet proven successful for general use due to the unique-
ness of each combination of feedwater composition, membrane type and cha-
racteristics, pretreatment methods, and operating conditions. Therefore, several 
researchers develop models on a case-by-case basis. The transport equations most 
commonly used for RO are derived using ideal feedwaters of single-component, 
very soluble salts. Natural waters which serve as feeds to RO systems are inhe-
rently very complex chemical systems consisting of many soluble constituents as 
well as suspended colloidal chemical and biological species (Tang, Chong, & 
Fane, 2010). Mathematical models of the feedwater’s-chemical composition and 
water dynamics and membrane characteristics must be coupled with the hydro-
dynamics of the flow field to accurately describe the fouling system (Karabelas, 
& Sioutopoulos, 2015; Shirazi, Lin, & Chen, 2010). The rates and mechanisms of 
particle deposition, a variety of possible surface interactions should also be in-
cluded. Further, capturing long-term dependencies in time series data remains a 
fundamental challenge (Zhang, Thorburn, Xiang, & Fitch, 2019; Zhang, Fitch, & 
Thorburn, 2020). Machine learning (ML) techniques are increasingly being used 
to model membrane fouling and RO system performance. Despite advances in 
building predictive models based on Recurrent Neural Networks (RNNs), these 
models are still very difficult to scale to very long data sequences, which limits 
them in identifying the long-range changing patterns, which is critical like in RO 
system performance variables. Temporal Convolutional Networks (TCNs) over-
come these shortcomings by capturing long-range patterns using a hierarchy of 
temporal convolutional filters (Lea, Flynn, Vidal, Reiter, & Hager, 2017). Instead 
of using recurrent structure to maintain temporal dependencies, the TCN ap-
plies various sizes of convolutional filters to obtain the temporal dependencies at 
different time scales. Also, the dilated convolutions (Van den Oord, Dieleman, 
Zen, Simonyan, Vinyals, Graves, Kalchbrenner, Senior, & Kavukcuoglu, 2016) 
increase the receptive field significantly so that long historical data can be uti-
lized. 

Furthermore, most RO system researchers build predictive models for each 
single fouling indicator though all the models indeed deal with the same data-
sets. Hence, they cannot obtain benefits from each other’s learning process. Mul-
ti-task learning is applied, which is an essential machine learning paradigm that 
aims at improving the generalization performance of a task by using other re-
lated tasks (Luong, Lee, Sutskever, Vinyals, & Kaiser, 2016). In the context of RO 
Membrane fouling prediction, each system variable interacts with and influences 
other variables in the same ecosystem. The temporal patterns of one system va-
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riable, e.g., transmembrane pressure drop can, therefore, be precious in guiding 
us in predicting other variables such as permeate flux decline or increase in 
permeate total dissolved solids (TDS). In this paper, we propose a model based 
on a multi-task temporal convolution network (MTCN) for predicting multiple 
RO Membrane fouling indicators, which include the feed pressure, differential 
pressure, and the permeate TDS. The model can also be used for zero-positive 
fault diagnostics and system optimization. The key contributions include: 
• Besides the feedwater quality and operational data, we also included mem-

brane characteristics and management data in the model. 
• A multivariable predictive model to forecast various RO membrane fouling 

indicators at the same time was developed. Applying a unified model in pre-
dicting multiple variables enables the knowledge sharing between multiple 
learning processes, and also reduces the required computing resources sig-
nificantly. 

• A temporal convolution network (TCN) is applied to learn the long-term tem-
poral dependencies for RO system performance data. 

The paper will initially discuss the fouling phenomenon and after an explora-
tive data analysis introduces the methodology for multiple variable predictions.  

2. Methodology  

Figure 1 shows the overall framework of the proposed model. The structure is 
motivated by the results from (Kanfar, Shaikh, Yousefzadeh, & Mukerji, 2020). 
In their experimentation with sequence-based models (i.e., TCN and LSTM), 
they found out that the models tend to learn the high frequented patterns in a 
dataset very good compared to the low-frequency patterns. That is why it is rea-
sonable in our case to use the Convolutional Neural networks (CNNs) and the 
TCN in combination. The authors in (Kanfar, Shaikh, Yousefzadeh, & Mukerji, 
2020) also found out that the TCN learns more stable in comparison to the 
LSTM. Therefore, the decision was to use the TCN in the framework. It can be 
seen that our model is divided into four parts. The first part resides the CNNs 
for feature extraction. Our hope for the Convolutional Neural Network is to 
capture patterns at different scales by convolving the input with different sized 
filters. To facilitate training, the dimensions of the multivariate time series are 
reduced by feeding them into CNNs. The fully connected (FC) layer connecting 
all the outputs from the CNNs and other inputs serves as the new feature repre-
sentation of the original multivariate time series. The dataset is split in a second 
part into subsequences of fixed length by a sliding window which is shaped by 
the timestep T and the sliding step S. The splitted multivariate time series are fi-
nally fed into the TCN to train the model. Finally, Bayesian optimization is ap-
plied to search for the optimal hyperparameters of TCN. Due to the parallel na-
ture of the problem, multiple searchers with specific search strategy can be ap-
plied to efficiently search the entire hyperparameters space in parallel. Applying 
the framework, the system is trained to make the p-step-ahead predictions. The  
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Figure 1. Deep neural network framework for predicting RO system performance. 

 
input layer takes in membrane characteristic data ( n pM R ×∈ ), feedwater data 
( 1n kW R ×∈ ), operational data ( 2n kO R ×∈ ), and management data ( 3n kN R ×∈ ) as 
input. Here, n is the number of observations, p is the number of membrane cha-
racteristic variables, k1 is the number of feedwater constituents, and k2 is the 
number of operational parameters, and k3 is the number of management data 
components.  

The predictive model is based on the multi-task learning paradigm (Baek, 
Pyo, & Chun, 2020). The model is designed to learn the temporal dependencies 
among various RO system variables within a long period of time. The TCN model 
was adopted due to the two contrasting observations that the relative permeate 
TDS and relative differential pressure have demonstrated a decreasing trend 
over time, which could be largely attributed to membrane fouling and manage-
ment practices. The complete model predicts the relative permeate TDS and rel-
ative differential pressure as well as the feed pressure for time t using informa-
tion from time t−k to t. The CNN-TCN models the performance of the RO plant 
and indirectly membrane fouling in terms of the feed pressure, differential pres-
sure, and permeates TDS. The input parameters of the CNN-TCN model were 
carefully chosen to include physically meaningful and easy-to-measure mem-
brane operations information. The inputs to the TCN were extracted important 
features processed by the CNN models for the operating conditions (feed flow 
rate, feed temperature, and feed pressure) and the feed water quality (feed TDS), 
the past outputs (the relative permeate TDS and Relative differential pressure 
data), the management data (operating time, operating time after CIP and the 
number of CIPs already conducted on the membrane), and a unitless function 
representing the effect of the size of the feed spacers to elevate the ANN model 
performance. The use of historical relative permeate TDS and Relative differen-
tial pressure data as part of the input allows the TCN model to predict them 
even without operational or feed water data. Following Box Jenkins optimal 
one-step prediction, suppose time t is the target time of prediction, then in the 
test phase, the outputs, relative permeate TDS and relative differential pressure 
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at time t, � tY , can be substituted with Yt−1, and the unobserved portion of feed-
water data in Wt can be substituted with the predicted feedwater data. In the 
training phase, however, such substitution is unnecessary since all the input data 
is available. In a TCN model, each predictive task can benefit from the shared 
hidden representations. The TCN includes a stack of causal convolutional layers. 
Causal convolution is used to make sure the model will not capture information 
from the future time index to help the prediction task. In addition, the dilated 
convolutions and the residual connections are integrated into the TCN to en-
hance the utilization of long historical observations without the vastly deep 
structure. By adjusting the dilation factors and filter size, the MTCN can cover a 
wide range of time series data by applying a hierarchy of filters with various siz-
es. We Choose larger filter sizes k and increasing the dilation factor d, where the 
effective history of one such layer is (k − 1) × d. As is common when using di-
lated convolutions, we increased exponentially with the depth of the network 
(i.e., d = O × (2i) at level i of the network), which makes sure that some filter that 
hits each input within the effective history is available, and simultaneously al-
lowing for a large history using deep networks. In addition, the residual connec-
tions help to maintain the stability of the deep neural network by enhancing the 
information flow through the initial layer to the last layer in the deep neural 
network. The task-specific dense layers with the linear activation function are 
added on top of the shared convolutional layers. 

In the learning, we make use of batch normalization, Adam optimization, and 
drop out to generalize training predictions to test predictions. The batch size is 
set to 128. 50% of experimental data are applied for training the CNN-TCN 
model, which correspond to the first year, The rest of the experimental data are 
applied for validation to provide an unbiased evaluation of a model fit on the 
training dataset while tuning model parameters, and to halt training when gene-
ralization stops improving. Model testing was performed by using the data in the 
last year, starting on day = 366 and forward in time. Thus, model evaluation was 
carried out in a marching time-series approach with the sliding window. 

3. Evaluation 

In this section, the effectiveness of the proposed method is evaluated by by using 
the RO system data collected from a large-scale RO plant. The RO plan used for 
data collection included some pretreatment elements besides the RO processes. 
To examine fouling, the RO plant was operated automatically in a constant flow 
mode with a recovery of 35% - 38% and data was collected. 

3.1. Data and Exploratory Data Analysis 

Water quality (W) parameters for the feed water to the reverse osmosis (RO) 
desalination plant were continuously monitored. The data from the RO plant 
which included five sets (system performance, feed water quality, process data, 
management data (in this case only CIP), and membrane characteristics data) 
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were collected for almost two years, during which Cleaning-in-Place (CIP) was 
conducted twice. The plant design value of feed TDS and feed temperature was 
set to 44,000 mg/L and 15˚C, respectively. All plant operation data and water 
quality parameters were normalized with plant design parameters. A major part 
of the Exploratory Data Analysis is searching for relationships between the fea-
tures and the target. This is important because influencing factors that are cor-
related to the decision variables are useful to a model for predicting the target 
variable. Figures 2(a)-(i) show the feed water quality and the operating para-
meters of the desalination system. Shown in the figure are also the effect f feed 
spacer size, Figure 2(a), and the time after cleaning in place (CIP), Figure 2(g).  
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Figure 2. Changes in data with operation time. (a) Feed spacer factor; b) SDI; (c) feed 
TDS; (d) Relative feed pressure; (e) Relative feed flow rate; (f) relative temperature; (g) 
time after CIP; (h) Relative permeate TDS; (i) Relative differential pressure. 
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3.1.1. Feedwater Quality 
The feed water quality had two components, feed TDS and feed temperature. As 
it is shown in Figure 2(c), feedwater TDS remained quite stable (variation = 
7.0%) over the operating time. Otherwise, feed water temperature Figure 2(f) 
changed drastically in the whole operating period 13 (variation = 140%). The 
maximum and minimum relative temperatures were 1.0 and 2.5, respectively, and 
the average value was 1.92. The relative feed TDS values ranged from 0.91 to 0.98. 
Another important water quality parameter is the Silt density index (SDI). Fig-
ure 2(b) shows that after an alteration of the feed water source, the SDI values 
were considerably increased. 

3.1.2. Operating Data 
The operating conditions of the RO plant normalized with plant design parame-
ters are shown in Figure 2 and had five components, operating time, feed flow 
rate, feed pressure, differential pressure, and permeate TDS. The changes in feed 
flow rate, feed pressure, differential pressure, and permeate TDS are shown as 
functions of the operation time. Since the plant was operated at the constant 
flux, the permeate flowrate remained stable with time. As shown Figure 2(e), 
the feed flow rate also did not significantly change (variation = 11.0%, ranging 
from 0.94 to 0.104). Similar to the relative feed flow rate, the relative feed pres-
sure Figure 2(d) did not change greatly (variation = 13.0%, ranging from 0.87 to 
0.98). Contrarily, relative permeate TDS and relative differential pressure changed 
dramatically as shown in Figure 2(h), and Figure 2(i), respectively. 

The relative permeate TDS, Figure 2(h), significantly depended on the feed 
temperature Figure 2(f). The high temperature increased the salt passage of the 
RO membrane and thus increased the permeate TDS under constant flux and 
recovery operating conditions. The relative permeate TDS values ranging from 
0.27 to 0.53. The relative differential pressure, Figure 2(i), also depended on the 
feed temperature due to viscosity. The low temperature increased the viscosity of 
feed water and thus increased pressure drop in the pressure vessel. The relative 
differential pressure values ranged from 0.35 to 0.64. 

3.1.3. Membrane Properties Data 
Membrane properties were divided into two categories which are the membrane 
material related and membrane structure-related factors. These factors included 
hydrophobicity, charge, pore size (thickness of feed spacers), porosity, and pore 
distribution of membrane. Including the dynamics caused by the Membrane 
properties such as the feed spacing is one of the novelties of this work. The idea 
is to use data from literature about effect of membrane feed spacers on the per-
formance with operating time to get a functional relationship. 

A study on the Performance of membranes with different thicknesses of feed 
spacers was conducted in (Park, Cho, Kim, & Kwon, 2016), where they showed 
the Normalized Differential Pressure (NDP) of RO filtrations that used 34-mil 
and 28-mil (1-mil = 0.0254 mm) feed spacer during a 659 h operation. In the 
experiment, the NDP for the two RO vessels was controlled to the same flux and 
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recovery as shown from the results in Figure 3(a) for salt rejection of the two 
options. RO vessel with the 34-mil feed spacer displayed less initial NDP and 
relatively slow NDP increase up to 264 h of operation. As shown in Figure 3(b), 
the specific NDP increase (NDP/h) of the 28-mil feed spacer case was almost 
78% higher than the 34-mil spacer and took 330 h to reach 1 bar of NDP com-
pared to 652 h when 34-mil feed spacers were used. The 34-mil spacers could 
prolong the filtration time by almost 2 folds. Cleaning-in-place (CIP) was de-
signed to be conducted when the NDP has reached 1 bar. However, the 34 mil 
spacers caused the NDP to increase slowly so that both the operating conditions 
and feedwater quality were changed after 264 h operation to promote RO mem-
brane fouling. 

For our CNN-TCN model we utilized the information from the study to de-
velop a unitless function as shown in Figure 4 to take into account the effect of 
the thickness of feed spacers with respect to time after CIP. This enables the 
model to be robust to introduction of membranes of other spacer thickness into 
the desalination plant. As can be seen in Figure 4 a specific polynomial function 
is created for every known feed spacer thickness. This function saves then as in-
put to the model for a given membrane feed spacer thickness 

3.1.4. Management Data 
The system management data had two components related to cleaning in place, 
the time after CIP and the number of cleanings conducted already on the mem-
brane. From the data, for 23 months, cleaning in place (CIP) was conducted two  
 

 
Figure 3. (a) Membrane performance variation (salt rejection) for the two options and 
(b) NDP for two vessels controlled to the same flux and recovery. 
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Figure 4. Function of the effect of feed spacer thickness with respect to time after CIP. 
 
times. It can be seen in Figure 4 that the after every cleaning the membrane does 
not reach its previous maximum performance and degrades with time. To catch 
this effect in our model we had to use additionally the number of cleanings al-
ready conducted on the membrane as an input. An alternative is to use the dif-
ference in performance from one cleaning to another, but this requires training 
data with many cleanings. 

3.1.5. System Performance (Fouling Indicators) 
From this data analysis in Figure 2, it can be seen that the main parameters that 
indicate a need for CIP (which is in close relationship with fouling) were, the in-
crease in differential pressure between feed side and concentrate side and the 
permeate TDS. Although relative differential pressure changed dramatically, it 
did not exceed the CIP criteria. Therefore, the CIP was conducted regularly once 
every 8 months. 

3.2. Quantitative Determination of the Important Variables 

To quantify relationships between variables, we used the Pearson Correlation Coef-
ficient. This is a measure of the strength and direction of a linear relationship 
between two variables. A score of +1 is a perfectly linear positive relationship 
and a score of −1 is a perfectly negative linear relationship. Several values of the 
correlation coefficient are shown in Figure 5 below. While the correlation coef-
ficient cannot capture non-linear relationships, it is a good way to start figuring 
out how variables are related. The qualitative relationship stated previously can 
be clearly seen, for example, the feed temperature is heavily correlated to the 
permeate TDS with a correlation coefficient of 0.88 and The SDI is strongly cor-
related to the relative differential pressure and Feed flow rate. 

4. Experimental Setup 

To measure the CNN-TCN model predictive capability, we used the mean abso-
lute error (MAE), the root mean square error (RMSE) as well as the correlation 
coefficient ρ. The model is implemented in Python environment on a PC with 
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Intel(R) Core(TM) E5-2620 CPU, 62 GB memory. The training for 50 epochs 
took 1.45 s and the prediction for the test data of 365 data points, about 0.045 s. 
Figure 6 shows the MSE and the number of iterations. A sharp drop in the MSE 
in the first 9 few iterations is shown. The training cycles stopped after 50, 21, and 
25 epochs to preventing over-fitting, with the smallest validation MSE value of 
0.00618, 0.00012, and 0.0001 at 50, 21, and 25 iterations, respectively for predic-
tion of relative differential pressure, relative permeate TDS, and relative feed 
pressure, respectively. 
 

 
Figure 5. Pearson Correlation Coefficients of the RO plant measured variables. 

 

 
Figure 6. Loss functions of the (a) Relative differential pressure, (b) Relative permeate TDS, and (c) 
Relative feed pressure. 
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The hyperparameters in the prediction model such as the learning rate, batch 
size, dropout filter size, etc., need to be explored carefully to achieve the best 
prediction results. We utilize Bayesian optimization to search for these hyperpa-
rameters efficiently. From the Bayesian optimization, some of the obtained key 
hyperparameters are listed in Table 1. 

Table 2 illustrates the model performance of the proposed method. Benefiting 
from the temporal convolutional architecture, dilated convolution, and the resi-
dual unit, the method achieves remarkable predictive accuracy for the relative dif-
ferential pressure and permeates TDS and the feed pressure.  

As shown in Figure 7, the method captures the trend of the relative feed pres-
sure; relative differential pressure and relative permeate TDS data in the following 
365 days, and also gives the proper estimation when they drop significantly.  

 

 
Figure 7. Comparison of experimental data of the full-scale RO plant with the CNN-TCN model re-
sults. (a) Relative feed pressure; (b) Relative permeate TDS; and (c) Relative differential pressure. 
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Table 1. Key hyperparameters of the CNN-TCN. 

Hyperparameters Value 

Number of dense layers 2 

Number of units in dense layers 64, 48 

Dilated factors 1, 2, 4, 8, 16, 32, 64 

Kernel size 3 

Dropout rate 0.6 

 
Table 2. Model performance on the test data based on two metrics: ρ and rmse. 

CNN-TCN Relative differential pressure RMSE 0.023 

  ρ 0.996 

 Relative permeate TDS RMSE 0.012 

  ρ 0.983 

 Relative feed pressure RMSE 0.007 

  ρ 0.93 

 
The results from the CNN-TCN model matched the experimental values very 
well. This suggests that the CNN-TCN model with operating conditions (oper-
ating time, operating time after CIP and feed flow rate) and the feed water qual-
ity (feed TDS and feed temperature) and the relative permeate TDS and Relative 
differential pressure data, management data as inputs can successfully fit the op-
eration data from the full-scale RO plant. 

5. Conclusion 

In summary, a methodology based on multi-task temporal convolutional networks 
for predicting RO system performance or indirect membrane fouling using mul-
tiple variables has been developed. The temporal convolution offers the capabil-
ity to explore the temporal dependencies among a remarkably long historical pe-
riod and benefits from each other of the multivariate learning process. Unlike in 
RNNs where the predictions for later time steps must wait for their predecessors 
to complete, convolutions can be done in parallel since the same filter is used in 
each layer. Therefore, long input data sequence can be processed as a whole in a 
TCN both in training and evaluation, instead of sequentially as in RNN. Expe-
rimental results were presented to demonstrate that the proposed method can 
achieve promising predictive accuracy for long-term RO systems performance 
prediction. The method can achieve a remarkable predictive accuracy (root mean 
square error) of 0.023, 0.012 and 0.007 for the relative differential pressure and 
permeate Total Dissolved solids (TDS) and the feed pressure, respectively. Ma-
chine Learning is, after all, data-driven AI, and the model can only as good as 
the data we have. The method in this paper only uses proxies for fouling as input 
variables to the model. In the future, it would be interesting to investigate what 
added value direct measurements, e.g. thickness of cake layer on the membrane, 
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number of microbes on the membrane, etc. Ultrasonic methods can be used to 
measure the thickness and through measurement of carbon dioxide, the number 
of microbes can be estimated using machine learning methods. 
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