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Abstract 
Electroless deposition has been used to deposit Ni-P films on glass slides us-
ing the reducing agent sodium hypophosphite. This has been done with a 
purpose to use Ni-P films as back contact for silicon carbide radiation detec-
tors. By keeping deposition time, temperature, pH and concentration of the 
precursor solution constant, the film deposition has been done. XPS studies 
were done to analyze the composition and stoichiometry of Ni-P thin films. 
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1. Introduction 

Using renewable energy sources instead of fossil fuels allows to produce few 
greenhouse emissions, reducing environmental impact and sustaining the future 
social and economic social needs [1]. Production and storage are the two im-
portant steps in the exploitation of renewable technologies. Storage technologies 
can be electrical, chemical, electrochemical, mechanical or thermal [2]. Electro-
chemical techniques related to research and development for clean energy sto-
rage gained importance for their strategic value [3] and currently electrochemi-
cally generated hydrogen is one of the most encouraging energy storage me-
diums [4]. Though greatest amount of the hydrogen is existent in molecular 
forms, it can be yielded exploiting water electrolysis (WE) [5], where water 
breaks into H2 and O2. The oxygen evolution reaction (OER) occurs at the anode 
while the hydrogen evolution reaction (HER) occurs at the cathode. 

A considerable amount of electrochemical overpotential is required to start 
HER in normal conditions [6]. Therefore, extremely efficient WE needs the use 
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of an electrocatalyst to reduce the energy barrier associated with HER. Noble 
metals like Pd or Pt are considered as the best electrocatalysts because of their 
outstanding activity in acidic environment for HER [7]. Meanwhile, their insuf-
ficient availability and high cost caused researchers to look for cost-effective 
substitutes. Therefore, research concentrated on the look for materials substitute 
to Pt [8], which is the most admired catalyst because of its robust stability and 
high electrocatalytic activity [9] [10]. Currently, alternative cost-effective elec-
trocatalytic materials are unearthed and some of them have been developed to a 
large extent. Important examples are metal sulphides [11], phosphides [12]-[17], 
selenides [18], nitrides [19] carbides [19], some transition metals or alloys [20] 
[21] and their nanoparticles (NP) [22] [23]. 

Nickel phosphide is evaluated as a substitute of Pt-based electrocatalytic ma-
terials in the future. Nickel phosphides (Ni2P) compound showed low HER 
overpotentials and good stability [12] [24]. Besides highly poisonous phos-
phine-based chemical reaction, substitute methods to prepare Ni2P have been 
established. Specifically, nickel phosphide has been prepared, in the form of na-
nowires or NPs, via solvothermal [25] [26] or hydrothermal synthesis [27] [28], 
by the decomposition of metal-phosphine moieties [24], and by direct phospho-
rization of Ni [29] [30] [31]. Other nickel-phosphorus alloys, like Ni3P or Ni12P5, 
are identified by stimulating electrocatalytic properties [12]. Electrodeposition 
or sputtering can be used to obtain nickel phosphide thin films by direct phos-
phorization of Ni [32] [33]. However, this synthesis process involves noxious 
precursors, like phosphine [34].  

Nickel phosphide has a wide range of usages for electrochemical devices [35] 
[36] [37]. Due to high theoretical specific capacity, much work has been recently 
done to use nickel phosphide as anode in rechargeable lithium (Li) battery [38] 
[39]. Recently, the high electrochemical behaviour, great conductivity and ther-
mal stability of transition metal phosphides have made them suitable as super-
capacitors [40] [41]. Among different transition metal phosphides, nickel phos-
phide (NiP) is an important class. 

Electroless nickel deposition is a nickel deposition method that takes place in 
an aqueous solution in the presence of a chemical reducing agent. It involves no 
external current source. The deposition having a low phosphorus content is bet-
ter resistant to wear and the hardest, whereas the surface will have a better cor-
rosion resistance if it has a high phosphorus content [42]. Electroless deposition 
of Ni-P films find extensive application in fields such as medical, aviation, aero-
space, automobile, chemical processing, textile, oil and gas industries since they 
can be grown on substrates of many different materials and with complicated 
shapes, easily processed, and exhibit excellent resistance to corrosion, good lu-
bricity, and high hardness [43] [44]. 

In the present work, nickel phosphide is investigated in the form of thin film. 
Electroless deposition of Ni-P thin films was obtained using the reducing agent 
sodium hypophosphite. Then, the resulting alloys were annealed to support P 
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compound formation and interdiffusion. Annealing parameters were optimized 
to reduce oxidation, to give the best conditions for Ni2P formation and to reduce 
the formation of secondary phases. X-ray photoelectron spectroscopy (XPS) is 
used to identify the existence of oxides on the surface and to determine the 
chemical state of the elements present in the material [45] [46] [47]. In this re-
search work, XPS is used to investigate the chemical states and surface composi-
tions of as-deposited and annealed Ni-P film. The results would be helpful to 
enhance surface nature of Ni-P film. 

2. Experimental Details 

In the research work, the soda-lime glasses (SLG) were used as substrate. They 
were first cleaned by washing and scrubbing with alconox. Then sonication in 
acetone and methanol was done for 20 minutes. Afterwards, DI water and iso-
propanol was used to wash them. Then, N2 gas was used to dry the substrates. 
An aqueous solution of 0.2M NiCI2, 0.3 M NaH2PO2 and 0.2 M Na-succinate 
have been used for electroless deposition. To ensure a good dispersion of pre-
cursor materials, the aqueous solution was stirred for the whole duration of the 
experiment. The substrate temperature was controlled within ± 2˚C of 80˚C by 
means of a hot plate to which a thermocouple is attached. The duration of depo-
sition was 50 minutes. Hydrochloric acid (HCl) was used to maintain the pH of 
the solution around 4. 

Annealing treatment was performed with the help of an MTI Corporation 
GSL-1100X furnace. After depositing Ni-P thin films on soda-lime glass (SLG) 
substrates, they were placed in a quartz boat which is centered in the quartz tube 
chamber inside the furnace. The system was sealed after placing the quartz tube 
inside the furnace. High-purity argon gas was used to vacuum purge the cham-
ber for three cycles. The annealing process was done at 350˚C on the substrates 
for a duration of 60 minutes in argon atmosphere. The annealed Ni-P thin films 
showed a change in morphology. 

XPS was done to investigate the composition of NiP thin films. Monochro-
matic Al Kα radiation (1486.6 eV) through a Kratos AXIS Ultra DLD XPS sys-
tem was used to obtain XPS spectra. An electronic neutralization gun was used 
to remove the charge effect on the sample surface. The base pressure of the sys-
tem was 5 × 10−10 Torr. The sample was pressed to a disc of size 1 × 13 mm at 
first and then fixed to the sample-holder. Afterwards, it was degassed in the load 
lock chamber overnight. After that, XPS study was done on it by removing it to 
the test chamber. The value of contaminant carbon (C 1s 284.6 eV) was used as a 
reference to calibrate all binding energy values. 

3. Results and Discussion 

The composition and chemical purity of Ni-P thin films were analyzed by XPS. 
The typical XPS survey spectrum of as-deposited Ni-P film is showed in Figure 
1(a). The peaks arising from Ni 2p, 3s, 3p, Ni Auger, O 1s, C 1s, P 2s and P 2p 
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are clearly seen in the spectrum. No other impurities are observed in the spec-
trum. The nickel, NiLMM, Auger peak is found at 700 eV. High resolution spectra 
of Ni 2p core level, P 2p core level and O 1s core level are shown in Figure 1(b), 
1(c) and 1(d) respectively. The two peaks at 856.4 eV and 873.7 eV can be as-
signed to the binding energy of Ni 2p3/2 and 2p1/2. The separation of Ni 2p doub-
let is by 17.3 eV. These binding energy values of Ni 2p are characteristic of nickel 
phosphide in the oxidation state (NixPyOz; where x, y and z vary) [48]. The P 
peak at binding energy of 133 eV is characteristic of nickel phosphide in the 
oxidation state (NixPyOz; where x, y and z vary) [48]. The resolved peaks of O 
centered at binding energies of 531 eV and 532.5 eV (Figure 1(d)) corresponds 
to Ni(OH)2 and silicon dioxide (SiO2) respectively [49]. The peaks correspond-
ing to silicon dioxide arise due to glass slides that were used for deposition. 
However, the peak of the O 1s core level is in the general XPS spectra (Figure 
1(a)) suggest that the film was oxidized. 
 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 1. (a) XPS survey spectrum of as-deposited Ni-P film. (b) High resolution XPS 
spectra of the Ni 2p core level of as-deposited Ni-P film. (c) High resolution XPS spectra 
of the P 2p core level of as-deposited Ni-P film. (d) High resolution XPS spectra of the O 
1s core level of as-deposited Ni-P film. 

 
The XPS survey spectrum of annealed Ni-P thin film is showed in Figure 

2(a). The peaks arising from Ni 2p, 3s, 3p, Ni Auger, O 1s, C 1s, P 2s and P 2p 
are clearly seen in the spectrum. No other impurities are observed in the spec-
trum. The nickel, NiLMM, Auger peak is found at 700 eV. High resolution spectra 
of Ni 2p core level, P 2p core level and O 1s core level are shown in Figure 2(b), 
Figure 2(c) and Figure 2(d) respectively. The two peaks at 856.5 eV and 873.8 
eV can be assigned to the binding energy of Ni 2p3/2 and 2p1/2. The separation of 
Ni 2p doublet is by 17.3 eV. These binding energy values of Ni 2p are characte-
ristic of nickel phosphide in the oxidation state (NixPyOz; where x, y and z vary) 
[48]. The peak has shifted about 0.1 eV to higher BE side compared with the 
peak before annealing. The P peak at binding energy of 133.5 eV is characteristic 
of nickel phosphide in the oxidation state (NixPyOz; where x, y and z vary) [48]. 
The oxidized NiP peak has shifted about 0.5 eV to higher BE side compared with 
the peak before heat treatment. The resolved peaks of O centered at binding 
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energies of 531 eV and 532.5 eV (Figure 2(d)) corresponds to Ni(OH)2 and sili-
con dioxide (SiO2) respectively [49]. The peaks corresponding to silicon dioxide 
arise due to glass slides that were used for deposition. However, the peak of the 
O 1s core level in the general XPS spectra (Figure 2(a)) suggests that the film 
was oxidized. But the intensity is lower compared to as-deposited film. 

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 2. (a) XPS survey spectrum of annealed Ni-P film. (b) High resolution XPS spectra 
of the Ni 2p core level of annealed Ni-P film. (c) High resolution XPS spectra of the P 2p 
core level of annealed Ni-P film. (d) High resolution XPS spectra of the O 1s core level of 
annealed Ni-P film. 

4. Conclusion 

In this present research work, the electroless as-deposited and annealed Ni-P 
film has been analyzed using XPS study. The XPS analysis presents that film 
contains the elements nickel, phosphorus, oxygen, sodium and carbon. The 
phosphorus content is increased in the Ni-P film after annealing as observed 
from the survey spectrum. The P 2p binding energy corresponding to oxidized 
Ni-P is increased by 0.5 eV after heat treatment. These facts suggest that oxygen 
is transferred to phosphorus from nickel to form phosphorus oxides after an-
nealing [45]. A chemical shift is observed for Ni (2p3/2) spectra. 
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