
Engineering, 2021, 13, 237-256 
https://www.scirp.org/journal/eng 

ISSN Online: 1947-394X 
ISSN Print: 1947-3931 

 

DOI: 10.4236/eng.2021.135018  May 31, 2021 237 Engineering 
 

 
 
 

Structural Dynamics in Biology: A Bridge Given 
by Implicit Vibratory Crossed Models 

Yves Gourinat1, Laura Christon2, Frédéric Lachaud1 

1ISAE-SUPAERO Université de Toulouse, Toulouse, France 
2ITIC Université Paul-Valéry Montpellier, Montpellier, France 

           
 
 

Abstract 
This article proposes a synthesis and contribution at three levels: generation 
of dynamic equations of shell structures interacting with fluids, reduction of 
implicit resolution, and cross-applications to aerospace tanks and living sys-
tems. The synthesis of the equations is proposed around the four principles of 
thermodynamics at the level of discrete, structural and digitized systems. The 
implicit approach envisages an innovative analysis in terms of condensation 
and digitization, with in particular a perspective towards singular and integral 
methods. Some illustrations are proposed, in the field of performed research 
models and also in the fields of educational applications in biodynamics. The 
proposed bridge links, on one hand, the analytical Lagrange-Feynman’s ap-
proach, and on the other hand experimental results obtained in laboratory 
and numerical experiments obtained with multiphysics software. Finally, the 
realized models concern conservative and dissipative models for the active 
and passive control of complex systems, in a unified approach. 
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1. Introduction 

Living cells are complex, controlled and dynamic systems. They are governed by 
the laws of the universe, i.e. physics, and therefore fundamentally by the four 
principles of thermodynamics. The development, life and death of cells are 
comparable to their counterparts in structures, especially thin shells interacting 
with fluids. 

The purpose of this paper is to present in parallel, in a synoptic way, the re-
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versible and irreversible phenomena observed at the cellular, structural and or-
ganic scales (see [1] [2]). The physical tools presented in particular can be con-
sidered as a common language linking all these systems. Several forays into in-
formation theory make it possible to specify the evolutions, in particular on en-
tropic phenomena. 

In terms of observability and controllability, complex systems give rise to a 
variety of models which—in the end—are all based on the four principles of 
thermodynamics. This approach has made it possible to model several biological 
systems, including vestibular elements, the basilar membrane, the organ of Cor-
ti, the cerebrospinal system in its traumatological approach (see [2] [3]) and 
makes it possible to envisage openings in both the dynamic nature of the sur-
rounding structures and in biodynamics. The goal is here to provide with a glob-
al presentation of the present opportunities for unified analytical dynamics for-
mulation and performed applications to fluid-solid systems, including living 
cells. 

2. Potential Structural Models and Results 
2.1. Implicit Potential Model 

The simplest dynamic modeling consists of declining the first two principles—based 
on the two state functions temperature and internal energy—according to ex-
changes between kinetic and potential energies. Basically, this amounts to ex-
pressing Newton’s equivalence principle digitally in matrix form, via the La-
grange-Hamilton equations: 

( ) ( ) ( )ij j ij jm M q K q O
°°°°

   − ≡ ⇒ + ≡   OP f O


 

 (Feynman)     (1) 

where  
m: punctual mass (particle); 
O: affine Galilean origin (euclidian); 
P: point associated with m (trajectory); 
°: particle derivative with respect to time; 
f


 force associated with m; 

( )jq : column vector of n Lagrange displacement parameters ( 1, ,j n N= ∈
); 

ijM   : n × n matrix of system inertias, associated with the jq  parameters 
( , 1, ,i j n= 

); 

ijK   : n × n matrix of system stiffnesses, associated with the jq  parameters. 
To be more precise, the central arrow of Equation (1) contains all the dynamic 

principles, whose synoptic presentation could be summarized as shown he-
reunder; it can be observed that the structure of all these equations is similar, as 
shown hereunder. 
• First step: Equivalent enthalpy 

Equivalence (closed system) 
° − ≡v g



  0  

(Newton) 1st principle 
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Dynamics (digital system) 

( )j lag jdyn jstatE Q Q− ≡  

(Lagrange) 4th principle, 

with d
dj

jj qqt °

 ∂ ∂
≡ −   ∂∂ 

  

• Second step: Kinetic exchanges & exergy 

Continuous 1D   2– 0NU c U°° ′′ ≡  with 2
N

Ec
ρ

≡   (Mach-Hooke) 

Continuous 1.5 - 2.5D 0; 0SV EIV hW D Wρ ρ°° °°+ ′′′′ ≡ + ∆∆ ≡  
(Mach-Hooke)  

Discrete 3D   2 28 0hamh mEψ ψ+ π ≡∆    (Schrödinger) 
Feynman’s equivalence formalism is valid in the linear domain with defined 

[K] and [M] matrices, but remains applicable in the non-linear domain with liv-
ing matrices. Thus, the fundamental approach works step by step. 

To be complete, we can observe that Feynman’s equivalence is based on the 
four principles, by truncature at resonance. In fact, the complete equation, shown 
here in the general formalism of Lagrange and in the linear digital frame, is in 
correspondance with the principles as proposed hereunder: 

( ) ( )kin opt jfeyn jstaj j tE E Q Q− ≡ +                 (2) 

[ ]( ) [ ]( ) ( ) ( )
{ } { }2; 1 3; 4

feyn static loadsM q K q

Pr Pr

Q Q

Pr Pr

°° + ≡ +
 

where jfeyn jdynpot jQ Q Q≡ +  (dynamic loads & dissipation). 
It should be noted at this level that Maxwell-Betti’s reciprocity theorem im-

plies the symmetry of these matrices (constant or not) and the principle of iner-
tia the fact that they are real positive semi-definite matrices. They will even be 
defined positive ( 0iim > , 0iik > ) in the case of structures which admit a static 
reference configuration.  

However, eigenmodes can be explained algebraically in the linear domain be-
cause the whole system can be resolved on a harmonic basis. Indeed, the diago-
nalization allows to make an equivalence of the whole dynamics with systems 
represented by a single Degree of Freedom (DoF). 

Thus, it is possible to define an implicit analytical impedance matrix, in which 
the time has explicitly disappeared: 

( ) ( )

2

2

; , 1, ,

0 0

ij ij ij

ij j i i i

Z M K i j n

Z q

ω

ω µ χ

     ≡ − + =     
 ⇒ ≡ ⇒ − + ≡ 



               (3) 

where ijZ    structural harmonic impedance matrix of the system, associated 
with the qj parameters. 

ω +∗∈ : system pulsation (rd/s with classical Lagrange parameters); 

iω
+∗∈ : eigenpulsation of the system (natural or circular pulsation); 

( ) 2,i iµ χ +∗∈ : effective modal inertia & stiffness of the system. 
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This approach is the basis for all classical dynamic models, including biody-
namic systems. In particular, it allows tracing a first genome of the systems with 
linear tools (see [4] [5] [6] [7] [8]). 

Of particular note are the important possibilities for thin structures (beams 
and shells) in vibroacoustic interaction with their fluid environment, which lend 
themselves very well to simplectic and numerical analytical models, thus pro-
viding an efficient modal representation and a powerful tool for first approach 
theoretical observability and controllability. 

It is the fundamental tool for topological design support, initial dynamic di-
agnosis and Generalized Predictive Control (see [9] [10] [11] [12]) with passive 
& active controls. And even for topological optimization. 

The advantage of the implicit approach is to include time in the harmonic re-
sponse; it is also its weak point. 

The first two principles of thermodynamics respond perfectly one to another, 
and it is therefore an excellent classical model. It covers perfectly the classical 
motion of an electron around a proton, the vibrations of a Lagrange beam, or the 
classical Maxwell equations in the Minkowski-Einstein Euclidean universe. Con-
stitutively, however, it is euclidian and does not assume the history of the sys-
tem. 

Even if it can be solved explicitly (Newmark’s scheme) this system of repre-
sentation is thus intrinsically adapted to an implicit resolution, the Kra-
mer-Gauss modal one. However, the latter has been most powerful in the repre-
sentation by truncated modal bases in cyclic dynamics and by shock spectra in 
transient dynamics. It can thus be very useful to represent the severity of a dy-
namic environment in fatigue and structural seismology (see [13] [14] [15]). But 
the principle of causality cannot be represented since it does not appear in the 
axioms of this representation. 

It does not mean that the causality does not exist, but that it is only implicit. 
But the implicit time is not the time of the history of the structure, it is simply 
the number of cycles, or the implied frequencies, but fundamentally the system 
is built around 2 base units of length and mass (m and kg in ISO system, see 
Figure 1) with time being implicit. And this system can last until explicit time 
arrives. 

2.2. Classical Entropic Structural Model 

If we wish to go further, we must introduce the other two principles of thermo-
dynamics, which are inseparable from one another (as are the first two). The 
following example will be used in the linear framework, but the principle ex-
tends to the general case.  

We therefore introduce an explicit function of time which is neither inertia 
nor generalized potential, and which is sometimes called excitation, but which 
we will call external force and which will be represented canonically—according 
to Fourier and Kronecker—by an elementary harmonic function.  
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Figure 1. The mechanical domain. 

 
This induces an explicit response (called particular solution of the complete 

equation) emphasizing the dynamic amplification factor & resonance: 

( ) ( ) 2

1cos cos
1e e e e e e e e

e

p p t p tµ χ ω β ω α χβ
γ

°° + ≡ ⇒ ≡ ⇒ ≡ =
−

     (4) 

where ( ) 2,µ χ +∗∈  modal inertia and stiffness;  
( )ep t ∈  main parameter in the canonical response to canonical ( )cos etω  

external dynamic load; 

eβ ∈  amplitude of the canonical response;  

eα ∈  dynamic amplification ratio (DAR);  
e

e
ω

γ
ω

+∗≡ ∈  dimensionless external pulsation (frequency or angular rate)  

( eω
+∗∈ ). 

The αe DAR factor introduces causality into the model, but in a particular so-
lution. It raises the concept of resonance, which will require an additional 
(fourth) term of dissipation. This makes it possible to envisage explicit models 
incorporating structural damage. 

In linear models, the dissipation is the viscosity (solid and fluid) but as this is 
only very approximate in a solid (and in a non-Newtonian fluid) we will rather 
introduce an equivalent dimensionless viscous damping (integrating all the dis-
sipations—linear or not—around the resonance) which truncates the amplitudes 
(or operates a frequency shift) in the vicinity of the resonances.  

The vicinity of the resonances is moreover precisely defined by the bandwidth: 
Frequency amplitude-resonance bandwidth  

[ ]

max

1 ;1
1

2

e

e

γ ζ ζ

α
ζ

 ∈ − + ⊂



= ±




                      (5) 

where ζ  dimensionless dissipation; for structures 0.01ζ ≅ ; 

maxeα  dynamic quality factor or resonance surtension ratio. 
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The ζ  factor from which maxeα  is derived integrates the nonconformities of 
the structure; it should be noted that it depends—in non-linear models—on ab-
solute frequency values, and must therefore be associated with each resonance. In an 
n-mode model, this set is therefore represented by then iζ  values ( 1, ,i n=  ) 
which define a truncation or frequency slip envelope that contains non-conformity 
or system damage information. 

It should be noted that this entropic representation had been proposed by 
Feynman in the linear framework, indicating that at resonance the terms viscous 
and excitation cancel each other out, leaving the two Newtonian terms free. In other 
words, at resonance, the external force—by definition resonance—compensates the 
dissipation, and maintains the perpetual motion of the perfect model. This ob-
servation—extremely pertinent—is generalized to all dynamic systems thanks to 
dissipation envelopes. 

It applies as much in observability as in modal controllability (see [16] [17]). 
It should be observed that these related terms (external force and excitation) are 
actually induced by the arrival of the 3rd and 4th principles of thermodynamics 
in the model, namely the explicit function of time which proceeds from the his-
tory of the system, and the dissipation which reflects its internal damage, thus its 
intrinsic state. 

Then we have a complete mechanical model, which can be declined quite 
simply to thin solid elements (straight beams, curved beams, plates, shells) in 
their Newtonian interaction (incompressible perfect fluid, compressible perfect 
fluid, Newtonian fluid). They have given rise to advanced structural modelling 
involving solid-fluid metamodes (see Figure 2). 

The models have been performed with COMSOL Multiphysics® software with 
the shell elements, and with Newtonian and non-newtonian fluids. This numer-
ical approach has been performed both for the cryotechnic tank and the organic 
systems; the aim here is precisely to show that this kind of model, with similar 
equations, can be applied to both kinds of systems. 

Indeed, the general matrix model applies as well to Lagrangian displacements 
in the case of a solid as to Eulerian pressure fluctuations in the case of a fluid, 
which makes it possible to offer hybrid models combining, for example, very  
 

 
Figure 2. Solid-fluid metamodes (cryotechnic tank). 
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simply shells and perfect fluids (see [18]). 
These models are transposable to living systems such as a cell (membrane 

with fluid interaction) or an organic structure: shell in interaction with soft ma-
terials, and in a specific environment. For instance, in biodynamics, the tonopic 
coupling in the cochlea, with the basila membrane, is modelised by the plate-fluid 
theory (Figure 3). 

Last but not least, in the dissipation itself, a linear term of viscous damping 
can be distinguished from a contribution related to other frictions, both in solids 
and fluids. In solids, the non-linear part represents precisely the damage or de-
fects (delaminations, cracks, discontinuities) and in the fluid, the realization of 
tests with equivalent granular fluids in similarity to Froude makes it possible to 
observe this type of irreversibility (see Figure 4). 
 

 
Figure 3. Basilar membrane tonotopic model. 
 

 
Figure 4. Cryotechnic tank test with granular material for 
identification of metamodes. 
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2.3. General Model for Passive and Active Control 

On the basis of the resonance zone—delimited by dissipation in the probabilistic 
sense—both observability and controllability of the models can be fairly easily 
shown. Indeed, this zone of unknowingness (in the Heisenberg sense) is the in-
tersection between an observable and non-controllable past and a non-observable & 
controllable future. And what guarantees this possibility is precisely that it is 
based on principles three and four, and that there are in fact conservations that 
address both observable kinetic quantities (Routh conservations) and controlla-
ble energy quantities (Hamilton-Painlevé conservation). 

This synthesis intrinsically covers the non-linear domain (see [19]) and in-
deed, analogies begin to appear between these equations of dynamics (the shells 
and dissipation in particular) and those of general gravitation. Potentially, it ap-
plies to all interactions, thus involving the seven basic quantities of physics. 

Remaining in the field of solid-fluid mechanics, the set of the 4 terms of dy-
namic equations thus constitutes an important potential source that can feed 
both cellular simulators in their interactions and organic simulators (see [20]). 
This transfer can be performed both on continuous or discrete analytical ap-
proaches, and on digitized models according to the three main families of digiti-
zation (finite elements, particle domains, integral methods). Not only the dy-
namic behavior is modelled, but also the history of the complete system in its 
environment. The representation is thus both an observation & control tool, al-
lowing to carry out the finest virtual experiments, and modelling in particular 
not only the entropic evolution of the structure (3rd principle) but also its ref-
erence potential configuration (4th principle). 

On the basis of the resonance zone—delimited by dissipation in the probabil-
istic sense—both observability and controllability of the models can be fairly 
easily shown. Indeed, this zone of unknowingness (in the Heisenberg sense) is 
the intersection between an observable and non-controllable past and a 
non-observable and controllable future. And what guarantees this possibility is 
precisely that it is based on principles three and four, and that there are in fact 
conservations that address both observable kinetic quantities (Routh conserva-
tions) and controllable energy quantities (Hamilton-Painlevé conservation). 

3. Cellular Shell-Fluid Representation 
3.1. Lagrange-Euler Frame, the Plate-Fluid Model 

The lagrangian bended plate moves with the 2.5D classical equation, given by 
principles 2 and 1, inducing W displacement along Z (X, Y, t field): 

ZD W hW pρ °°∆∆ + ≡                      (6) 

( )
3

212 1
EhD

ν
+∗≡ ∈

−
  lineic bending stiffness; 

( ) 2, hρ +∗∈  platevolumic mass & thickness; 
( ), ,Zp X Y t ∈  external normal surface static load applied on the plate. 
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It is pertinent to observe that this equation is similar to the prestressed mem-
brane law. This is also the case for the 1D rod equation, similar to the rope law. 

In parallel, we could consider a perfect compressible fluid in a tank, precisely 
in a rigid tank (galilean solid reference) closed by a flexible plate (see Figure 5). 

This demonstrator is the typical flexible structure for the basic hybrid dynam-
ic representation: 

1) ( ), ,W X Y t  lagrangian relative dynamic Z-displacement 2D field in the 
plate/membrane; 

2) ( ), , ,p X Y Z t  eulerian pressure fluctuation 3D field in the perfect fluid. 
In the fluid, the dynamic behaviour is given by the Euler’s equation (Navi-

er-Stokes 2 without viscous stress): 

( ) ( )div pρ ρ
°
+ ⊗ + ≡V V V I


   

0                   (7) 

⊗  dyadic product 
completed with the continuity condition (N-S 1): 

( ) 0divρ ρ° + ≡V


                        (8) 

Thus, Equations (5) to (7) drive the motion of the system (plate or fluid). 
We observe that implicitly in the linear modal frame, the Euler-Helmholtz 

equations in the (perfect) fluid can be written as: 

( ) ( )
( )

2 2

2

2

fluid plate

0 in

0 on

d d d d d 0 Stokes resultant

i

Z f i

f

a p p

p W

p X Y Z a W X Y

ω

ρ ω

ρ
Ω ∂Ω

− = Ω

∂ − = ∂Ω

+


 ∆






=



∫∫∫ ∫∫

     (9) 

( ) 3, ,a pρ +∗∈  fluid sound celerity, volumic mass, eulerian pressure fluctua-
tion; 

3Ω ⊂   volumic fluid domain; 
 

 
Figure 5. Elementary plate-fluid configuration (drum 
model). 
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2∂Ω ⊂   surfacic plate interface (plate surface). 
It is pertinent to observe that this equation is similar to the prestressed mem-

brane law. This is also the case for the 1D rod equation, similar to the rope law. 
Thus, Equations (5) to (7) drive the motion of the system (plate or fluid). 

3.2. Discretized Shell-Fluid System—Digital Modes 

Then, the 2D plate will be discretized, as well as the 3D fluid volume. At each 
node of the system will be attached: a Lagrangian W displacement at each node 
of the shell (plate) and an Eulerian p pressure fluctuation at each node of the 
(perfect) fluid. In total, we have nodes: ns structural (solid) nodes in the plate 
and nf nodes in the fluid. 

s fn n n= +                             (10) 

The dynamic digital modes of the system will be valid for these n hybrid De-
grees of Freedom (DoF). 

At this level—and in order to reinforce the full mechanical pertinence of these 
hybrid modes—it is useful to observe that the Mach-Hooke equation previously 
mentioned in a rod has exactly the same expression in displacement and in 
stress: 

2 20 0N XX N XXU c U cσ σ°° °°′′ ′′− = ⇔ − =                  (11) 

The reason is simply the rheological relation between XXσ  tension/compression 
stress and U deflection in a rod: 

XX XXE EUσ ε ′= =                         (12) 

This allows to represent the global dynamic system (plate + fluid) with n hy-
brid DoFs: ns W Lagrangian normal deflections and nf pressure Eulerian fluctua-
tions. 

Thus, ns is the number of nodes in the plate, and nf the number of nodes in 
the fluid. The hybrid impedance matrix becomes natural to model the motion of 
the system: 

( ) ( ) ( )
( )
( )

( )
( )

2 0 , , , 1, ,

, 1, ,0
, 1, ,0

ij k j j

s c ss
t

ffc f

Z r i j k n

Z C W n
npC Z

αβ βδ β β

δ δβδ γδ

ω

α β
γ δ

  ≡ = 
         ≡       ≡    ≡             







         (13) 

with 
s

Zαβ    solid ns × ns structural impedance matrix of the solid plate 2D 
domain; 

f
Zγδ    fluid nf × nf acoustic (Helmholtz) impedance matrix of the fluid 

3Ddomain;  

c
Cβδ    coupling impedance ns × nf matrix structure-fluid 2.5D domain; 

( )s
Wβ  plate structural ns vector of W lagrangian deflections (plate DoFs); 
( ) f

pδ  fluid nf vector of eulerian pressure fluctuations (Helmholtz DoFs). 
By the principles 1 and 2 of thermodynamics (Galilean reversibility & Max-

well’s reciprocity) all [Z] matrices are symmetrical, real positive semi-definite in 
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classical physics. 
In addition, as the fluid is here considered perfect, the Helmholtz matrix is 

diagonal in any base (for any paving/meshing of the fluid). 
Thus, for the considered mesh/pavage, the information contained in the [Z] 

matrices are summarized as follows: 
1) the [Z]S solid/plate matrix is defined by its upper ns × ns triangle:  

sym

∗ ∗ ∗ ∗ ∗ 
 ∗ ∗ ∗ ∗ ∗ 
 ∗ ∗ ∗
 

∗ ∗ ∗ 
 ∗ ∗ ∗ 

; 

2) it is thus defined by ( ) ( ) ( )1 2 1 1 2s s s s sn n n n n+ − + − + + = +  indepen-
dent scalar numbers; 

3) the [Z]f fluid matrix is nf diagonal 

0 0 0 0
0 0 0

0 0
0sym

∗ 
 ∗ ∗ 
 ∗
 

∗ ∗ 
 ∗ ∗ ∗ 

 representable by the 

nf vector: 

1

1

fn

H
H

H

 
 
 
 
  
 



; 

4) it is thus defined by nf independent scalar numbers; 
5) then the [C]sf solid-fluid coupling matrix is a full ns × nf one; 
6) it is thus defined by ns × nf independent scalar numbers. 
Consequently, the global {Z} matrix (n × n) which models the complete 

plate-fluid dynamics, is represented by  
( ) ( )( )1 2 1 2 2s s f s f s s fn n n n n n n n+ + + = + +  scalar numbers. That is the im-
plicit dynamic representation of the global system, valid for any method of digi-
tization (FEM, DEM, BEM—F, D, B). 

This preliminary approach can be extended to large & complex systems, for 
which ns & 1fn  . For this purpose, let’s consider that the plate (which 
represents a generic thin structure) is linked with a cubic volume. With these 
assumptions, if the mesh is coherent between the fluid and the solid: 3 2~f sn n . 
The previous expression of representative scalar numbers is then depending only 
on the structural representation ( )( )3 2 5 21 2 2 ~ 0.5s s s sn n n n+ + . 

To conclude this approach of the digitization of a shell—perfect fluid ns × nf 
structure, the expression of the DoF  number of scalars required (necessary 
and sufficient) for a complete implicit digital representation—i.e. the number of 
digital hybrid Degrees of Freedom—is given by: 

( )( ) 5 22 1 2 ; 2 ~DoF s s sf DoFn n n n= + +               (14) 

That is the implicit dynamic representation of the global system. The applica-
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tion field is here the domain of thin shells with gaseous or ultra-light fluid 
(LH2). 

3.3. Condensation 

If we consider an optimized/local mesh, focusing consequently on a FEM-type 
model, the matrices are not only symmetrical, but also hollowed. With standard 
quadrangular/hexaedral elements, the number of representative scalar numbers 
is reduced to ( )8 24 12 8 3 4s f s s fn n n n n+ + = + . 

In explicit solution, the corresponding [M] and [K] matrices are well adapted 
to Cholesky’s direct inversion. 

Thus, the standard FEM cost in terms of scalar number (memory size for 
Z/M/K matrices) is given by: 

( ) 5 28 3 4 ; ~ 32FEM s f sFEMn n n= +                  (15) 

This figure is valid to size the memory and power of the digital process, and is 
thus relevant in terms of internal (for computation) representation of the global 
system, whereas the DoF  number represents the physical external approach. 

The symmetrical impedance matrix, including the structural and fluid dy-
namics, gives implicitly—by diagonalization—the eigenvalues & eigenshapes, 
Lagrange-Euler metamodes (solid + fluid). That is the modal dynamic represen-
tation of the global system. Inventoriating the information in the complete ex-
ternal (meta-)modal base, we obtain: 

1) n iω  eigenvalues (pulsations); 
2) n ( )j i

p  eigenvectors (of W or p amplitudes for each mode). 
Each eigenvector is defined with a multiplicative constant, and so represented 

by n − 1 independent scalars. Thus, the whole modal base requires  
( ) 21n n n n+ − =  independent scalars. That is the complete dynamic external 

signature (or “DNA”) of the solid-fluid system. 

( )22 32 ; 2 ~mod s f mod sn n n n= ≡ +                 (16) 

In dynamic engineering, it is often possible to truncate the base. A performing 
strategy consists of considering the three first modes (the three lowest frequencies) 
or the three first ones plus a fourth representative of a specific phenomenon (op-
tional local mode or sensitive mode, considering the external loads). 

For a well-conditioned system, this approach allows a precision better than 
1%. Consequently, the truncated dynamic model of the global system will be 
represented by 4n independent scalars, which is a very simple representation, the 
basic dynamic DNA of the system. 

( )4
3 2

42 8 8 ; 2 ~ 8trunc s f trunc sn n n n= ≡ +              (17) 

Through the boundary-integral methods, it is allowed to represent a plate 
(2D) with a mesh on its 1D frontier, and the volumic fluid by its frontier with 
the plate. Thus, with this ultimate condensation, the [M] and [K] global matrices 
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(plate + fluid) are reduced to a ns × ns one. These matrices are full and 
non-symmetrical but solvable explicitly by iterative methods. Provided that M 
and K switch, then they admit a common basis for diagonalization and the im-
plicit approach can be applied to this integral model. 

3.4. Solid-Fluid Interaction in Closed Shells 

Considering perfect fluids, the previous fluid equations are unchanged in the 
general case of a volumic tank, both for internal and external fluids, the X, Y, Z 
deflection on the shell being referenced as U, V, W: 

, ,X Y Z

U
P V

W
δ

 
 ≡  
 
 



 

If nn is the number of nodes in the shell (structural nodes) then the number of 
shell structural DoFs is 3s nn n= . The fluid equations are then connected 
with the Reissner-Naghdi shell equations where the lagrangian deflection of 
mid-surface is expressed in the local curvature axes (see [19] [20]). More pre-
cisely, this method solves the dynamic equivalence principle with U, V, W, QXZ, 
QYZ hybrid variables, but U, V, V are actually the structural ones for the shell 
dynamics. 

The previous system shown on the plate example remains valid, the solid 
mesh being on curvilinear coordinates on the shell. The unique difference is, for 
the external fluid only, the Stoke’s resultant condition being replaced by Som-
merfeld limit condition: 

0p →  when →∞OP


 (Sommerfeld)                           (18) 

Connected with the Reissner-Naghdi U, V, V equations of shells, the previous 
Euler-Stokes-Sommerfeld system generates the global dynamics of the shell in a 
perfect fluid. 

A viscous newtonian fluid requires the third Navier-Stokes equation, includ-
ing the shear stress. Consequently, the standard shell digital dynamic implicit 
matrix equation of a Reissner-Naghdi shell in a newtonian fluid keeps the shape 
defined in (13); the shapes of the implied block-matrices are as follows: 

11 12

22

0 0
0

s s

s

n n

Z Z
Z

Z
sym

Z

αβ

∗ 
 ∗ ∗ ∗ 
 ∗ ∗ ∗  =   

∗ ∗ 
 
 

; 

( )

11 12 13

22 23

1

0
0

f f

f f

f

n n

n n

H S S
H S

Z
sym S

H

γδ

−

∗ 
 ∗ 
 ∗ ∗ ∗  =   

∗ 
 
  

; 
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( )

1

1

1

2

2

2

s

s

s

s

n

n

n

U
V
W

U
V
W

W

U

V

W

β

  
  
  
    

  
  
  
    = ∗ 

 ∗ 
∗ 

 
  
  
  
   
  

 

The field application is here thick shells in viscous fluids, such as hydraulic 
systems or submarine skins, but these models can also be combined with the 
previous ones. 

To determine the level of the model (viscous/non-viscous, shell/membrane, 
static/dynamic) it is necessary to examine several adimensional numbers, consi-
dering the dimensions and characteristics of the tank (Figure 6). 

For the fluid model, it is possible to consider Stoke’s equation valid for New-
tonian fluids: 

( ) ( )3 volp div
t

µρ ρ µ µ ρ∂  ′+ ⋅ + − ∆ − + − ≡ ∂  

V V grad V grad V grad V f


  
    

0  (19) 

( )2f f ftrµ µ° °′≡ +  Σ                     (20) 

where V


 Eulerian velocity in the fluid; 
,µ µ′  primary & secondary Newtonian viscosities of the fluid; 
,f f

°Σ  stress & strain-rate tensors in the fluid; 
  unitary Kronecker’s tensor. 
It is thus possible to observe different adimensional numbers: 

1) Acoustic Reynolds Number 
2

c c
ac

c

Re
ω
ν

≡
 | cν  kinematic viscosity ( c

µν
ρ

≡ ) 

High: model with perfect fluid. Low: model with viscous fluid.  
 

 
Figure 6. Typical monophasic cellular tank. 
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2) Oscillatory Froude Number 
2

c c
osc g

Fr
ω

≡
 |g equivalent gravity, for static  

loads.  
High: dynamics independent from statics. Low: coupled model. 

3) Flow Detachment Number t
s

c ext

Fd
V
Rω

≡ |tangential velocity on the shell;  

extR  shell curvature radius, on external normal.  
High: turbulent model. Low: laminar Coanda model.  

4) Weber’s Number 
3

c c
fWe

ρω
σ

≡
 |σ surface tension in the fluid.  

High: surface tension neglected. Low: with surface tension.  
Important parameter for multiphasic systems. 

3.5. Models for Complex Systems & Cells 

The topology, geometry and singularity of the structure and its control-model 
can be used as an indicator of its entropy. That approach is also an occasion to 
mention the modern methods (in progress) whose potentiality open wide pers-
pectives in the domain of complex structure thermodynamics and, consequently, 
in the field of cellular and organic modeling. 

In comparison with FEM and DEM, the Boundary Elements Method (BEM) is 
the most promizing one for such combined problems. In the case of an uncom-
pressible fluid, the Equation (6) is reduced to anholonomic condition between 
the boundary (plate) DoFs. In the general case of the shell with a newtonian flu-
id, the condensation leads to a ns dimension problem. In a certain way, it is 
equivalent to condensate the behavior of the cellular tank to its boundary 
represented by the shell. The global BEM can be used for multiphasic 3D struc-
tures, with 2D external and internal interfaces (see [21]). These interfac-
es—regular C0 varieties—can have local (discrete) or smooth (extended) singu-
larities. These local singularities can be classified as C1 (angular), C1 (sharp) or 
C2.5 (angular & crack). The smooth singularities represent a diffusion, such as 
porosity (Figure 7). 

In the context of BEM, particular boundary elements can be developed, in si-
milarity with Robinson’s finite element for a crack (see [22] [23]). The BEM 
considering the mesh only on the interface surfaces (2D variety) this allows a 
reduced numerical model. And this model is directly based on the four prin-
ciples, as all the exchanges cross these surfaces. 

But we can offer to go further. Indeed, the shell itself can be meshed according 
to its interfaces, which are reduced to the singular discrete lines between panels 
(see [24] [25]). If we consider the canonical example of the plate interacting with 
a perfect fluid (drum membrane), this amounts to meshing the plate only along 
its perimeter, which constitutes a 1D variety. 

Thus, a cubic shell will be meshed by its arches, which is an important ad-
vance in terms of digital condensation. In this perspective a complex assembly of  
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Figure 7. Interfaces and singularities in a complex shell. 
 
shells will be represented by the intersection lines, or even the points (nodes) in-
terfacing these lines. We could thus obtain a very concentrated thermodynamic 
model of the structural cell. Its implicit resolution gives metamodes, and its ex-
plicit integration allows to explore transient evolutions. And the ratio between 
the explicit and implicit results could even constitute an indicator of the entropy 
of the controlled system. 

4. Conclusions 

The methods presented in this article bring together achieved and present work 
on current aerospace structures and research on innovative methods in two di-
rections. Vibratory dynamics thus open tracks that integrate both the modeling 
of structures and the modal representation of information. 

The first explored direction concerns active and passive control: Generalized 
Predictive Control (see [10] [11] [14]) and Operational Modal Diagnosis (see 
[16] [17]). These issues can be expressed in terms of controllability and observa-
bility of complex systems. Through the approach based on the four principles of 
thermodynamics, this paper proposes an opening towards the reversibility of 
processes, leading for example to the modal set of plans for dynamic structures. 
For this purpose, and to demonstrate the perspective for any physical system, the 
Appendix proposed a synoptic presentation of dynamic equations in relation 
with the principles. 

The second direction concerns the optimal hybrid modeling of thin structures 
coupled with Newtonian fluids. The proposed synthesis, in the presented struc-
turation of the equations, integrates fluid-solid meta-modes in Gauss’ sense, as 
well as proposals for condensation by integral methods with perspectives on the 
two-levels condensed representation: by boundary conditions and modal extrac-
tion, leading to vibratory optimal compression of models. 
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Appendix: The Four Principles in Fourteen Equations  

Below is proposed a sequential and synoptic presentation of fourteen dynamic 
equations with comparable 2 + 2 term structures. 

Thus is highlighted the explicit relation with the four principles of thermody-
namics, and thus open the possibility of both implicit and explicit resolutions. 

Mechanics 
° − ≡V g






0 ; [ ]( ) [ ]( ) ( )0M q K q
°° °°− ≡ ⇒ + =mOP f


 

0  
(Newton-Feynman, pr. 1-2) (1.1) 

Kinetic constant 
d0 0
d

lag lag

k k

E E
q t q°

∂ ∂ 
≡ ⇒ ≡ 

∂ ∂ 
 

(Lagrange-Routh, pr. 2) (1.2) 

Control energy d0 0
d

lag pot
ham jj

j

E E
E q

t t q
°

°

 ∂ ∂
≡ ⇒ − ≡  ∂ ∂ 

∑  

(Hamilton-Painlevé, pr. 3) (1.3) 
Dynamic digital system ( )lag j feyn j statj E Q Q− ≡   
(Lagrange-Feynman, pr. 1-4) (1.4) 
Structures 

Continuous 1D solid 2 0NU c U°° ′′− ≡ , 2
N

Ec
ρ

≡  

(Hooke-Mach, pr. 1-2) (2.1) 
Continuous 1.5D solid YstatSV EIVρ λ°° ′′′′+ ≡  
(Bresse-Lagrange, pr. 1-2) (2.2) 

Continuous 2.5D euclidian ZstathW D W pρ °° + ∆∆ ≡ , 
( )

3

212 1
EhD

ν
≡

−
 

(Kirchoff-Lagrange, pr. 1-2) (2.3) 
Cont. 2.5D non-euclidian , , , , , , , ,; 0X Y Z X Y Z X Y Zstat Y X YZ XZp Q− = + =    
(Reissner-Mindlin, pr. 1-3) (2.4) 
Solid 3D voldyn volstatdivρ ° − − =v f f


 



Σ  
(Navier-Lamé, pr. 1-4) (2.5) 
Physics 

Newtonian fluid 

( )

( ) ( )
( ) ( )

0

vol

tot tot T vol vol

div

div div

e div e T q

ρ ρ

ρ ρ ρ

ρ ρ λ

°

°

°

 + =

 + ⋅ + − − =


+ − − − ⋅ =

v

v grad v v v v f O

v v grad f v






 

    




  

Σ

Σ

 

(Navier-Stokes pr. 1-3) (3.1) 

Newtonian gas 
1

g v

g p

g g

e c T

ph e c T

Tds de pd

ρ

ρ

≡

 ≡ + ≡

   ≡ +    

 

(Joule-Thomson pr. 1-3) (3.2) 
Mechanical discrete 3D 2 28 0hammE hψ ψπ + ∆ ≡  
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(Schrödinger pr. 2, 1) (3.3) 
Discrete 3D half-spin [ ]( )0 0 02 c mc ihα ψ ψ °π + ⋅ ≡p α  
(Dirac-Schrödinger pr. 3, 2, 1) (3.4) 

General continuous 4.5D 4 4
0 0 08

2c
trG c c

 
π − ≡ Λ −  

 

RT R µ  

(Einstein-Hilbert pr. 2, 1, 4, 3) (3.5) 
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