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Abstract 
It is desired to optimize design parameters in any product development for 
achieving the appropriate efficiency level in any manufacturing industry. To 
select the best materials used, reduce cost, and increase a product’s sustaina-
bility, an analysis of all design parameters must be conducted. Suitable design 
parameters and their optimum ranges provide the feasibility in developing a 
specific product. Response Surface Methodology (RSM) provides the oppor-
tunity of checking the parameters after considering optimization strategies, 
which results in improving the production process. In this study, the research 
aims to construct a 3D model and a mathematical equation on a foldable 
product to optimize the design parameters. A 2-level 3 factors small Central 
Composite Design (CCD) method is used for planning experimental trials, 
and the primary objective is to determine the optimal value for three design 
parameters, which are fold angle, length of the cycle, and height between seat 
and paddle in terms of the response which is “time required to fold the prod-
uct”. This paper directs attention towards response optimization to achieve 
minimum “time required to fold the product” using the desirability criteria of 
Response Surface Methodology (RSM) and the optimization approach of the 
Genetic Algorithm (GA). The optimum value of “time required to fold the 
product” is found to be 2.415 seconds with a combination of design parame-
ters such as “fold angle” of 180˚, “length of the cycle” of 74.112 cm, and 
“height between seat and paddle” of 0.613 m using Response Surface Metho-
dology (RSM). The Genetic Algorithm (GA) predicts the “time required to 
fold the product” is 2.39 seconds and design parameters of “fold angle” of 
179.559˚, “length of the cycle” of 74.1 cm, and “height between seat and pad-
dle” of 0.59 m. This similar sort of analysis can be implemented in different 
manufacturing industries for developing a specific product. 
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1. Introduction 

The elimination of time-consuming functionality provides additional value 
along with providing the primary purpose of any product. The design phase in 
product development is to provide all items that have been considered in the 
measure and analysis phases [1]. In the design phase of any new product, the 
design parameters must be optimized to function appropriately within the 
least time for selecting low time-consuming functionality [2]. People working 
in product development have experienced significant changes in the design 
phase of a product development process. So, the design must be conducted and 
reviewed extensively for satisfying the customer during the design phase of a 
product development process. 

This research study considers a foldable cycle with a foldability function con-
sisting of the front fork and rear gear assembly with four small wheels. The front 
fork and rear gear assembly of the cycle are joined by a knuckle joint to fold the 
cycle. The foldable cycle is designed to fold the product into a compact form, fa-
cilitating transport and storage [3]. The cycle can be more easily carried into 
different places with the back four small wheels attached with the back seat of 
the cycle and more easily stored in a compact living place in folded condition. 
The two main wheels of the cycle remain side by side in the folded condition of 
the cycle. For making the folding operation more time-efficient, the time needed 
to fold the product requires to be minimized. Response Surface Methodology 
(RSM) can be conducted at the design phase of product development to com-
pensate for this fact. RSM can be used for optimizing the design parameters, 
which affect the response named “time required to fold the product”. RSM con-
sists of mathematical and statistical techniques based on empirical models’ fit to 
the experimental data obtained with experimental design [4] [5]. “Response 
Surface Methodology (RSM) establishes the relationships between several expla-
natory variables and one or more responses or outcomes” [6] [7]. The number of 
experiments required is affected by the Design of Experiment (DOE); hence it is 
essential to adopt an appropriate experimental design. Several experimental de-
signs are available, including central composite design (CCD), Box-Behnken, 
Plackett Burman, full factorial. This 2-level small CCD is the most appropriate 
method for this study, which requires a sufficient number of experimental runs 
to provide a minimum error. The models developed were based on only a few 
experimental results [8] [9]. Regression is performed to an approximate empiri-
cal variable (response) based on a functional relationship between the estimated 
response function and one or more regressors or input variables [10]. RSM in-
volves the following steps: 1) The postulation of the mathematical model [11]. 2) 
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Experimental design. 3) Estimation of test region (Coding) for independent va-
riables. 4) Estimation of parameters in the postulated model. 5) Analysis of re-
sults by a) Checking the adequacy of the postulated model and the test for signi-
ficance of individual variables by analysis of variance (ANOVA) [11]. b) The 
precision of prediction, i.e., the estimation of confidence intervals [11] [12]. As 
this study intended to investigate all factors’ effects and interactions, the small 
factorial design of experiments is used to find the optimum range of the design 
parameters. 

This paper is organized as: Section 2 describes the methodology and design 
parameters. Section 3 shows the 3D model and design of experiments analysis, 
and Section 4 interprets the research results. Section 5 presents the conclusion 
and recommendations. 

2. Methodology 

A response is obtained at different level settings to which the design parameters 
are set for experimental work. The optimum value of a response depends on the 
setting range of all design parameters. Any input to the process is a factor which 
can be set to the desired value or can be selected from the available options. On 
the other hand, any output from a process is a response [13]. The general equa-
tion for the experimental factorial design is as follows:  

2 2
0 1 1 2 2 11 1 22 2 12 1 2X X X XY X Xβ β β β β β ε+ + += + + +           (1) 

where Y is the level of the measured response, 0β  is the intercept, 1β , 12β  are 
the regression coefficients. 1X , 2X  and 3X  stand for the main effects. 

1 2X X , 2 3X X  and 3 1X X  are the interaction between the main effects. 2
1X , 

2
2X  and 2

3X  are the quadratic terms of the independent variables used to si-
mulate the designed sample space [14]. In this article, the response is the time 
required to fold the product. The response depends on the fold angle, length of 
the cycle, and the height between seat and paddle. The fold angle depends on the 
folding mechanism of the cycle. The folded (15˚) and unfolded (180˚) conditions 
are illustrated in Figure 1. 

Small factorials designed experiment consists of all possible combinations of 
levels for design parameters [15]. CCD is an experimental design used in RSM  
 

 
(a)                                           (b) 

Figure 1. (a) Unfolded (180˚) condition and (b) Folded (15˚) condition of the product. 
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for developing a second-order model for the response [16]. Central Composite 
Design (CCD) with 3 factors was applied to investigate the foldable cycle’s re-
sponse. CCD consists of 3 parts, such as factorial points, center points, axial 
points. A total of 15 experimental runs (small CCD) are sufficient to calculate 
the second-order polynomial regression model’s coefficient for three variables. 
In this study, 15 experimental runs, including 5 similar experimental runs for 
the center points and 2 experimental runs for checking the optimum value for 
the response outside of the given range of input design parameters. The process 
of the foldability of the product is illustrated in Figure 2. The list of the design 
parameters, along with their levels, is represented in Table 1. 

3. Design Analysis 
3.1. Experimental Layout 

The times are measured for different experimental runs of design parameters 
and recorded as a response for this study. The experimental layout is illustrated 
in Table 2. 

3.2. Pareto Plots 

The main effect of plots or Pareto plots is a plot of the mean response values at 
each level of design parameters. One can use this plot to compare the relative 
strength of the effects of various design parameters [17]. In this study, the Pareto 
plot is used to determine which design parameters significantly affect the re-
sponse. Pareto plots for the response of the product are presented in Figure 3. 
 

 
Figure 2. The schematic diagram for the foldability of the product. 
 

 
Figure 3. Pareto plot for response. 
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Table 1. Design parameters with their levels and labels. 

Factors Labels Low Level High Level 

Fold Angle F (degree) 15˚ 180˚ 

Length of the cycle L (cm) 50 110 

Height between seat and paddle P (m) 0.5 0.8 

 
Table 2. Experimental layout. 

Run 
Factor 1: 

F (Degree) 
Factor 2: 
L (cm) 

Factor 3: 
P (m) 

Response 
(second) 

1 97.5 80 0.862132 5.88 

2 15 50 0.5 11.02 

3 97.5 80 0.65 5.6 

4 97.5 80 0.437868 5.198 

5 97.5 122.426 0.65 5.68 

6 97.5 80 0.65 5.29 

7 180 50 0.8 3.29 

8 97.5 37.5736 0.65 5.79 

9 15 110 0.8 10.98 

10 214.173 80 0.65 1.38 

11 12.1726 80 0.65 11.56 

12 97.5 80 0.65 5.559 

13 97.5 80 0.65 5.58 

14 180 110 0.5 3.33 

15 97.5 80 0.65 5.12 

 
It can be interpreted that fold angle (F) and length between seat and paddle 

(P) significantly affect the product’s foldability. Other factors, including the in-
teraction between fold angle (F) and the length of the cycle (L), show a noticea-
ble impact on the response. 

According to the fit and summery tests, the quadratic model was suggested. 
The fitted response model for foldability of the product was found to be as: 

2 2 2

Response 21.95483 0.072337 0.120214 20.55898
0.000106 0.003143 0.054628

0.000114 0.000457 13.92510

F L P
F L F P L P
F L P

= − − −
+ ∗ − ∗ + ∗

+ + +

      (2) 

3.3. Effect of Design Parameters on the Response 

From the experimental results, it is found that the length of the cycle tends to 
have minimal effect on the response for a specified range of design parameters. 
The interaction between (P) along with fold angle (F) and length of the cycle (L) 
also offers less significant effects over response. The response is found to in-
crease with increasing value of fold angle. 

Figure 4 shows the effect of fold angle (F) versus length of the cycle (L) for a  
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Figure 4. Effect of fold angle (F) vs. length of the cycle (L). (Response as a function of 
fold angle (F) and length of the cycle (L) for “0.65” level value of the height between seat 
and paddle (P) during the experimental run). 
 
constant height between seat and paddle (P) of 0.65 m. The surface plot has been 
developed based on the regression model developed using the experimental data. 
It is understood from the surface plot that the increase in fold angle (F) at the 
lower height between seat and paddle (P) increases the possibility of finding an 
acceptable response. Whereas at any length of the cycle (L) and lower height 
between seat and paddle (P) (less than 0.65 m), an acceptable response can be 
observed. So, for the most acceptable response, the fold angle (F) should be 
higher (closer to 180˚) at a lower height between seat and paddle (less than 0.65 
m). 

3.4. Optimization by Coupling RSM with GA 

The objective of the optimization is to achieve a lower response in experimental 
runs. This can be achieved efficiently by adjusting design parameters with the 
help of an appropriate numerical optimization method. For this, minimization 
of response must be formulated in the standard mathematical format as below:   

Find: F (fold angle), L (length of the cycle), P (height between seat and paddle)  
Minimum: Time required to fold the product (F, L, P) 
Within ranges: (Fmin ≤ F ≤ Fmax), (Lmin ≤ L ≤ Lmax), (Pmin ≤ P ≤ Pmax) 
The ranges of design parameters in optimization have been selected based on 

the developed RSM model ranges [18]. The GA mechanics is simple, involving 
copying binary strings and the binary strings’ swapping [8]. The simplicity of 
operation and computational efficiency are the two main attractions of the GA 
approach [8]. The GA solves optimization problem iteratively based on the bio-
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logical evolution process in nature. The solution procedure of an optimization 
problem with GA begins with a set of parameter values or “chromosomes” (usu-
ally in the form of bit strings), which are randomly generated or selected [19] 
[20]. The entire set of these chromosomes comprise a “population” [21]. The 
chromosomes evolve during several iterations or “generations” [21] [22]. New 
generations called “offspring” are generated using the “crossover” and “muta-
tion” technique [21]. “Crossover involves splitting two chromosomes and then 
combining one-half of each chromosome with the other pair” [21]. “Mutation 
involves flipping a single bit of a chromosome. The chromosomes are then 
“evaluated” using specific “fitness” criteria, and the best ones are kept while the 
others are discarded” [21]. “This process repeats until one chromosome has the 
best fitness and is taken as the best solution to the problem” [21].  

MATLAB 2018a Toolbox for GA is used to develop the GA program (Math-
Works Incorporation, 2018). The critical parameters in GA are such as “the size 
of the population” (80), “mutation”, “number of generations”, “crossover fric-
tion” (0.8). The developed RSM models for response prediction (Equation (2)) 
were used as fitness functions for the GA. The corresponding optimum design 
parameters are given in Table 3. 

3.5. Interaction between the Design Parameters 

The study of the response surface and contour graphs provides an approach for 
optimizing foldability efficiency and identifying the interaction between the de-
sign parameters [23]. “The contour plots are sagacious to measure various de-
sign parameters (independent), which affect the response with the marked feasi-
ble region and optimum point” [24]. The contour graph is given in Figure 5. 

Figure 6 is a perturbation plot, which illustrates the effect of all the design 
parameters at the center point in the design space, and Figure 7 represents the 
predicted vs. actual plots. However, it is often seen in a practical situation that 
even though the main factors have little or little impact on the variability of a 
response, the interaction between those factors significantly impacts that [25]. 

4. Results and Discussion 

Table 4 shows the DESIGN EXPERT software that suggests the design parame-
ters obtained after single response optimizations and ten possible solutions. 

In solution 1, i.e., the shown values of design parameters, it is 89.8% likely to  
 
Table 3. The best design condition was found in GA for the experiment. 

Parameters Optimized Values 

Fold Angle, F (Degree) 179.559 

Length of the cycle, L (cm) 74.1 

Height between seat and paddle, P (m) 0.59 

The time required to fold the product (sec) 
(GA prediction) 

2.39 

https://doi.org/10.4236/eng.2020.1211059


S. T. Alam, M. A. Amin 
 

 

DOI: 10.4236/eng.2020.1211059 846 Engineering 
 

Table 4. Values of design parameters for the optimization of response. 

Solution 
Factor 1: 

F (Degree) 
Factor 2: 
L (cm) 

Factor 3: 
P (m) 

Response 
(second) 

Desirability  

1 180.000 74.112 0.613 2.415 0.898 Selected 

2 180.000 74.296 0.613 2.415 0.898  

3 180.000 73.842 0.613 2.415 0.898  

4 180.000 74.269 0.614 2.415 0.898  

5 180.000 74.544 0.613 2.415 0.898  

6 179.998 74.505 0.614 2.415 0.898  

7 180.000 73.388 0.615 2.415 0.898  

8 180.000 73.422 0.613 2.415 0.898  

9 179.999 74.429 0.609 2.415 0.898  

10 180.000 75.033 0.610 2.415 0.898  

 

 
Figure 5. Contour Graph as a function of fold angle and length of the cycle. 
 
get the Response = 2.415 sec. “Any other combination of the design parameters 
will either be statistically less reliable or give poor results of at least one re-
sponse” [26]. However, these solutions could be used to achieve the possible 
values of the response. From Table 3 and Table 4, it is clear that RSM provides 
an optimum value of 2.415 sec, where GA predicts the optimum value is 2.39 
sec. 

The above design parameters will allow “minimum folding time”, which will 
be achieved by combining the selected design parameters to develop its design 
and development phases. 
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Figure 6. Perturbation graph for the response. 
 

 
Figure 7. Predicted vs. Actual graph. 

5. Conclusions 

The interactions of the parameters are assessed on the grounds that quality 
attributes should ideally be added substance (i.e., no collaboration exists among 
the quality qualities) and monotonic (i.e., each factor’s impact on robustness 
must be a predictable way, in any event, when the settings of variables are 
changed), however, it is regularly found in a pragmatic circumstance that despite 
the fact that the fundamental elements have close to nothing or little effect on 
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the changeability of a reaction, the cooperation between those elements essen-
tially impacts that. In this study, a foldable product is considered whose folding 
process is subjected to improvement using RSM and GA. The main objective is 
to determine the optimum time required to fold the cycle, predicting some fu-
ture modifications of the folding mechanism. The following recommendations 
are for future works: 
• Experimentation can be done using a more comprehensive set of design pa-

rameters.  
• Other responses like stress analysis, materials density can be considered for 

model development. 
• Finite Element Analysis (FEA) may be used to make the production process 

more reliable. 
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