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Abstract 
This paper appraises the accuracy of methods for calculating wind power 
density (WPD), by comparing measurement values to the shape and scale 
parameters of the Weibull distribution (WD). For the estimation of WD pa-
rameters, the Graphical method (GP), Empirical method of Justus (EMJ), 
Empirical method of Lysen (EML), Energy pattern factor method (EPF), and 
Maximum likelihood method (ML) are used. The accuracy of each method 
was evaluated via multiple metrics: Mean absolute bias error (MABE), Mean 
absolute percentage error (MAPE), Root mean square error (RMSE), Relative 
root mean square error (RRMSE), Correlation coefficient (R), and Index of 
agreement (IA). The study’s objective is to select the most suitable methods to 
evaluate the WD parameters (k and c) for calculating WDP in four meteoro-
logical stations located in Junin-Peru: Comas, Huasahuasi, Junin, and Yantac. 
According to the statistical index results, the ML, EMJ, and EML methods are 
the most accurate for each station, however, it is important to note that the 
methods do not perform equally well in all stations, presumably the graphical 
conditions and external factors play a major role. 
 

Keywords 
Accuracy, Meteorological Station, Statistical Indicator, Wind Energy  
Potential, Wind Speed 

 

1. Introduction 

Renewable power capacity is increasing at a faster annual rate than all fossil fuels 
combined. In 2016, green energy comprised nearly 62% of the total pow-
er-generating capacity in the world, and more and more countries are using this 
technology [1]. According to renewable energy statistics, onshore wind energy in 
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Peru is increasing, with the cumulative installed capacity expected to reach 372 MW 
by the end of 2018 [2]. Wind resources have a variable and fluctuating behavior 
[3], however, such that an exhaustive evaluation of wind speeds is necessary for 
effective wind-energy harnessing. A standard approach for describing velocity is 
via the WD, a continuous probability distribution involving the two parameters 
of shape and scale [3] [4] [5] [6] [7]. The WD is used across multiple research 
areas concerned with wind velocity, extensive literature [3]-[15] used this type of 
distribution. 

Reference [4] evaluated the effectiveness EMJ, EML, EPF, GP, ML, and Mod-
ified maximum likelihood method (MML) metrics to determine the shape and 
scale parameters of the WD to calculate the wind density power (WDP) at four 
weather stations in Canada, using three years of data. This study used the fol-
lowing statistical indicators: MABE, MAPE, RMSE, relative percentage error, 
RRMSE, and IA. The authors found that ML, EPF, EMJ, and EML are effective 
measurement methods. Reference [16] compared the results of five me-
thods—GP, EMJ, ML, MML, and EPF—to determine scale and shape variables 
at the Babaurband wind mast in Sindh, Pakistan; the authors used R and RMSE 
to determine which of the WD parameter calculation methods gives the best re-
sult, and the authors found that EMJ, ML, MML, and EPF provide the optimal 
results when it comes to determining the scale and shape parameters of the WD. 
In reference [17], the authors presented four methods for estimating the Weibull 
parameters, namely, ML, rank regression method, mean standard deviation me-
thod, and power density method. R and RMSE were used to determine the rela-
tive precision of the parameter calculations provided by these methods. Refer-
ence [18] compared the standard deviation method and the power density me-
thod (empirical and energy pattern factor method) to calculate wind energy po-
tential with five years of wind speed data from Zarrineh, Iran. Reference [19] 
evaluated the effectiveness of six methods—the moment method, empirical me-
thods, GP, ML, MML, and EPF—to determine Weibull parameters for wind po-
tential evaluation. The evaluation is compared via the Monte Carlo simulation, 
the Kolmogorov-Smirnov test, parameter error, RMSE, and wind energy error. 
The simulation test suggests that the ML, MML, and moment methods provide 
the most accurate calculations. 

This paper addresses the WDP accuracy calculation in four locations in Junín, 
Peru, with the aim of establishing reliable methods for calculating wind re-
sources (their available energy potential) in each area. It’s important to mention 
that there are no prior studies of WDP in these areas. In the present study, five 
methods are used to calculate shape and scale variables and statistical indicators 
to determine the accuracy of WDP. The methods are GP, EMJ, EML, EPF, and 
ML. 

The paper is organized as follows. In Section 2, the methods for estimating 
WD parameters and WDP are shown, also the four stations used as data sources 
for this paper, and the wind speed measurements are described. The analysis of 
results considering k and c parameters and statistics methods is presented in 

https://doi.org/10.4236/epe.2020.121002


J. Galarza et al. 
 

 

DOI: 10.4236/epe.2020.121002 18 Energy and Power Engineering 
 

Section 3. Finally, the conclusion is presented in Section 4. 

2. Materials and Methods    
2.1. Weibull Distribution 

Numerous probability distribution functions are available to evaluate wind 
speed frequency distributions. These functions include the Weibull, Rayleigh, 
Gamma, Pearson (V), Inverse Gaussian, and Log-normal functions [10]. The 
evaluation of wind energy is based on wind speed measurements. However, 
these are often variable, so it is useful to conduct the wind speed modelling as a 
function of certain parameters. The WD is widely accepted in the literature for 
the evaluation of wind energy [3]. The probability density of the WD is mathe-
matically described with three parameters. With the minimal speed considered 
near zero, the distribution is then expressed as [9]: 

( )
1

exp
k kkf v

c c c
ν ν−     = −    
     

                    (1) 

where k-shape parameter(dimensionless), c-scale parameters (m/s) and ν -wind 
speed (m/s) for WD, k and c parameters are often used to characterize wind re-
gimes because it has been found to provide a good fit with measured wind data. 

The cumulative function is defined [9]: 

( ) 1 exp
k

F v
c
ν  = − −  
   

                       (2) 

According to the literature, several methods are used to estimate the WD Pa-
rameters, the application of which is related to geographical conditions among 
other external factors [3]-[19]. The Graphical Method pursues the minimum last 
square error in the fitting process between measures and linear equations of the 
form y ax b= + . The Weibull parameters using this method can be calculated 
as [4] [5] [19]: 

( ){ } ( ) ( )ln ln 1 ln lnF k k cν ν− = −                    (3) 

In the group of empirical methods, the methods of Justus and Lysen are used. 
The method of Justus was formulated by C. G. Justus [20]; this is an experimen-
tal approach using a wind-powered generator system characterized by cut-in, 
rated, and cut-out speed to estimate the power output. The parameters of the 
Weibull are shown in [4] [18] [20] 

1.086

k σ
ν

−
 =  
 

                           (4) 

where σ -standard deviation of wind speed (m/s), ν -mean wind speed (m/s).  

11
c

k

ν
=

 Γ + 
 

                           (5) 

The method of Lysen uses experimental data to approximate the Gamma 

https://doi.org/10.4236/epe.2020.121002


J. Galarza et al. 
 

 

DOI: 10.4236/epe.2020.121002 19 Energy and Power Engineering 
 

function (Γ ) by the next expression, as discussed in [21]. For the calculation of 
shape factor, the method of Justus is used. 

1
0.43330.568

k
c

k
ν

−
 = + 
 

                      (6) 

The method of Energy Pattern Factor, uses pfE  (aerodynamic parameter de-
sign) to calculate the k parameter, as discussed in [4] [18] [19]. The c parameter 
is calculated using the Justus formulation. 

3

31

11
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kE
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 Γ + 
 

                         (7) 
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= +                           (8) 

Finally the method of Maximum Likehood is used. For this method, the like-
lihood function is used to estimate the Weibull parameters where n is the num-
ber of observation, after several iterations the parameters are obtained; the ma-
thematical expressions for the method are discussed in [4] [17] [19]. 
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∑                           (10) 

The method for estimating wind power density is based on energy balances 
and Bernoulli’s equation, the process of extracting the kinetic energy of the wind 
can be explained. The power per surface is dependent on the cube of wind speed 
and surface evaluation and ρ -air density (kg/m3). The measurement of WDP is 
obtained through a calculation as: 

31
2vP vρ=                             (11) 

WDP is a measure of the energy that can be produced by wind turbine in a spe-
cific location. This measure can be calculated using the WD [4]: 

31 31
2vP c

k
ρ  = Γ + 

 
                         (12) 

2.2. Study Case: Region of Junin  

The onshore wind-generated energy in Peru is projected to be 372 MW by the 
end of 2018 [2]. Since 2014, economic strategies have been developed by the 
Ministry of Energy and Mines to increase renewable energy capacity—for exam-
ple, through energy auctions for solar and wind energy. Additionally, to 
incrementalize the massive increase in the use of electricity, and with the objec-
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tive of increasing the rural electrification coefficient, domestic photovoltaic pa-
nels and mini wind turbines have been installed in rural areas. However, there is 
either no information about the renewable energy potential of new projects or 
else the existing information is outdated. The focus of this study is the Junín re-
gion; this region is one of the most important in Peru when it comes to the eco-
nomic development of the country. Because of the productivity of this region, it 
represents a large percentage of Peruvian energy demand. To date, however, no 
feasibility studies for projects using renewable energy sources such as wind and 
solar have been carried out. This study uses information provided by the Na-
tional Meteorology and Hydrology Service of Peru (SENAMHI). SENAMHI in-
dicates that there are 22 stations throughout the Junín region; situated 10 m up 
from the ground level, these stations have all been installed since 2003. This pa-
per uses the wind measurements from four of these stations, in four areas with 
the highest average wind speed. These are: Comas, Huasahuasi, Junín, and 
Yantac. We use historical information from 2012 to 2017, basing our analysis on 
SENAMHI measurements that were made daily at 13:00 h. Table 1 shows the 
main characteristics of the meteorological stations in Junin-Peru. 
 
Table 1. Meteorological station in region of Junin. 

Station Latitude Longitude 
Altitude 
(m.a.s.l.) 

Mean Speed 
(m/s) 

Town 

Acopalca 11˚55'39'' 75˚06'59'' 3839 2.7 Huancayo 

Chacapalca 11˚43'58'' 75˚45'21'' 3752 2.3 Chacapalca 

Comas 11˚11'44'' 75˚07'45'' 3640 6.1 Comas 

Huasahuasi 11˚15'42'' 75˚37'15'' 2750 6.7 Huasahuasi 

Huayao 12˚02'18'' 75˚20'17'' 3360 2.6 Huanchac 

Huaytapallana 11˚55'36'' 75˚03'42'' 4584 1.7 Huancayo 

Ingenio 11˚52'51'' 75˚17'16'' 3390 2.9 Santa Rosa de Ocopa 

Jauja 11˚47'12'' 75˚29'13'' 3378 2.8 Jauja 

Junin 11˚11'08'' 75˚59'20'' 4120 8.2 Junin 

La Oroya 11˚34'07'' 75˚57'34'' 3910 3.2 Santa Rosa de Saco 

Laive 12˚15'08'' 75˚21'19'' 3860 5.2 Yanacancha 

Marcapomacocha 11˚24'16'' 76˚19'30'' 4447 2.8 Marcapomacocha 

Puerto Ocopa 11˚08'01'' 74˚15'01'' 690 3.1 Rio Tambo 

Ricran 11˚32'22'' 75˚31'26'' 3820 4.3 Ricran 

San Juan de Jarpa 12˚07'30'' 75˚25'55'' 3600 2.1 San Juan de Jarpa 

Santa Ana 12˚00'15'' 75˚13'15'' 3395 5.4 El Tambo 

Satipo 11˚14'01'' 74˚42'01'' 1370 2.8 Satipo 

Tarma 11˚23'49'' 75˚41'25'' 3000 5.7 Tarma 

Viques 12˚09'47'' 75˚14'07'' 3186 4 Viques 

Yantac 11˚11'20'' 76˚24'16'' 4617 6.3 Marcapomacocha 
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The Andes are the highest mountains in the world. These peaks modify the 
climate of the region that hosts them, and several areas within Junín do have a 
modified climate. For example, the coastal areas have a typical summer climate, 
whereas the areas near the Andes that have a rainy and cloudy summer climate. 
Both types of weather occur during the first four months of the year.   

2.3. Evaluation of Weibull Parameters  

The authors reviewed previous literature about methods used to estimate the 
WD parameters (shape and scale) and WDP. The data obtained from the me-
teorological station of Junin were subjected to these methods for purposes of 
evaluation. The calculus of indicators and data processing were performed using 
the scripts in Matlab (2017b). In daily analysis, historical information from 2012 
to 2017 were used, with one measurement per day. The WD parameters were 
calculated using five methods: EMJ, EPF, ML, GP, and EML. 

In order to determine the relative precision of each of the five methods the 
statistical indicators were used to assess the accuracy of each of them. The k and 
c variables were used to calculate the WDP in comparison with the measured 
data, MAPE and MABE indicators show the general degree of error of each of 
the methods; for a more precise diagnostic, RMSE is used. RMSE gives the mod-
el’s precision as a result of contrasting the Weibull function and the measured 
data [4]. The RRMSE represents the precision of the model with qualifications 
like excellent, good, fair, and poor according to its value [21] [22]. The MAPE 
and RRMSE are expressing in percentages, whereas MABE and RMSE are ex-
pressed in W/m2. Correlation coefficient R is a statistical index that calculates 
the strength of the linkage between the WDP calculated by the WD and the 
WDP calculated by measures; this index is in the range of −1 to 1. The IA or 
Willmont index is a normalized metric used to assess the model prediction error 
[23] [24]. 

The results of statistical indicators for each meteorological station show the 
convenience methods for the estimation of parameters. These selected methods 
are evaluated in more detail in what follows. The evolution of the k and c para-
meters is tracked over a 72-month period to determine the fluctuation of the 
parameters, with the average value per month being used for this analysis.  

3. Results  

This section describes the approaches used first to estimate and then to evaluate 
the k and c parameters for the four meteorological stations in the Junin region of 
Peru. The objective is to find the most convenient method to estimate the accu-
racy of the WD, with statistical indicators being used for the performance evalu-
ation of the methods.  

3.1. Estimation of the Weibull Parameters    

The k and c parameters were estimated using five methods: EMJ, EPF, ML, GP, 
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and EML. For the Yantac station, the data were collected from 2014 (April) to 
2017 (December), but for all the other stations, data were collected from 2012 
(January) to 2017 (December). In the case of Comas station, the Weibull para-
meters are calculated using a total of 2191 wind measurements; for the k para-
meter, the EPF method shows 16% variation with respect to mean values, hence 
this method is likely not accurate enough to estimate the WD parameters; by 
way of comparison, all the methods used to estimate the c parameter show varia-
tions of less than 3% with respect to the mean value. For Huasahuasi Station, 
2190 wind measurements were used to estimate the Weibull parameters; for the 
k parameter, the GP method shows 9% variation with respect to mean values; all 
the methods used to estimate the c parameter show variations of less than 1% 
with respect to the mean value. In the case of Junin Station, the Weibull para-
meters were calculated using 2191 wind measurements; in this case all results for 
both parameters show variation of less than 1% with respect to the mean value. 
Finally for Yantac Station the parameters of the WD were estimated with 1404 
wind measurements. In this case, the shape parameter in the GP method shows 
17% variation with respect to mean values and the EPF method shows 11% vari-
ation. All methods used to estimate the c parameter show variations of less than 
1% with respect to the mean value. The results of the five methods for all station 
are shown in Table 2. 

3.2. Statistical Indicators for k and c Performance    

Table 3 shows the statistical indicators for the accuracy in estimating WDP us-
ing Weibull parameters. In the case of Comas station, the greatest accuracy in 
estimating WDP is achieved using the EMJ and EML methods; the values of 
16.913 and 17.175 for RRMSE indicate that these methods have good model pre-
cision. For Huasahuasi station, the highest agreement is attained when the ML 
method is used to estimate the WD parameters; also, EMJ and EML show high 
agreement as well; the value of 3.836 for RRMSE indicates excellent model preci-
sion. In the case of Junin station we found that the highest agreement is attained  
 
Table 2. Methods used to estimate Weibull parameters. 

Station Variable Method 

  GP EMJ EML EPF ML 

Comas 
k 4.539 4.424 4.424 3.619 4.570 

c 6.736 6.771 6.767 6.848 6.758 

Huasahuasi 
k 2.800 3.153 3.153 3.033 3.213 

c 7.394 7.337 7.336 7.351 7.311 

Junin 
k 3.836 3.703 3.703 3.290 3.690 

c 8.844 8.891 8.887 8.946 8.886 

Yantac 
k 4.175 3.547 3.547 3.160 3.401 

c 7.180 7.308 7.305 7.351 7.313 

https://doi.org/10.4236/epe.2020.121002


J. Galarza et al. 
 

 

DOI: 10.4236/epe.2020.121002 23 Energy and Power Engineering 
 

Table 3. Accuracy in estimation Weibull parameters by statistics index. 

Station Method Index 

  MAPE (%) MABE (W/m2) RMSE (W/m2) RRMSE (%) R IA 

Comas 

GP 0.010 0.578 1.272 19.299 0.996 0.970 

EMJ 0.012 0.522 1.132 17.175 0.997 0.973 

EML 0.011 0.516 1.114 16.913 0.997 0.973 

EPF 0.010 1.651 3.435 52.124 0.967 0.915 

ML 0.014 0.620 1.368 20.755 0.996 0.968 

Huasahuasi 

GP 0.006 1.955 3.422 37.802 0.974 0.916 

EMJ 0.001 0.347 0.656 7.242 0.999 0.985 

EML 0.002 0.343 0.647 7.150 0.999 0.985 

EPF 0.003 0.819 1.482 16.370 0.995 0.965 

ML 0.004 0.207 0.347 3.836 1.000 0.991 

Junin 

GP 0.004 0.910 1.691 10.991 0.998 0.977 

EMJ 0.006 0.738 1.292 8.400 0.999 0.981 

EML 0.005 0.727 1.264 8.218 0.999 0.981 

EPF 0.003 2.625 4.540 29.506 0.982 0.932 

ML 0.005 0.725 1.265 8.223 0.999 0.981 

Yantac 

GP 0.004 1.767 3.612 41.838 0.974 0.925 

EMJ 0.004 0.361 0.687 7.962 0.999 0.985 

EML 0.004 0.355 0.671 7.776 0.999 0.985 

EPF 0.004 1.508 2.814 32.599 0.982 0.935 

ML 0.003 0.616 1.222 14.155 0.997 0.974 

 
with EMJ, EML, and ML when it comes to calculating the WD parameters; the 
values of 8.4, 8.218, and 8.223 for RRMSE indicate excellent model precision. 
Finally for Yantac station we found that the highest agreement was attained 
when the EMJ and EML methods were used to estimate the WD parameters, the 
values of 7.962 and 7.776 for RRMSE indicate excellent model precision. All 
good and excellent ratings are according to the criteria as shown in [21] [22] 
[25].  

The calculations by year were used to develop the analysis more fully. In the 
case of Comas station EMJ and EML method were chosen, the evolution in the 
data patterning over 72 months were evaluated for the k and c parameters using 
both methods; these parameters have similar values; our findings confirm that 
the EMJ and EML methods are the most accurate for WDP calculations. For 
Husahuasi station the analysis was used for a more detailed assessment of the 
ML, EMJ, and EML methods; the three methods show the same tendencies for 
both parameters over time. Overall, we found that ML, EMJ, and EML methods 
have the greatest accuracy for WDP calculation. In the case of Junin station the 
analysis was used for the EMJ, EML, and ML methods to develop the analysis 
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more fully; the three methods reveal the same tendencies for both parameters; 
overall, we found that the ML, EMJ, and EML methods have the greatest accu-
racy for WDP calculation. Finally for Yantac station the analysis was used for the 
EMJ and EML methods to develop the analysis more fully; the evolution from 
year to year was evaluated for the k and c parameters using both methods; the 
three methods show the same tendencies for both parameters; overall, we found 
that EMJ and EML methods have the most accuracy for WDP calculation. For all 
stations the evaluation results by year are displayed in Table 4. 

3.3. Estimation of Wind Power Density    

This section estimates the WDP with the chosen methods, as a function of the 
results from an analysis based on statistical indicators. For a more detailed anal-
ysis, the use of wind turbine characteristics would be used. Table 5 shows the 
results for all the meteorological stations for wind power density with measure-
ments (WDP - m) and wind power density with the Weibull distribution (WDP 
- d). The results are the averaged annual value from 2012 to 2017 in all stations  
 
Table 4. Weibull parameters evolution. 

Station Method Variable Year 

   2012 2013 2014 2015 2016 2017 

Comas 

EMJ k 4.2138 4.5722 4.0236 4.5059 4.8256 4.9984 

EML k 4.2138 4.5722 4.0236 4.5059 4.8256 4.9984 

EMJ c 6.8914 6.5627 6.2910 6.6252 7.1475 7.0839 

EML c 6.8878 6.5589 6.2880 6.6214 7.1432 7.0795 

Huasahuasi 

ML k 3.7308 3.3100 3.2020 3.2005 3.1670 2.9125 

EMJ k 3.6450 3.2284 3.1237 3.1392 3.1155 2.8654 

EML k 3.6450 3.2284 3.1237 3.1392 3.1155 2.8654 

ML c 7.3031 6.8387 7.4429 7.4633 7.5288 7.2677 

EMJ c 7.3255 6.8643 7.4683 7.4850 7.5529 7.3100 

EML c 7.3227 6.8627 7.4670 7.4836 7.5516 7.3096 

Junin 

ML k 3.6756 3.9960 4.1782 4.0218 3.6271 3.2081 

EMJ k 3.5805 3.8716 4.1788 4.1683 3.7692 3.2326 

EML k 3.5805 3.8716 4.1788 4.1683 3.7692 3.2326 

ML c 9.6353 9.1121 8.9848 8.7853 8.5872 8.1208 

EMJ c 9.6479 9.1271 8.9940 8.7842 8.5865 8.1204 

EML c 9.6445 9.1230 8.9894 8.7797 8.5829 8.1186 

Yantac 

EMJ k - - 2.9940 3.3970 3.9044 4.8229 

EML k - - 2.9940 3.3970 3.9044 4.8229 

EMJ c - - 6.2656 7.2340 7.9236 7.4933 

EML c - - 6.2648 7.2319 7.9200 7.4887 
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Table 5. Wind power density in meteorological stations. 

lightaqua Station Method WPD - m WPD - d 

Comas 
EMJ 28.495 28.662 

EML 28.495 28.615 

Huasahuasi ML 38.952 38.837 

Junin 

EMJ 66.944 67.009 

EML 66.944 66.929 

ML 66.944 66.973 

Yantac 
EMJ 60.009 59.402 

EML 60.009 59.339 

 
except the Yantac station, for which data from 2014 to 2017 were used. The val-
ues of the calculation using measurements and using the WD are closely corre-
lated. This conclusion is confirmed by the high correlation revealed through the 
R and IA coefficients.  

4. Conclusions 

This paper has investigated five well-know methods for estimating the Weibull 
distribution parameters and wind power density, statistical metrics are used to 
find the most convenient method to estimate the accuracy of the Weibull distri-
bution. The evaluation was carried out in four locations in region of Junin-Peru 
with data from SENAMHI for the years 2012-2017. The following conclusion is 
made: 
• According to the results of the statistical indicators, the ML, EMJ and EML 

proved to be the most suitable methods for calculating wind power density in 
each of the four locations in region of Junin. 

• The wind power density calculated using experimental data and Weibull dis-
tribution parameter has a difference less or equal than 1%.  

• The Weibull distribution considering the shape and scale parameters presents 
accuracy calculation of the wind power density, independently of the three 
suitable methods found by the authors (ML, EMJ and EML), the results are 
very close to each other. 
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