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Abstract 
This research aims to develop reliable models using machine learning algo-
rithms to precisely predict Total Dissolved Solids (TDS) in wells of the Per-
mian basin, Winkler County, Texas. The data for this contribution was ob-
tained from the Texas Water Development Board website (TWDB). Five 
hundred and ninety-three samples were obtained from two hundred and ni-
nety-eight wells in the study area. The wells were drilled at different county 
locations into five aquifers, including Pecos Valley, Dockum, Capitan Reef, 
Edward Trinity, and Rustler aquifers. A total of fourteen different water qual-
ity parameters were used, and they include Potential hydrogen (pH), Sodium, 
Chloride, Magnesium, Fluoride, TDS, Specific Conductance, Nitrate, Total 
Hardness, Calcium, Temperature, Well Depth, Sulphate, and Bicarbonates. 
Four machine learning regression algorithms were developed to get a good 
model to help predict TDS in this area: Decision Tree regression, Linear 
regression, Support Vector Regression, and K-nearest neighbor. The study 
showed that the Decision Tree produced the best model with attributes like 
the coefficient of determination R2 = 1.00 and 0.96 for the training and test-
ing, respectively. It also produced the lowest score of mean absolute error 
MAE = 0.00 and 0.04 for training and testing, respectively. This study will 
reduce the cost of obtaining different water quality parameters in TDS deter-
mination by leveraging machine learning to use only the parameters contri-
buting to TDS, thereby helping researchers obtain only the parameters ne-
cessary for TDS prediction. It will also help the authorities enact policies that 
will improve the water quality in areas where drinking water availability is a 
challenge by providing important information for monitoring and assessing 
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1. Introduction 

The lack of perennial surface water bodies in Winkler County makes it un-
avoidable to utilize the aquifers in that area for domestic, irrigation, and indus-
trial purposes. Water contamination is influenced by numerous factors, includ-
ing anthropogenic (oil and gas mining, agriculture) and natural causes (forma-
tion dissolution and subsequent introduction of compounds into the aquifer 
system) (Kim et al., 2019; Shi et al., 2019; English et al., 2020). With increased 
development and economic growth came population growth, further straining 
the available water resources. Two sinkholes formed in the Hendrick Field in 
June 1980 and May 2002, and the mechanism of formation has been docu-
mented by several studies (Kim, Lu, & Degrandpre, 2016; Johnson, 2005; Ba-
ryakh and Fedoseev, 2011; Kim et al., 2019; English et al., 2020) along with the 
cause which had to do with the impact of oil and gas activities and the dissolu-
tion of naturally occurring evaporites formations (Frumkin et al., 2011; Kim et 
al., 2019; English et al., 2020) thereby increasing the inorganic and organic TDS 
contents of the aquifers. Studies around the Hendrick field surrounding the 
sinkholes show that the impact of oil and gas activities in Winkler County 
helped in accelerating the formation of the sinkholes through the introduction of 
meteoric water into the evaporites (Castile and Salado formation) and other bad 
mining practices such as the lack of intermediate casing (Johnson, 2005), the use 
of dynamite to blast hard rock units present in the floor of disposal pits (Hei-
thecker, 1932). Most sinkholes result from natural subsurface drainage, drought, 
and extreme flooding (Gutiérrez et al., 2016). In the case of Winkler County, the 
sinkhole formation can be attributed to both natural and anthropogenic causes 
(Kim et al., 2019; Shi et al., 2019; English et al., 2020). In the present study, Deci-
sion tree, linear regression, Support Vector Regression Model and K-Nearest 
Neighbor Regression machine learning algorithms were used to detect TDS le-
vels. Understanding the TDS levels can provide insights into the water quality 
and potential environmental risks associated with dissolved substances in the 
water. This information is important for monitoring the impact of sinkholes and 
dissolved formations on local water resources. Predictive models can help assess 
the risk of groundwater contamination or salinization due to dissolved solids. 
This is particularly important in areas prone to sinkholes like Winkler County, 
as they can serve as conduits for contaminants to reach aquifers. Predictive 
models as produced from this study can assist in managing water resources 
more effectively by providing early warnings of potential water quality issues. 
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This information can inform decisions regarding water usage, treatment, and 
allocation. Moreover, understanding the factors influencing TDS levels can aid 
in the development of mitigation strategies to reduce the impact of dissolved 
solids on water quality. This could involve implementing measures to prevent 
further dissolution of soluble formations or implementing water treatment tech-
niques to reduce TDS levels. Studying TDS levels in an area with sinkholes can 
contribute to scientific knowledge about the interactions between geological 
features, hydrology, and water quality. This research can also serve as an educa-
tional resource for students and professionals interested in environmental 
science, hydrology, and geology. Overall, using machine learning to predict TDS 
in Winkler County can help address environmental challenges associated with 
sinkholes and dissolved formations while facilitating informed decision-making 
and sustainable management of water resources. 

2. Natural Causes of the Wink Sinks 

The dissolution of the Salado Formation by natural means in the Delaware Basin 
has been recorded by many researchers (Kirkland and Evans, 1976; Lambert, 
1983; Johnson, 1986; Kim et al., 2019; Shi et al., 2019; English et al., 2020). One 
of the proofs of this assertion is the abnormal and abrupt intercalation of thin 
and thick salt units (Johnson, 1986). The movement of groundwater can cause 
the natural dissolution of salt units; however, the artesian water flow is consi-
dered the primary cause of the natural dissolution of salt units. This is due to the 
existing fractures in the Capitan Reef, Tansill, and Yates Formation caused by 
differential compaction of overlying sediments, which serves as a passageway for 
meteoric water under artesian conditions (Anderson and Kirkland, 1980; Baum-
gardner et al., 1982; Kim et al., 2019; English et al., 2020). 

Fractures near the Wink Sinks 

Identification of fracture systems in the Wink Sinks area has been well docu-
mented (Heithecker, 1932; Adams, 1944; Baumgardner et al., 1982; Johnson, 
1986; Kim et al., 2019; Shi et al., 2019; English et al., 2020). During the early days 
of oil production from the Hendrick fields, very little mining practice was ob-
served. Hence, most brine produced was disposed of using unlined, natural, and 
artificial earthen pits for evaporation (Heithecker, 1932). The nature of the top-
most formation (Cenozoic Alluvium), which consists of loose, unconsolidated 
sand, gravel, silt, and clay, made it very easy for the brine to percolate through 
the porous and permeable surface material to reach the groundwater (Johnson, 
1986). Furthermore, dynamite was employed to blast hard rock units found in 
pit floors (Heithecker, 1932), which further increased the permeability of the 
rock (Triassic Santa Rosa formation) and topsoil (Cenozoic Alluvium). Impro-
per grouting and drilling, removal of casings following final filling of boreholes, 
and corrosion from saltwater can all increase the permeability for downward 
groundwater migration between permeable layers below the salt sequence and 
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shallow aquifers. Inherent fractures in the Salado Formation are also a result of 
deeper solution and collapse, small faults, or warping of the younger layers over 
the underlying Capitan Reef (Adams, 1944; Baumgardner et al., 1982; Kim et al., 
2019; English et al., 2020). 

Many countries have monitoring systems that monitor the water quality 
through various water quality parameters (Mohd Zebaral Hoque et al., 2022). 
These parameters include Total Dissolved Solids (TDS), Potential Hydrogen 
(pH), Dissolved Oxygen (DO), and Biochemical Oxygen Demand (BOD). These 
parameters have been widely used to assess and categorize surface and ground-
water quality (Berhe, 2020; Asadollah et al., 2021; Prabowo et al., 2021; Zakir et 
al., 2022). In Texas, TWDB is a good example of a water monitoring authority. 
Artificial intelligence and machine learning have been applied to make meaning 
of the enormous data continually generated from water quality assessments to 
solve many environmental engineering problems, including underground water 
quality prediction modeling (Shah & Joshi, 2017; Alizadeh et al., 2018; Haghiabi 
et al., 2018; Ahmed et al., 2019).  

Regression techniques like Linear regression and Decision Tree regression are 
used by researchers for the prediction of various problems such as ozone deple-
tion prediction, solar thermal system forecasting, and prediction of water quality 
parameters (Djarum et al., 2021; Noori et al., 2011; Chen et al., 2020). Because 
there is no single algorithm that can solve all these problems, all the algorithms 
must be subjected to further scrutiny to get the algorithm that gives the best re-
sults: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and 
Mean Squared Error (MSE). 

In this study, we applied four algorithms to the same dataset to identify the 
best performer as a guideline for future research in this area. The result revealed 
that the Decision Tree regression performed the best among the four regression 
techniques. The Decision Tree got the lowest MAE, the lowest RMSE, the best 
coefficient of determination, and the lowest MSE. This study aims to 1) Evaluate 
the groundwater quality of Winkler County using TDS as the target parameter, 
2) Use machine learning and statistical analysis for the prediction of TDS in 
Winkler County, and 3) identify the best machine learning model for ground-
water monitoring and assessment. The best model produced from trying all four 
algorithms would be used for future endeavors in groundwater monitoring and 
assessment and for predicting TDS or other water quality parameters from data 
obtained in West Texas or from other locations. 

3. Data and Methodology 
3.1. Study Area 

With an estimated area and population of about 1427.49 square kilometers 
(about half the area of Yosemite National Park) and 8000 inhabitants respec-
tively, as of 2023, West Texas’ Winkler County is located at the southeast border 
of New Mexico and lies mainly within the Pecos River Valley; the northeastern 
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half is part of the High Plains. The production and refinement of oil are its pri-
mary industries, and ranching is also a significant industry. The weather is 
semi-arid, with temperatures varying greatly from 30 to 107 degrees Fahrenheit. 
Little precipitation 355.6 mm (about 1.17 ft) annually on average, and significant 
rates of evaporation are predominant, with spring and fall having the most pre-
cipitation, making the county experience arid or semi-arid weather (Ashworth, 
1990; Menne et al., 2019). Grass, bushes, and brush comprise most of the land 
cover, followed by arid lands, developed areas, and crops (English et al., 2020). 
Elevated levels of oil and gas drilling, production, and exploration operations are 
another characteristic of this region. With oil and gas operations, the semi-transient 
population changes.  

The geology of Winkler County is as complex as it is varied. Winkler County 
is on the western side of the Monument Draw trough, on the shelf margin be-
tween the Central Basin Platform and the Delaware Basin on the western side of 
the Permian Basin (Meyer et al., 2012). The oldest investigated rocks in Winkler 
County are igneous rocks located 10,000 feet below the surface in the Keystone 
oil field, approximately four miles northeast of Kermit (Jones et al., 1949). This 
is overlain by sedimentary rocks of the Ordovician, Silurian, Permian, Triassic 
etc. The Central Basin Platform separates the Delaware and Midland sub-basins 
of the Permian Basin in West Texas.  

Three distinct rock sequences were deposited simultaneously along the mar-
gins of the Delaware Basin during the late Guadalupe period due to a large reef 
known as the Capitan. These sequences include the deep-water marine facies in 
the Delaware Basin, which are represented by sandstone, shale, and limestone; a 
reef zone, which is represented by massive crystalline dolomite or limestone; and 
shelf or lagoonal deposits, which are represented by fossiliferous limestone and 
shale, dolomitic limestone, saline evaporites, and onshore clastics (Garza and 
Wesselman, 1962). The Delaware Basin is a structural depression in western 
Texas and southern New Mexico. It is a depression filled and overlain by chemi-
cal deposits of the Late Permian age, which are now either partially eroded west 
of the Pecos River or east of it (Lang, 1939). The shelf deposits near the reef are 
usually thin-bedded limestone or dolomite that grades into clastics and evapo-
rites. The Capitan Limestone is a representation of the reef deposits. Back-reef 
deposits include the Tansill formation of the Whitehorse group, the Yates Sand-
stone, and the Queen, Grayburg, and Seven Rivers formations. In the Delaware 
Basin, the sandstones of the Guadalupe age are replaced by the anhydrite of the 
Castile formation of the Ochoa age.  

The Triassic period represents a basin-wide continental depositional event 
with the formation of the Dockum group. Cretaceous marine transgression was 
followed by an elevation and Cretaceous deposit erosion during the Laramide 
orogeny. Rustler, Dewy Lake, and Dockum formations collapsed throughout the 
Cenozoic due to the dissolution of the Salado and Castille evaporites, and the 
Pecos Valley Alluvium was later filled in (Figure 1). 
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Figure 1. Map of the study area showing 298 wells sunk in different aquifers. 

3.2. Data Description  

The data for this study was obtained from the Texas Water Development Board 
(TWDB) website for Winkler County. The data was collected over seventy years 
(between 1940-2022). The methodology can be broadly categorized into four 
categories: Data collection, Data Preprocessing, Model Training, Model Evalua-
tion, and Data plotting. Water samples 593 were taken from 298 wells of Wink-
ler County and five aquifers (Edward Trinity, Rustler, Pecos Valley, Dockum, 
and Capitan Reef). Sixteen parameters were used for this study: Chloride, Total 
Dissolved Solids (TDS), bicarbonates, pH, Sodium, Magnesium, Sulphate, Fluo-
ride, Calcium, Nitrate, Temperature, Well Depth, Total Alkalinity, Total Hard-
ness, and Specific conductance.  

Table 1 below gives a statistical summary all the parameters used for this 
study. TDS was chosen as the target parameter for all modeling in this study be-
cause it is a widely used water quality parameter for estimating dissolved solids in 
water. TDS is the amount of substance left (organic + inorganic) after a liter of wa-
ter is evaporated from a container. A low amount of TDS reflects high-quality wa-
ter and indicates fresh water; a high TDS level suggests brine or low water quali-
ty. It is pertinent to state that not all the parameters impact TDS concentration 
in this area. Heavy metals tend to dissolve faster in acidic water and form toxic 
compounds with available anions in the water. Specific conductivity is an indi-
cator of ionic salt contamination used to determine the concentration of harmful 
ionic salts in water. High water-specific conductance is destructive to piping in-
frastructure. The correlation coefficient reveals that Sodium, Total Hardness, 
Specific conductance, Magnesium, Chloride, and Sulphate had the most impact 
on TDS. 
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Table 1. Statistical Analysis of all fourteen Parameters (593) samples from Winkler 
County. 

Parameters 
Statistical Analysis of all fourteen Parameters (593)  

samples from Winkler County 
Unit Min Max Mean S/D 

Sodium (Na) mg/L 6.000 25100.000 40.360 1357.240 

Calcium (Ca) mg/L 5.600 1880.000 159.840 219.240 

Magnesium (Mg) mg/L 0.120 2920.000 40.360 134.440 

Bicarbonate (CaCO3) mg/L 0.000 508.880 160.400 67.710 

Sulfate ( 2
4SO − ) mg/L 0.000 5040.000 271.990 491.830 

Temperature ˚C 10.000 31.600 21.480 1.890 

Chloride (Cl) mg/L 3.200 41000.000 467.560 2361.560 

Fluoride (F) mg/L 0.000 5.700 1.490 0.770 

Nitrate (NO3) mg/L 0.000 210.000 7.630 15.430 

PH 
 

4.400 9.100 7.570 0.370 

TDS mg/L 105.000 71121.000 1303.000 4165.110 

Total Hardness mg/L 27.000 14334.000 563.390 931.510 

Well depth feet 10.000 4400.000 265.430 331.430 

Specific Conductance µS/cm 175.000 108416.000 2348.300 6933.310 
 

Winkler County’s elevated levels of water contamination in the past resulted 
from the activities associated with crude oil mining and exploration (anthropo-
genic) and natural causes.  

3.3. Data Preprocessing 

Data preprocessing is crucial in data analysis to improve the performance and 
quality of the data. The raw data obtained from TWDB was riddled with missing 
data and may not perform optimally when used in that state. Hence, it is crucial 
to perform some preprocessing on the data. The missing cells were filled with 
the mean of each parameter. This is done to preserve central tendency and 
maintain the sample size. Some studies will exclude some features when at-
tempting to create a model; in this study, we used all fifteen features as input 
parameters. 

The concentration of TDS in this study for the wells of Winkler County was 
predicted using four different machine learning regressor algorithms: Decision 
Tree, Support Vector Machine, Linear Regression, and K-Nearest Neighbor. To 
get the best out of our modeling, 80% of our dataset was used for training, and 
20% was used for testing. A developed model can only be deemed sustainable if, 
under an increment in the amount of dataset initially used or when a different 
data is introduced, it can yield particularly reliable results. A model that crum-
bles upon introducing a new dataset is not necessarily good. For this, cross- 
validation was performed using a k-fold value of 10, and performance evaluation 
of the models was done using statistical parameters like MSE, MAE, RMSE, and 
EVS. With this approach, a fair and accurate assessment of the algorithms and 
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modeling precision can be obtained by applying consistent training and test-
ing inputs in trials. This also helps in unveiling the biases and shortcomings 
of the different models. All modeling and analysis were performed using Py-
thon v3.8 in Jupyter Notebook in the Department of Geoscience UTPB com-
puter lab. 

4. Machine Learning (ML) Algorithms 
4.1. Machine Learning Algorithms Used   
4.1.1. Regression 
Regression analysis uses a set of records containing X and Y values to learn a 
function. This function can then be applied to predict Y from an unknown X. To 
obtain the value of Y in a regression given X as independent characteristics, a 
function that predicts continuous Y is needed. Here, X is referred to as an inde-
pendent variable, also known as Y’s predictor, while Y is referred to as the de-
pendent or target variable. Regression can make use of a wide variety of func-
tions or modules. The most basic kind of function is a linear function. Every 
kind of regression machine learning model starts with the standard regression 
equation, which may be computed using the formula below (Kayanan & Wije-
koon, 2020)  

Y = Xβ + e                         (1) 

The variables in this equation are the TDS as the dependent variable, X de-
notes the independent variables (i.e., water quality indicators), β denotes the es-
timated regression coefficients, and e denotes the errors and residuals. 

4.1.2. Linear Regression 
Linear regression is one of the most fundamental and popular machine learning 
techniques. It is a technique that uses mathematics for predictive analysis. One can 
project continuous, real, or mathematical variables with linear regression (Kanade, 
2023). The link between variables under examination is evaluated and quantified 
using linear regression. Regression models state that the independent factors can 
predict the dependent variables. Because the independent variable “x” has a range 
of values, regression analysis estimates the dependent variable “y” value. A case 
model with a single independent variable is called a simple linear regression. The 
variable’s dependence is defined by simple linear regression. The influence of in-
dependent variables is separated from the interaction of dependent variables using 
simple regression.  

y = β0 + β1x + ε. 

4.1.3. Decision Regression Tree 
While the decision tree-based supervised learning approach is technically de-
scribed as a rule-based binary tree-building technique, a more straightforward 
interpretation is as a hierarchical domain division strategy. The data is subjected 
to the categorization standards for attaining high data homogeneity up until the 
point at which the nodes can no longer be further subdivided. Decision Trees are 
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known for their interpretability and transparency, making them valuable for 
understanding the factors that influence predictions (Czajkowski et al., 2023). By 
observing an object’s attributes and training a model within a tree’s structure, de-
cision tree regression generates meaningful continuous output by predicting data 
in the future. Continuous output denotes a result or output that is not discrete, 
not solely represented by a known, discrete collection of numbers or values. They 
are, nevertheless, susceptible to overfitting, particularly if the tree is permitted to 
grow excessively deeply. This problem can be lessened by employing pruning, es-
tablishing a maximum depth, or ensemble techniques like Random Forest or 
Gradient Boosting (Breiman & Ihaka, 1984). 

4.1.4. Support Vector Regression (SVR) 
Regression analysis uses a machine learning method called Support Vector Re-
gression (SVR). SVR is a supervised machine learning technique that (Vapnik, 
1995) provided. It can be used to address issues with pattern recognition, regres-
sion, and classification. 

Finding a function that minimizes the prediction error and represents the re-
lationship between the input variables and a continuous target variable is the 
aim of support vector machines (SVR). SVR’s goal is to minimize the coeffi-
cients rather than the squared error, or more precisely, the l2-norm of the coef-
ficient vector. Support Vector Regression (SVR) looks for a hyperplane in a con-
tinuous space that best matches the data points. The process involves projecting 
the input variables onto a high-dimensional feature space and then identifying 
the hyperplane that minimizes the prediction error and maximizes the margin, 
or distance, between the hyperplane and the nearest data points. 

The unweighted average throughout the collection is the random forest fore-
cast for regression. Because of this, it’s an effective tool for regression problems 
where the goal and input variables may have intricate interactions. The challenge 
of regression analysis is finding a function that maps an input domain to real 
numbers using a training sample. The SVR seeks to match the best line within a 
threshold value, unlike other regression models that aim to minimize the error 
between the real and projected value. The distance between the boundary line 
and the hyperplane is known as the threshold value. Scaling SVR to datasets with 
more than ten thousand samples is challenging since the fit time complexity in-
creases more than quadratically with sample count. 

4.1.5. K-Nearest Neighbor for Regression (KNN) 
The K-nearest neighbor method can be applied to regression analysis in the 
same way that it can be applied to classification. It is typically used as a classifi-
cation technique, based on the notion that equivalent points can be located ad-
jacent to each other, even if it can be applied to regression or classification prob-
lems. 

Just as it may be used for classification, regression analysis can also be carried 
out using the K-nearest neighbor method. Based on the notion that comparable 
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points can be found adjacent to each other, it is typically used as a classification 
procedure, though it can also be applied to regression or classification problems. 
Because it does not make any assumptions about the underlying data distribu-
tion, it is regarded as a non-parametric method. To put it simply, KNN looks at 
the data points nearby to decide what group a given data point belongs to. This 
algorithm, also known as a lazy learner or lazy learning algorithm, does not do 
any training when you provide the training data. Rather, it makes no computa-
tions during the training phase; it simply saves the data. It waits to develop a 
model until the dataset is queried. KNN is hence perfect for data mining. Similar 
concepts are used in classification and regression problems; however, in regres-
sion problems, a prediction about classification is made by taking the average of 
the k nearest neighbors. Regression is used with continuous values, while classi-
fication is utilized with discrete ones in this case. However, the distance must be 
established before a categorization can be made. 

4.2. Performance Measurement of the Different Regression  
Algorithms 

The methods discussed below were used to evaluate and compare the perfor-
mance of all the models.  

4.2.1. Linear Correlation Coefficient (R) 
Measured by the linear correlation coefficient (R), a model’s ability to correctly 
predict the observed (real) data. Normally, R values fall between −1.0 and 1.0 A 
complete positive correlation (a value of 1.0) exists when there is no difference 
between the observed and the anticipated, and vice versa. A value that expresses 
the direction and strength of the linear relationship between two variables, x, 
and y, is another name for it. The computation of this value involves determin-
ing the covariance ratio between the two variables and multiplying their stan-
dard deviations by one another.  

( )( )
( ) ( ) ( ) ( )2 22 2 '

n y y y y
R

n y y n y y

′ ′



⋅ −
=

 − − ′     

∑ ∑ ∑

∑ ∑ ∑ ∑
          (2) 

4.2.2. Coefficient of Determination (R2) 
The R2 calculates the extent to which the model prediction accounts for the vari-
ation in the observed values. A higher R2 value indicates a better prediction ac-
curacy for the model. The degree to which a statistical model accurately predicts 
a result is indicated by a value between 0 and 1 called the coefficient of determi-
nation. The coefficient of determination is always positive, even when the corre-
lation is negative (Figure 2) 
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Figure 2. Correlation coefficients of statistically input parameters on TDS. 

4.2.3. Root-Mean-Squared Error (RMSE) 
The square root of the mean square error is called root-mean-squared error, or 
RMSE for short. The root mean square error (RMSE) can be defined as the 
standard deviation of the prediction errors or the average distance of an ob-
served data point from the measured model line. The equation that follows pro-
vides the RMSE. The RMSE measures the degree to which these residuals are 
scattered, providing insight into how well the observed data adheres to the ex-
pected values. The RMSE decreases as the data points approach the regression 
line because the model has fewer errors. Predictions made by a model with a 
lower error are more accurate. 

( )2'
RMSE

y y
n
−

= ∑                     (4) 

4.2.4. Mean Absolute Error (MAE) 
The statistical measure of a model’s prediction ability is the mean absolute error 
(MAE), which is the arithmetic of the absolute errors. Since the MAE shows the 
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relative overall fit or goodness of fit, it is frequently utilized in quantitative pre-
dictive models. MAE, one of the most often used loss functions for regression 
issues, aids users in turning learning challenges into optimization issues. Addi-
tionally, it provides regression problems with an easily comprehensible, quantit-
ative measurement of errors. 

1 '
MAE

n
i y y

n
=

−
= ∑                       (5) 

4.2.5. Prediction Error 
A measurement of the difference between expectation and reality is called pre-
diction error. It is frequently used to evaluate prediction accuracy in the context 
of statistical and machine learning models. Usually, the prediction error is com-
puted as follows: 

Actual Value − Predicted Value = Prediction Error. 

4.2.6. Cross Validation (K-Fold Method) 
Validation is the process of determining whether the numerical results quanti-
fying proposed relationships between variables are appropriate for characterizing 
the data. Therefore, we need a procedure that leaves enough data for both the vali-
dation and training of the model. That is precisely what K-Fold cross-validation 
achieves. The data in K-Fold cross-validation is separated into k subgroups. The 
holdout approach is now performed k times, with each repetition using one of 
the k subsets as the test or validation set and the remaining k-1 subsets com-
bined to create a training set. We use the average error estimation over the k tri-
als to determine our model’s overall effectiveness. Each data point appears ex-
actly once in a validation set and k times in a training set. Because the majority 
of the data is also utilized in the validation set, this considerably minimizes va-
riance as well as bias because the majority of the data is used for fitting. Because 
the majority of the data is also utilized in the validation set, this considerably 
minimizes variance as well as bias because the majority of the data is used for 
fitting. This technique is made more effective by switching up the training and 
test sets. Based on empirical evidence and general guidelines, k = 5 or 10 is 
typically favored. However, it can take any value. In this study, we used k = 10 
(Table 2). 

 
Table 2. Training and testing results for Cross Validation (Coefficient of determination). 

Model 
Cross Validation (K-Fold Method) 

Training Testing 

Decision Tree Regression 0.963 0.911 

Support Vector Regression 0.831 0.756 

Linear Regression 0.852 0.893 

K-Nearest Neighbor 0.974 0.910 
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5. Results and Discussion 

The mean concentrations of Chloride, Sodium, and Sulphate are 467 mg/L, 239 
mg/L, and 271 mg/L, respectively, in the Winkler County wells. This is above the 
EPA (Environmental Protection Agency) recommended number for safe drink-
ing water. This is probably due to the oil and gas activities in the area. The pres-
ence of evaporites in the Salado Formation could be the reason there is elevated 
sodium concentration from the data used. The use of saline water for the sec-
ondary recovery of oil in the Hendrick oil field and the subsequent disposal of 
the water in earthen pits close to the wellhead could be one of the reasons so-
dium concentrations are quite high in analyzed samples. 

Table 3 below summarises all the performance indices in training and testing 
for all the regression models used for this study.  

The correlation between TDS and other input parameters was evaluated. The 
results show that there is a high correlation between Sodium and TDS (R = 
0.98), Chloride and TDS (R = 0.99), Specific conductance and TDS (R = 0.95), 
and Magnesium and TDS (R = 0.76). These parameters have the greatest influ-
ence on the predictive power of the models generated.  

5.1. Evaluation of Model Performances 

This study has focused on identifying the best-performing regression model for 
predicting TDS from the four regression models utilized. As stated earlier, the 
entire dataset was divided into two; 80% was dedicated to training while the re-
maining 20% was for testing. It should be noted that a couple of other split ratios 
were tried, such as 70% and 30%, 60% and 40%. The 80%/20% ratio gave the 
best results (Figure 3). 

5.2. Decision Tree Regressor Model 

The decision tree regression algorithm yielded impressive results for the training 
and testing R2 = 1.0 and R2 = 0.96, respectively (see Figures 4-6). It showed one 
of the least MAE, RMSE, and MSE; 0.0, 0.0, and 0.0 for training and 0.05, 0.09, 

 
Table 3. The Performance of different machine Learning algorithms for estimation of 
TDS. 

Model 
Performance evaluation of the algorithms 
R2 MAE RMSE MSE 

DT: Training 1.000 0.000 0.000 0.000 
DT: Testing 0.954 0.050 0.090 0.010 

SVR: Training 0.928 0.090 0.110 0.010 
SVR: Testing 0.897 0.100 0.130 0.010 
LR: Training 0.902 0.080 0.130 0.010 
LR: Testing 0.848 0.120 0.240 0.060 

KNN: Training 0.974 0.030 0.060 0.000 
KNN: Testing 0.977 0.040 0.060 0.000 

LR = Linear Regression, DT = Decision Tree, SVR = Support Vector Regression, KNN = 
K-Nearest Neighbor. 
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and 0.01 for the testing datasets, as shown in the table above (Table 3). The DTR 
algorithm was used to predict the concentration of TDS in this study, and it yielded 
excellent results. Feature importance from DTR reveals that not all the parameters 
impacted TDS in the samples. Sodium, Total Hardness, Magnesium, Chloride, Spe-
cific Conductance, and Calcium were solely responsible, with Sodium contributing 
more than sixty percent. Cross-validation (k-fold) reveals a mean squared error of 
0.013 for training and 0.012 for testing. This shows that our model will give accu-
rate predictions when tested with data from other samples. The benefit of this ap-
proach is that parameters that had a major impact on the TDS could be 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 3. Prediction accuracy for the training dataset (a) Decision Tree Regression (b) 
Support Vector Regression (c) Linear Regression (d) K-Nearest Neighbor. 

 
directly known, including their dosages and any positive or negative impacts. By 
conducting parameter evaluations one at a time, according to the decision tree 
diagram, and modifying the course based on analysis results, it is feasible to use 
the decision tree diagram to minimize future physicochemical analyses required 
for TDS doses (Hichem et al., 2022). 

5.3. Linear Regression Model 

Many authors believe that simple linear regression analysis cannot accurately 
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forecast water quality because of complicated linear and nonlinear relationships 
in the water quality dataset. However, this study aims to compare different ma-
chine learning models to get the best model that can accurately predict TDS. 
When determining the linear relationship between a goal and one or more pre-
dictors, linear regression is utilized. Finding the line that best fits the data is the 
main concept. The line with the lowest total prediction error (across all data 
points) is the best match. The gap between the point and the regression line is 
called the error. Linear regression generated one of the lowest coefficients of de-
termination (R2), 0.91 and 0.73, for training and testing in this study. The MAE, 
RMSE, and MSE values are 0.08, 0.13, and 0.01 for the training (Table 3). 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 4. Prediction accuracy for the testing dataset (a) Decision Tree Regression (b) 
Support Vector Regression (c) Linear Regression (d) K-Nearest Neighbor. 

5.4. Support Vector Regression Model 

The SVR method’s fundamental goal is to minimize structural risk, which is accom-
plished by comparing the high-limit error to the usual local training error in other 
machine learning techniques. Using an appropriate kernel function, the original data 
sets from the input space are mapped into a high-dimensional or even infinite- 
dimensional feature space, where a maximal separation plane (SP) is created using 
the SVM (Support Vector Machine) technique. In this study, the SVR gave the high-
est (MAE = 0.09 and RMSE = 0.11 in training and MAE = 0.10 and RMSE = 0.13 for  
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(d) 

Figure 5. Prediction error for the models (a) Decision Tree Regression (b) Support Vec-
tor Regression (c) Linear Regression (d) K-Nearest Neighbor. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 6. Prediction error for the models (a) Decision Tree Regression (b) Support Vec-
tor Regression (c) Linear Regression (d) K-Nearest Neighbor. 

 
testing) (see Figures 4-6) compared to other algorithms. This algorithm gives us 
the flexibility to be able to define how many errors are acceptable in our models 
and find an appropriate line (hyperplane) to fit the data. 

5.5. K-Nearest Neighbor Regression 

Through the simple process of averaging observations within the same neigh-
borhood, KNN regression is a non-parametric technique that estimates the re-
lationship between independent variables and the continuous result (Youssef 
et al., 2022). To minimize the mean-squared error, the analyst must determine 
the size of the neighborhood, or it can be selected via cross-validation. In the 
KNN regression model from this study, one can deduce that the KNN algo-
rithm performed well (see Figures 4-6), better than the SVR algorithm. The 
coefficient of determination is 0.98 and 0.98, for both the training and testing 
datasets. 0.03 and 0.04 were obtained for MAE for both training and testing, 
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respectively. 0.06 and 0.06 were obtained for the RMSE for the training and 
testing datasets. In summary, the KNN models appear to perform well based 
on the metrics above.  

6. Comparing the Different Machine Learning Models 

A comparative assessment of the four machine learning models reveals that they 
are generally aligned with the observed and estimated input parameters of the 
study area. The DTR gave the best prediction model among the four algorithms 
(Figure 3). DT showed the best model with zero values for MAE, RMSE, and MSE 
and a coefficient of determination of 1 for training and 0.050, 0.090, and 0.010 for 
MAE, RMSE, and MSE respectively for the testing with an R2 of 0.954 (Figure 7). 

Linear regression performance, though impressive, performed low when 
compared to the other three models. It has the lowest coefficient of determina-
tion of 0.902 and 0.848 for training and testing. All the models agree with their 
observed and estimated TDS parameters in the study area. Linear regression has 
the most error in predicting TDS in the dataset. The results from prediction error  
 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 7. Performance of the models (a) Decision Tree Regression (b) Support Vector 
Regression (c) Linear Regression (d) K-Nearest Neighbor. 
 
can obtain the overall performance of the prediction for each of the regression 
algorithms. If the difference between the model and the real data becomes 
smaller, the prediction will be more accurate (Nouraki et al., 2021). 

It’s crucial to remember that the qualities of the features, the characteristics of 
the dataset, and the problem you are attempting to solve can all have an impact 
on how well a machine learning algorithm performs. Depending on the task at 
hand and the characteristics of the data, some algorithms may perform better 
than others in specific situations. 

6.1. Sinkhole Formation 

The two main factors behind the formation of the two sinkholes (winksink #1 
and winksink #2) are natural and anthropogenic. Anthropogenic factors deal 
with human-induced causes, including oil and gas development and agricultural 
influences on the land surfaces. The natural factors are comprised of the geologic 
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processes (tectonism, chemical weathering) of the formation from the time was 
deposited. 

6.2. Groundwater of Winkler County 

The Santa Rosa sandstone-saturated zones and the Cenozoic alluvium serve as 
Winkler County’s main freshwater aquifers. They are a component of vast aqui-
fers that support a sizable portion of West Texas and eastern New Mexico. Preci-
pitation is the only source of fresh water for the aquifers; some of the water comes 
from precipitation inside the county and some from regions to the north and 
northeast. The foot of Santa Rosa is the lowest point of fresh water in the county, 
and Santa Rosa gets its water primarily from water seeping through the Cenozoic 
deposits where the two formations meet (Garza and Wesselman, 1962).  

With increased urbanization comes a reduction in natural land surfaces 
through which water percolation can occur during precipitation. Because anth-
ropogenic changes to ground cover have reduced the surface area where infiltra-
tion can occur, there is a greater chance that new catchment areas and runoff 
paths will emerge in certain areas. Groundwater flow patterns and recharge 
zones may be affected by the concentrated intake of groundwater in certain 
areas. Increased inter-aquifer flow and active dissolution are caused by the in-
creased water burden in the strata above, higher withdrawal, and lowered hy-
draulic head in the Rustler and other underlying aquifers (English et al., 2020). 
The process is sped up by changing the land’s topography by establishing addi-
tional catchment regions and reducing recharge areas. Dissolution started far 
into the tertiary and is still going on today. Water percolates through the over-
burden of the atmosphere as it flows through, dissolving CO2 to create weak 
carbonic acid (H2CO3). The underlying carbonate and evaporite formation dis-
solves as the H2CO3 permeates it. TDS concentrations can be used to assess the 
amount of dissolution. Dissolution rates within these evaporite layers can be up 
to three times faster than those seen in limestone lithology, especially with the 
addition of water that is undersaturated relative to the dominant salt within the 
evaporite. This dissolution occurs especially quickly around the areas of focused 
infiltration. The growth of sinkholes might significantly speed up as additional 
waters seep through the underlying Salado and Castille, increasing their number 
and pace of growth. 

6.3. Hydrocarbon Exploration and Development in Winkler  
County 

The removal of early land cover types, the construction of substantial concrete 
building surfaces and the creation of new transportation networks during oil and 
gas production alter the land cover map. The oil and gas installations frequently 
encroach on grasslands, agricultural fields, and forests. Workers at oil and gas 
sites often relocate to and congregate in a nearby city or town. Additionally, de-
forestation brought on by the extraction of oil or the conversion of grassland in-
to developed land has significant negative consequences on the ecosystem, in-
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cluding the loss of habitat for several animal and plant species, and may play a 
substantial role in localized climate change. This regional disruption can result 
in changes in soil moisture and severe temperatures, which can be harmful to 
both humans and plants.  

Due to brine and crude oil leaks, oil and gas production significantly pollutes 
the soil (Meng, 2017). In oil-producing regions, spills of crude oil from well sites 
and pipelines are additional significant causes of soil pollution. Such spills may 
travel upward through the soil and contaminate the atmosphere or downward 
through the soil and damage the groundwater. Brines can contain naturally oc-
curring radioactive materials, hazardous trace metals, and elevated salinity le-
vels. According to Carls, Fenn, & Chaffey (1995), the purposeful, unintentional, 
and incidental discharge of drilling fluids, crude petroleum, and refined petro-
leum products is the main cause of soil pollution at oil and gas production wells. 
In contrast to modern, highly engineered, and scientific approaches, the shat-
tering of rocks with explosives generated uncontrolled fractures throughout the 
zone. These fractures improved oil production permeability while also providing 
the necessary channel for unsaturated waters to have ongoing access to the wea-
kening-prone underlying formations (Lambert, 1983). 

Regulations were far different from what they are now, and there are few 
records of wells being plugged and abandoned. There is not enough information 
to know where or how many of these poorly filled wells are, which have opened 
new channels for water to move through the overburden. The well itself may 
turn into a direct route to the delicate underlying layers as a pipe corrodes with 
age. Potential paths also include wells that did not use secondary and tertiary 
casing and cementing. Meteoric waters will use these paths to flow if the well-
bore is deficient in cement along the whole borehole above the targeted zone: 

In West Texas, population increase coupled with an arid climate has led to the 
shrinkage of the aquifer system in this area, which serves as the primary source 
of drinking water, agricultural production, and oil exploration. The importance 
of accurate prediction of water quality parameters in monitoring the pollution 
caused by indiscriminate use of water in agriculture, oil mining, etc., in West 
Texas cannot be overemphasized. This study employed four machine learning 
methods (LR, DT, SVR, and KNN) to predict the TDS concentration of 593 
samples from wells in Winkler County. Fifteen input parameters were used to 
estimate TDS for all the machine learning methods. All the methods showed 
impressive figures for coefficients of determination, MAE, MSE, RMSE, and 
EVS, with DTR performing exceptionally well in both the training and testing 
datasets. Machine learning models are, therefore, an appropriate alternative to 
physically based modeling in predictive conditions (Nouraki et al., 2021). This 
statement shows that machine learning models can reduce the cost of water 
quality monitoring and assessment and save time. In addition, machine learning 
models can provide the foundation for managers, engineers, and the govern-
ment to design, manage, and make significant decisions in different aquifers 
(Nouraki et al., 2021). 
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Figure 8. Innovative trend Analysis for average TDS concentration in Winkler County over seventy years (1940-2022). 
 

Figure 8 shows the trend of TDS over seventy years. It can be deduced from 
the figure that TDS concentration peaked between 1950 and 1980. This is a re-
sult of increased oil and gas activities in combination with natural processes like 
erosion of underground formation (Salado Formation), which comprises halite 
and evaporites, going on in the area. From 1980 to today, the TDS concentration 
went steadily down. This can be attributed to government policies and increased 
awareness of the danger of destructive mining practices like uncased wells. 

Furthering this study will include using hybrid machine learning models to 
estimate TDS, Specific conductance, and Total hardness of different aquifer sys-
tems in West Texas to determine their water quality. 

7. Conclusion 

Groundwater is a vital supply of potable water worldwide. The current study 
examined and contrasted four machine learning algorithms to predict ground-
water quality in Winkler County, revealing concerning levels of TDS recom-
mendations for safe drinking water. The results of our study indicate that among 
the four algorithms tested, the decision tree (DT) algorithm demonstrates a very 
accurate prediction model for estimating TDS levels in the study area. This un-
derscores the use of decision tree as a valuable tool in groundwater quality pre-
diction, offering insights that can inform resource management and environ-
mental conservation efforts in the region. By employing decision trees and other 
machine learning algorithms in this work, which have shown high coefficient of 
determination, low MAE, and RSME, we can enhance our ability to identify pat-
terns and factors contributing to groundwater quality degradation, thereby aid-
ing in the prevention of future sinkhole occurrences. Moving forward, continued 
research into refining and optimizing machine learning techniques for ground-
water analysis will be crucial in addressing environmental challenges and ensur-
ing the sustainable management of water resources. The formation of sinkholes 
in Winkler County poses significant challenges, with potential causes including 
the dissolution of underground Castile and Salado formations by groundwater 
and the influence of oil and gas activities. In terms of remediation techniques, 
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the insights provided by machine learning models can inform the implementa-
tion of targeted measures to mitigate sinkhole formation. This may include con-
tinuous monitoring of groundwater quality parameters that can give early 
warnings of potential sinkhole formation by detecting changes in hydrological 
conditions, proper land use planning, which can inform land use planning deci-
sions, helping to avoid development in areas susceptible to sinkhole formation 
based on predictive analysis of groundwater quality, proper management of in-
jection wells used in oil and gas activities can help mitigate the risk of sinkhole 
formation by minimizing the introduction of contaminants into groundwater 
systems and promoting vegetation growth in vulnerable areas can help stabilize 
soil and reduce erosion, thereby mitigating the risk of sinkhole formation. 
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