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Abstract 
Coach-led conversations are the most common way for teachers to monitor 
students’ learning progress and provide just-in-time interventions. Students 
will experience a complex mixture of learning-centered affective states during 
the conversations, including concentration, confusion, frustration, and bore-
dom, which have been widely acknowledged as crucial components for inferring 
a student’s learning states. Effectively recognizing students’ learning-centered af-
fective states, especially negative ones such as confusion and frustration, 
could indicate that a student has a need for assistance, and help a human 
teacher improve their perceptual and real-time decision-making capability in 
providing personalized and adaptive support in coaching activities. Many 
lines of research have explored the automatic measurement of students’ single 
emotional states in pre-designed student vs. computer-teacher tasks. It still 
remains a challenge to detect the learning-centered affective states of students 
in face-to-face teacher-student coach-led conversations. Meanwhile, “in-the-wild” 
contexts with real operational environments and real teacher-student con-
versations pose unique challenges in collecting, validating, and interpreting 
data. In this study, we attempted to first develop an advanced multi-sensor-based 
system and applied it in small-scale meetings to collect multi-modal teach-
er-student conversation data. Then, we demonstrate a multimodal analysis 
framework to characterize students’ learning-centered affective states from 
multiple perspectives: facial, audio, and physiological cues. A series of inter-
pretable proxy features were derived from these modalities and used to train a 
set of supervised learning classifiers with various multimodal fusion ap-
proaches, signal-channel-level, feature-fusion-level, and decision-fusion-level, 
to recognize students’ learning-centered affective states. We achieved a mean 
AUC of 0.76 for the facial and audio feature-level fusion classifier. Our results 
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provide evidence of the potential practical value of fusing multi-modal data to 
explore students’ “in-the-wild” learning-centered affective states in teach-
er-student coach-led conversations. 
 

Keywords 
Learning Analytics, Multimodal Analytics, Machine Learning, Heart Rate, 
Facial Expression, Audio Features 

 

1. Introduction 

Conversation-based coaching discussion is one form of typical complex learning 
that requires students to answer casual questions, generate explanations, solve 
problems, and demonstrate and transfer acquired knowledge (Graesser, Ozuru, 
& Sullins, 2010). A broad array of learning-centered affective states are always 
aroused, accompanied with complex learning processes, such as concentra-
tion/engagement, anxiety, delight, confusion, frustration, and boredom 
(D’Mello, Craig, Fike, & Graesser, 2009; Forbes-Riley & Litman, 2011; Robison, 
McQuiggan, & Lester, 2009; Rodrigo & Baker, 2011a; Calvo & D’Mello, 2011; 
Rodrigo & Baker, 2011b). In the past few years, much research has validated the 
correlation of students’ learning-centered affective states with measures of their 
short-term or long-term learning achievements (Pardos et al., 2014; Rodrigo et 
al., 2012; Calvo & D’Mello, 2010). 

To more precisely identify the learning-centered affective states that students 
may experience during complex learning processes and to gain more insight in 
the future into the interplays and influence between those states with learning 
outcomes, a number of pieces of research are beginning to emerge on defining 
and describing emotions in the education field. Among the research, the dynamic 
affective states model proposed by D’Mello and Graesser in 2012 (D’Mello & 
Graesser, 2012) has often been used as a classical theoretically grounded model 
for intuitively understanding the dynamic changes in a student’s learning-centered 
affective states when they complete complex learning activities such as conversa-
tion-based discussion. In this theory, they suggest that a student commonly en-
ters complex learning activities with a state of engaged concentration to avoid 
failure when they are anxious, and this state will remain until they make mis-
takes or reach a difficult impasse, which may result in their state transitioning to 
confusion. At this point, two transition paths are described that students may go 
through. One is that they go back to being concentrated if the impasse has been 
resolved, which can be due to positive accomplishments brought about by solv-
ing problems or achieving goals. Alternatively, if the impasse cannot be resolved, 
the student may get stuck, and their state may then transition to frustration, at 
which point, the student is unlikely to transition back to confusion or concentra-
tion and may be more likely to transition to boredom if the state of frustration 
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persists and finally abandon the pursuit of their learning goals. It has been va-
lidated that students experiencing the flow of confusion->concentration are 
positively related with their learning outcomes, and vice versa, the confu-
sion->frustration->boredom flow has a negative relationship with their learning 
outcomes in complex learning activities (Craig, Graesser, Sullins, & Gholson, 
2004; Graesser et al., 2007). 

It is still an open question as to how to measure students’ learning-centered 
affective states, including concentration, confusion, frustration, and boredom, 
when they are having a coaching-driven conversation with their teacher. Most 
research has been focused on detecting students’ affective states when they are 
interacting with an online tutor system or completing learning tasks in a com-
puter environment, such as problem solving, essay writing, programming test-
ing, and game design (Peng, Chen, Gao, & Tong, 2020a; Grafsgaard et al., 2013; 
Bosch et al., 2016; Zaletelj & Košir, 2017). The unique challenges that students 
face in completing face-to-face “conversation tasks” involves their fast and ac-
curately giving answers and explanations or searching for the knowledge re-
quired to handle a teacher’s unpredictable questions. Having coach-led conver-
sations with students has been the preferred way for teachers to examine the 
learning status of their students, and, at the same time, it is also vital for teachers 
to be sensitive enough to capture students affective states or infer the latent need 
for assistance in order to make more precise real-time decisions on what kind of 
support to provide and at what times. 

While the work mentioned above focuses on detecting a student’s single affec-
tive state such as in terms of engagement, a substantial amount of prior work 
measured students’ affective states using univariate modality signals such as 
video (Grafsgaard et al., 2013), audio (Forbes-Riley & Litman, 2011), and physi-
ological measures (Hussain et al., 2011). Modern sensors have rendered oppor-
tunities to support novel methodological approaches to measure students’ mul-
tiple affective states from various perspectives and have been explored to im-
prove recognition accuracy. 

In this study, we attempt to adopt a multimodal analytic approach to recog-
nize multiple learning-centered affective states in students including concentra-
tion, confusion, frustration, and boredom when they are having coach-based 
conversations with their teacher. To achieve this goal, we first develop a mul-
ti-sensor-based data collection system to record students’ video-audio and phy-
siological data as they have conversations with their teacher. Then, a multimodal 
analysis framework is demonstrated, in which a series of interpretable features is 
extracted from those modalities to characterize the students’ multiple affective 
states from several aspects. These features are then used to generate a set of su-
pervised learning models using different modality-fusion methods, that is, a sin-
gle-channel level, feature-fusion level, and decision-fusion level. AUC scores are 
used to evaluate the accuracy of each classifier, using leave-one-student-out 
cross validation with the purpose of validating the predictive performance of our 
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extracted multimodal features and each modality fusion method. 

Novelty and Contributions 

There are several novel contributions we make and from aspects that are preli-
minarily different from relevant studies; simply put, 1) instead of learning inte-
ractions between students and computer tutors or pre-designed script-based 
learning activities in both HCI or HHI environments, we are interested in pay-
ing attention to an “unplugged” scenario in which students and their advisor 
teacher have a coaching-driven conversation on real learning activities. We 
tracked and recorded real-world conversations between students and their 
teacher in a weekly face-to-face meeting held by a university lab for up to 3 
months. These conversations included the complete process by which the teach-
er checked the students’ latest learning progress by asking questions, seeking ex-
planations for uncertain contexts, and confirming the details of their work and 
made decisions in terms of where to direct coaching after listening to the stu-
dents’ answers. Therefore, our study innovatively aims to analyze a series of 
“true feelings” exposed during these real conversations, guaranteeing the appli-
cability and practicality of our results for real-world coaching activities. 2) A 
multi-sensor-based data collection system is developed and applied in a small 
group meeting held in a university’s lab, in which we recorded multimodal con-
versation data by a) using the iPhone to track the video-audio information of 
each meeting participant and b) using the Apple Watch to detect their heart rate 
(HR) signals. The audio information of the entire conversation was then tran-
scribed into statements by Google Cloud Speech-to-Text. Our multimodal data 
collection system could support a 2 - 3-hour-long group meeting composed of 
conversation activities held amongst multiple participants. Multiple types of 
conversation data from participants including video-audio, textual, and physio-
logical data were synchronized, captured, and stored structurally, and this shows 
the potential utility of our system in collecting multimodal datasets over a long 
period of time as well as in supporting the analysis of real-world teacher-student 
conversations. 3) With few exceptions, most existing work has focused on using 
a univariate modality to analyze a single learning-centered affective state, en-
gagement, or basic emotional states such as joy and sadness. In comparison, this 
study attempts to integrate multiple modalities, that is, facial, audio, and physi-
ological (heart rate) cues, to predict multiple learning-centered affective states, 
that is, concentration, confusion, frustration, and boredom, when students are 
having conversations with their teacher. In addition to that, lines of interpretable 
features were extracted from those multiple modalities to gain insight into each 
affective state. We trained several prediction models on these features by using 
different fusion methods and evaluated their prediction performance. Our re-
sults would provide evidence of the potential utility of the presented multimodal 
features and modality fusion methods in scaling up the analysis and recognition 
of students’ multiple learning-centered affective states and guide teachers to-
wards optimal instruction in real time. 
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2. Related Work 

Most previous research on recognizing learning-centered affective states has fo-
cused on engaged concentration prediction tasks. From early studies in which 
researchers used univariate modalities (Bohus & Horvitz, 2009; Bosch et al., 
2015), to most recently, with the emergence of modern sensors that provide 
support for recording multimodal data (MMD) in daily life, multimodal learning 
analytics (MMLA) has been frequently applied to analyzing emotions in educa-
tion, such as (Monkaresi et al., 2016) using facial and heart rate cues to predict 
students’ engagement when they completed writing tasks in a computer envi-
ronment. (Chen et al., 2016) analyzed a series of video records of one child solv-
ing math problems with his mom to extract a series of features from multiple 
modalities such as facial, acoustic, and other conversational cues in order to 
characterize the child’s affective states including confusion, frustration, joy, and 
engagement demonstrated during learning activities. (Peng, Chen, Gao, & Tong, 
2020a) also integrated multiple modalities of facial and EEG signals from a 
group of middle school students to describe their engaged attention when they 
were interacting with an online learning tutor system. 

2.1. Facial-Signal-Based Detection 

With the development of computer vision technologies, there has been a rich body 
of research work that uses facial features extracted from video streams for the task 
of detecting human affective states. (Kapoor, Burleson, & Picard, 2007) adopted 
several modalities including facial features to predict students’ frustration with 
automated learning system. (Hoque et al., 2012) also computed a set of facial and 
other features from videos to predict if smiles indicated frustration or delight. (De 
Koning et al., 2010; Gomes et al., 2013) employed eye-related features from facial 
signals like blinking and gaze to analyze students’ concentration states during 
learning activities. (Devillers & Vidrascu, 2007) characterized human smiles and 
laughter by monitoring mouth-noise related features. (Grafsgaard et al., 2013) 
used mouth features to predict overall levels of concentration, frustration, and 
learning gain. In our previous work, we also demonstrated how we used a number 
of facial-related features extracted from the eye and mouth areas to predict stu-
dents’ learning-centered affective states (Peng, Ohira, & Nagao, 2020b). 

2.2. Physiological-Signal-Based Detection 

More recent work in this space has been able to accurately predict student’s 
learning-centered or simply basic affective states when they are engaged in 
learning activities. Affective states are generally considered to be related to 
thoughts and feelings controlled by the autonomic nervous system, and their 
changes can be observed through physiological signals such as heart rate (HR) 
and brain waves. This theoretical fact makes the ECG (heart rate) or EEG signal 
the most widely used clue in the work of affective state detection. (Stevens et al., 
2007) employed heart rate signals in a prediction task regarding students’ en-
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gagement in a student-computer interactive learning environment. In our pre-
vious work (Peng, Ohira, & Nagao, 2018; Peng, Ohira, & Nagao, 2019), we took 
advantage of the use of heart rate signals to predict the appropriateness of stu-
dents’ answers, and we suggested that their mental confidence toward correctly 
giving answers could be indicted by their heart rate features. Several pieces of 
work (Stevens et al., 2007; Cowley et al., 2013; Luft et al., 2013; Burt & 
Obradović, 2013; Peng et al., 2020a) analyzed brainwave EEG signals to under-
stand the affective states of students during the learning process. 

2.3. Audio-Signal-Based Detection 

It is widely believed that affective-state information may be transmitted from 
speech signals and can be explicated from linguistic and audio channels. Emo-
tion recognition in conversations (ERC) has become one of the hottest topics in 
the NLP field and is gaining increasing attention from the community. (Sikka et 
al., 2013) proposed a method that combines audio features with other visual de-
scriptors to automatically detect seven emotion categories from video clips: an-
ger, disgust, fear, happiness, neutral, sadness, and surprise. (Castellano, Kessous, 
& Caridakis, 2008) proposed a method for extracting speech features including 
MFCC, pitch contour etc. with other modality cues to classify eight basic emo-
tions: anger, despair, interest, irritation, joy, pleasure, pride, and sadness. (Yoon 
et al., 2019) used a deep learning method to exploit the textual and acoustic data 
of an utterance for emotion classification tasks in speech. 

2.4. Present Approach 

We attempted to adopt a multimodal analytics approach to recognizing students’ 
multiple learning-centered affective states when they are having conversations 
with their teachers from the aspect of visual, audio, and physiological (heart 
rate) cues. To achieve this goal, different from the previous work, we employed a 
set of portable, commercial wearable sensors for collecting multiple-modality 
data; we used ARKit running on the iPhone to track the visual movement 
records of students, and AirPods were used as an audio data recording tool for 
the entire conversations, using Apple Watch to simultaneously measure the 
changes in the students’ heart rate data throughout the conversations. 

We used a combination of dynamic visual facial, audio, and heart rate features 
extracted from video-audio and physiological records. We then trained several 
predictive machine learning models using different multimodal fusion methods 
and evaluated the predictive performance of each classifier on a personal level. 
We discuss the feature importance for each modality and compare the distinct 
recognition abilities for each multimodal fusion method. 

3. Methodology for Collecting Multimodal Conversation  
Dataset  

3.1. Participants and Study Protocol 

The participants were 4 graduate students (one female and three male) and their 
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advisor professor, and the students ranged in age from 21 to 24 years. The pro-
fessor has been guiding these students for 2 years by holding regular small-group 
progress report meetings every week. These participants have become accus-
tomed to this form of coach-led conversations so that they would not be dis-
turbed by wearing contact devices during the data collection process, therefore 
ensuring the reliability of our results. Data for our multimodal dataset was col-
lected on the basis of these students when they had a conversation with the pro-
fessor, in which they reported their weekly research progress separately and the 
professor then initiated coaching-driven conversations with them. 

3.2. Data Collection System and Procedure 

A regular research-progress-report meeting was held in the university’s research 
lab, in which students reported their latest research progress separately while 
displaying content related in the form of a slide presentation. There would be a 
continuous conversation between the current presenter-student and advisor 
professor, in which the professor started such as by asking questions, requiring 
detailed explanations regarding the content being presented, and the student 
would give corresponding responses. One regular meeting always took around 3 
hours in total, with an average length of around 50 minutes for each student re-
port, which included a 10-min presentation and a 30 - 40-min. conversation 
chunk. Each student’s conversation chunk would be carried out only between 
the current presenter-student and the advisor professor.  

Before the meeting, as shown in Figure 1, all participants were asked to in-
itiate a face tracking function that ran on the iPhone XR, which was placed on a 
desk in front of each of them, by choosing their name and pressing the record 
button; the function was developed using ARKit. A paired Apple Watch, which 
they wore on their wrist, was started at the same time to detect changes in their 
heart rate. AirPod earphones were also worn in order to collect the audio data 
generated during the entire conversation between the students and the advisor 
professor. After the meeting, the video-audio and heart-rate data of each student 
were then stored as csv and mp3 files listed with the username and date of the 
experiment on their iPhone and then were transferred to a server for analysis 
with the permission of each participant. 

 

 
Figure 1. Multiple sensors for collecting conversation data. 
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3.3. Observer Annotation of Affective States 

We recorded panorama video in 360 degrees using a Ricoh THETA, set between 
students during the whole meeting. As shown in Figure 2, a video-audio-based 
annotation tool was developed, in which the panorama video was played with 
corresponding conversation subtitles presented on the bottom of the screen, 
and subtitles appeared for each sentence. Before the annotation work, the anno-
tators were asked to choose a video to be annotated along with its corresponding 
subtitles file in csv format, as shown in the top-left area in Figure 2. When a 
video is played, the screen automatically switches to the current speaker. The 
annotator needs to comprehensively observe the speaker’s facial expressions and 
his or her speech information, including audio cues and the text of the current 
speech displayed at the bottom of the screen in order to make a suitable judg-
ment regarding the speaker’s affective state shown while they speak. Then, the 
annotator chooses one of the buttons representing four affective states at the 
bottom of the screen, and if there is no clear affective state, they do not need to 
choose any buttons. We employed two independent annotators to complete the 
annotation work. They were one professor and one PhD course student who 
both came from the same research lab as the participants but did not attend the 
meetings. We adopted Cohen’s Kappa (Landis & Koch, 1977) to measure the in-
ter-rater agreement of these two different annotators. If the kappa varied from 
0.41 to 0.60, the agreement level was considered to be moderate, and if it fell 
within the range of 0.60 - 0.80, it was considered to indicate substantive agree-
ment between the different subjective opinions. If the kappa was in the range 
0.81 - 0.99, the two annotators were considered to have almost reached perfect 
agreement. 

3.4. Multimodal Dataset 

We recorded a total of 10 meetings, accumulating around 2000 minutes worth of 
video-audio and physiological data with a mean length of approximately 500 
minutes for each student. There were 9507 video segments that needed to be 
annotated with a mean length of 10 secs for each clip. Table 1 shows the Cohen 
Kappa value for each affective state (which we treated as a binary labeling task), 
along with the number of video segments that received consistent judgment 
from the two annotators. We got a Cohen Kappa score of 0.64 and 0.71 for the 
inter-agreement level on the judgment of concentration and frustration, which 
suggests that these two annotators were in substantive agreement on their judg-
ment of the concentration and frustration affective states. Looking at the details 
of the data, there were 1360 video segments that were annotated as showing 
concentration and 186 video segments that were annotated as showing frustra-
tion from both of the annotators. Furthermore, we achieved a Cohen Kappa 
value of 0.44 for confusion and 0.50 for boredom, which indicates a moderate 
agreement level between the two annotators in their judgment of confusion and 
boredom. In addition, there were 171 video segments and 55 video segments 
considered to indicate confusion and boredom by both annotators. Therefore, 
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Figure 2. Video-based tool for annotating learning-centered affective states. 

 
Table 1. Cohen Kappa value and consistent judgment numbers for each affect. 

Affective states Cohen Kappa Consistent segment numbers 

Concentration 0.64 1360 

Confusion 0.44 171 

Frustration 0.71 186 

Boredom 0.50 55 

 
the multimodal dataset we used in this study included 1772 labeled segments, 
along with the speaker’s audio and heart rate data recorded synchronously. 

4. Methodology for Recognizing Affective States 
4.1. Multimodal Feature Sets for Characterizing Affect  
4.1.1. Extracting Facial Features 
As mentioned, we employed ARKit packages running on the iPhone to track 
students’ faces. Depth sensor data was used to generate a single facial mesh over 
a user’s face, and various types of information regarding the user’s face was de-
tected, including its position, orientation, and a series of blend shape coefficients 
to represent corresponding values of specific facial features recognized by ARKit. 
The blend shape coefficient was a floating point number indicating the current 
position of the respective feature relative to its neutral configuration, ranging 
from 0.0 (neutral) to 1.0 (maximum movement). Figure 3 shows a set of exam-
ples of the facial mesh that we adopted to measure the dynamic facial features in 
the eye and mouth areas. 

We extracted a series of dynamic facial features describing movement patterns 
of the eye and mouth at an average frequency of 30 HZ. The first 300 frames (10 
seconds) from each entire meeting video were used as a baseline in computing 
the features. 
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Figure 3. (a) Example of characterizing blinking of right eye by measuring closure of eye-
lid, in which natural expression had coefficient of 0.0, and maximum movement of right 
eye blinking had coefficient of 1.0. (b) Example of describing mouth and smile move-
ments by measuring degree of openness of lips in vertical directions and positions of 
mouth corners in four quadrants, in which natural state of mouth had coefficient of 0.0, 
while maximum movement of lips and mouth corners had coefficient of 1.0. 

 
Eye-related features: We used coefficients describing the changes in the clo-

sure of the eyelids over the left and right eyes to detect eye blink events, which 
have often been used as a proxy in recognizing affective states. We took the av-
erage of the eyelids’ movement coefficient of both eyes when the Pearson r score 
was higher than 0.70. However, when head rotation outside this range was de-
tected, as often happens in “in-the-wild” uncontrolled environments as in our 
study, we only used the movement coefficient of the visible eye.  

The raw eyelid-movement coefficient time series was further denoised using a 
Savitzky-Golay filter with a window of 15 frames to remove artefacts introduced 
when the device occasionally lost track of faces, leading to incorrect measure-
ment. We then applied peak detection (Du et al., 2006) methods to detect the 
local maximum (peak, eye-opening) and local minimum (valley, eye-shut). Eye 
blinks were detected by identifying a complete cycle from open (high coefficient) 
to close (low coefficient) and then back to open. We filtered out fake blinks by 
setting a threshold of 0.20 as the maximum valley coefficient and a minimum 
between-peak duration of 0.40 since an eye-blink cycle is around 0.40 to 0.60 s. 
We estimated the eye-blink frequency on the basis of the detected eye-blink 
events as one of the eye-related features. In addition, we derived two other re-
lated features to describe the sustained duration of eye-closure and eye-opening. 
Presumably, when a student’s concentration level is heightened, the duration for 
which their eyes remain open may increase, while eyes closed for a long period 
of time may indicate that a student is squinting or feels bored. 

Mouth-related features: Like the action of the eyes opening and closing, 
mouth movement dynamics may reveal students’ underlying cognitive and af-
fective processes manifested through prototypical patterns such as “smiling,” 
which reflects a positive affect of feeling accomplished or happy or “frowning,” 
suggestive of a negative affect such as confusion or frustration. We computed the 
sustained duration of “smiling” and “frowning” by measuring the position of 
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both mouth corners in 2D space. 
In addition, in conversations, the visual features that characterize mouth ac-

tions during speaking could be signatures in inferring a student’s affective states. 
Therefore, we measured the velocity and acceleration of mouth open-close 
movements along the vertical direction by computing lip movement coefficients. 
In Figure 4, we present four such patterns of mouth movements. As shown, 
subplots (a) and (b) are examples of a mouth that is open and closed. Subplot (c) 
is an example of a “frown,” with the left and right corners of the mouth pulled 
downward, and subplot (d) is the pattern of “smiling,” where the two corners of 
the mouth are pulled up 

We measured eye and mouth related dynamic events for a given time window 
of 3 sec. and then computed several statistical features including mean, standard 
derivation (std.), max, min, range, and root mean square (RMS) over the entire 
video segments. 

4.1.2. Extracting Heart Rate Feature 
We detected students’ heart rate (HR) from the sensor on the Apple Watch, and 
the data was a univariate continuous value within the range of 0 - 150 beats per 
minute reported at a frequency of approximately 1.0 HZ. Considering the indi-
vidual differences of the participants, the first 5 minutes of HR data before each 
experiment was used as a baseline in computing the HR features. We first sam-
pled the HR values to the same frequency as the facial data and then experi-
mented with two different methods of extracting features from those values. One 
of the methods was deriving a series of simple statistic features including the 
mean, standard deviation (std.), root mean square successive difference 
(RMSSD), max, min, variance, slope, mean gradient, and spectral entropy for the 
entire segments. In the second method, we explored rich feature representations 
that can describe the moment-by-moment dynamic changes in the HR value 
using symbolic aggregate approximation (SAX) (Lin et al., 2003; Lin et al., 2007), 
which was done in two steps. First, the piecewise aggregate approximation 
(PAA) (Matthews et al., 2002) algorithm was applied to the standardized raw 
sampled heart-rate time series T = {t1, t2 … tn} with zero mean and unit variance, 
where T is the time of each speech video segment. We then divided the time se-
ries of length T seconds into w (w = 5) equal-length segments and represented 
the w-dimensional space with a real vector { }1 2, wT t t t=   

 , where the ith ele-
ment was computed with the following Equation (1).  

( )1 1

n i
w

i inj j
w

wt t
n = − +

= ∑                       (1) 

Second, we mapped the PAA sequences of values into a finite list of symbols. 
The discretion threshold was chosen so that the distribution of symbols was ap-
proximately uniform. We chose an alphabet of size 3 {a, b, c} to represent the 
PAA sequences to reflect the underlying dynamics of heart rate transition 
among three levels, i.e., low, medium, and high. In Figure 5, we give an example 
of the SAX representation “cbaaa” generated from a raw heart-rate time series as 
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a way of characterizing temporal dynamic patterns. 

4.1.3. Extracting Audio Features 
We employed openSMILE (Eyben, Wöllmer, & Schuller, 2010) to extract audio 
features. OpenSMILE is often used for automatically extracting the features of 
audio signals and also for classifying speech and music signals. Since openS-
MILE is used by the OpenEAR project for emotion recognition (Schuller, Steidl, 
& Batliner, 2009), various standard feature sets for emotion recognition are 
available on openSMILE. We used The INTERSPEECH 2009 Emotion Challenge 
feature set, which contains 384 standard audio features that have been validated 
in terms of prediction ability regarding the task of recognizing affective states. 
These features are based on 16 base contours (MFCC 1 - 12, RMS energy, F0, 
zero crossing rate, and HNR) and their first derivatives (with 10-ms time win-
dows). Features for a whole chunk were obtained by applying 12 functional 
(mean, standard deviation, kurtosis, skewness, minimum and maximum value, 
relative position, and range as well as two linear regression coefficients with their 
mean square error (MSE)). Figure 6 shows an example of (a) a raw audio seg-
ment and example audio features, that is, (b) zero cross point, (c) F0, and (d) 
MFCC-12, we extracted using openSMILE.  

4.2. Multimodal Analytics Framework for Tasks of Recognizing  
Affective States 

In this section, we will demonstrate how we implement multi-modal analytics 
based on the multiple modality features we extracted in the previous section to 
generate a series of supervised learning models to predict a student’s learn-
ing-centered affective states. 

 

 
Figure 4. Example of mouth movement patterns defined with four key 
points of mouth: left and right corners of lips and middle points of upper 
and lower lips. (a) Mouth open, (b) mouth close, (c) frown, (d) smile. 

 

 
Figure 5. Example of sequences generated from HR time 
series using SAX representation. 
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Figure 6. (a) is example raw audio segment that presents amplitude along time. (b) We cut 2.5-ms-long sub audio clip from raw 
audio segment as example to show how we compute zero cross point, which is amplitude value that crosses x-axis, and we then 
compute zero crossing rate for given time windows. (c) Example for F0 feature. (d) Example for MFCC-12 features. 
 

We built a line of supervised learning models with three different multi-modal 
fusion methods as shown in Table 2. First, three baseline prediction models 
were separately built on the basis of individual channel: HR features, facial fea-
tures, and audio features. Second, we built four feature-level fusion prediction 
models in which we combined the three modalities together and trained a mul-
ti-label classifier called the “Combination 3 classifier”, along with three other 
classifiers based on two modalities each time (HR + Facial; HR + Audio; Facial + 
Audio). For feature-level fusion predictive models, considering the different 
numbers of each modality’s features, we separately selected features for each 
modality and ranked them according to feature importance for prediction, 
which we explain in detail in the following section. We chose a similar number 
of features from each modality to use to build each feature-level model. Since we 
only had 10 features for the HR modality but 384 features for the audio modality, 
if the numbers of features that we adopt from different modalities are extremely 
unbalanced, the modality for which more features are used will dominate the final 
prediction results. Finally, we also built decision-fusion level classification mod-
els, in which we used three single-channel classifiers as base classifiers to make  
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Table 2. Supervised learning affective-state-prediction classifiers with different multi-
modal fusion approaches. 

Multimodal fusion approaches Classifiers Modality 

Single-channel HR-based classifier HR 

 
Facial-based classifier Facial 

Audio-based classifier Audio 

Feature-level Combination3 classifier HR + Facial + Audio 

 

HR_ Facial-based classifier HR + Facial 

HR_ Audio-based classifier HR + Audio 

Facial_ Audio-based classifier Facial + Audio 

Decision-level Decision-level Voting classifier * 

 
classifications on the same test instances separately. We then voted on the pre-
diction results (the probability of belonging to each category), and the result of 
the base classifier with the highest decision probability was selected as the final 
decision of each instance. The advantage of building decision-level fusion learn-
ing models is that, even in the case that some of the modality information was 
corrupted due to signal noise, was missing, or could not be captured due to oc-
clusion or sensor artifacts, etc., which often occurs in “in-the-wild” environ-
ments, we could still can train the predictive learning models on the instances 
using a decision-level fusion approach even though some modalities are not 
available. 

4.2.1. Feature Selection 
Considering that using all features for each modality we extracted may decrease 
the performance of the learning prediction models, we applied RELIEF-F (Ko-
nonenko, 1994; Urbanowicz et al., 2018) to select features to reduce the dimen-
sionality of raw features and extract the important features of each modality re-
garding the prediction tasks. We did so on training data only. RELIEF-F is an 
extension of the RELIEF algorithm that can deal with multi-class problems and 
is more robust with incomplete and noisy data. It is similar to the RELIEF algo-
rithm, which randomly selects one instance R but, in addition for k nearest in-
stances from the same class called “nearest hits instances” and also searches for k 
nearest instances from each different class called “nearest misses.” It then up-
dates the weight of all attributes depending on R, nearest hits, and nearest 
misses. A feature importance list will be returned in which features are ranked 
by weight. To decide the subset of features of each modality to be used, we se-
lected several proportions of the top-ranked features from each modality and va-
lidated the predictive performance. Due to there being 10 HR features, 42 facial 
features, and 384 audio features, we separately tested 2 different proportions of 
HR with (0.50, 1), 3 different proportions of facial features with (0.30, 0.50, 
0.70), as well as 4 different proportions of audio features with (0.05, 0.08, 0.10, 
0.15). We will report the proportions of each modality that provided the best 
predictive performance in the results section.  
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4.2.2. Classifiers and Validation 
We built a set of multiclass classifiers based on three kinds of supervised-learning 
machine learning models including support vector machine (SVM), random 
forest (RF), and multilayer perceptron neural network (MLP). We then per-
formed leave-one-student-out cross-validation to evaluate the prediction per-
formance of each classifier. The Area under the ROC curve (AUC) scores were 
used as our primary evaluation metric, and we will report the AUC scores of 
each classifier. 

5. Classification Results and Discussion 

In this section, we report the mean AUC score of each classifier regarding the 
affective-state multiclass classification tasks built using different multimodal fu-
sion approaches. We will also explain the proportions we used from the feature 
importance ranking list of each modality for making the feature subsets for the 
different classifiers. Furthermore, we will report the mean AUC for each affec-
tive-state classification task of the best fusion models.  

Table 3 is a summary of the mean AUC for each classifier using different 
modality fusion approaches. As is shown, for single-channel classifiers, the audio 
channel-based classifiers achieved an overall better classification performance 
than the other single-channel based classifiers regarding the tasks of recognizing 
multiple learning-centered affective states. Among the audio channel-based clas-
sifiers, the RF classifier performance had a better prediction ability with a mean 
AUC of 0.76 than the SVM classifier with a mean AUC of 0.68 and was mod-
erately stronger than the MLP classifier with a mean AUC score of 0.75; the 
same was also observed for single-channel based classifiers. However, for the fa-
cial single-channel based classifiers, the MLP classifier achieved the best mean 
AUC score with 0.73, which was higher than the other two classifiers, which may 
indicate that MLP can learn interpretable facial features better than other tradi-
tional supervised learning models. In addition, we got the best mean AUC scores 
for the facial single-channel-based classifiers when we chose the 15 top-ranked 
facial features, and when we chose the first 20 top-ranked audio features, we 
achieved a better prediction performance for the audio single-channel based 
classifiers; actually, for the HR single-channel-based classifiers, we got extremely 
similar classification results when we set the proportions of the HR features to 
0.50 and 1.0. In consideration of balancing the numbers of features used from 
each modality, we finally chose to set the proportion to 1.0, which means using 
all of the HR features for building classifiers. For both the feature-level fusion 
and decision-level fusion approaches, we adopted the most predictive features 
from each channel to build classifiers. 

For the feature-level fusion classifiers, first of all, the RF classifiers displayed 
an overall outstanding classification ability for all modality fusion methods. 
Second, we could order these four feature-fusion methods as Facial + Audio = 
Combination 3 > HR + Audio > HR + Facial. Combining the three modalities 
did not help with improving the prediction ability over only combining the facial  
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Table 3. Mean AUC scores of each classifier with different modality fusion approach. 

Multimodal fusion  
channels 

SVM RF MLP 
Number of  

features 
Best fusion 
approach 

HR 
Facial 
Audio 

0.68 
0.66 
0.68 

0.69 
0.72 
0.76 

0.68 
0.73 
0.75 

10 
15 
20 

 
 
 

Combination 3 
HR + Audio 
HR + Facial 

Facial + Audio 

0.70 
0.69 
0.65 
0.69 

0.76 
0.75 
0.74 
0.76 

0.72 
0.71 
0.67 
0.75 

45 
30 
25 
35 

 
 
 
 

Decision-voting 0.68 0.74 0.75 *  

 
and audio channels, which indicates that the HR channel did not provide addi-
tional information for prediction tasks, but it did not introduce any other noise 
that decreased the prediction abilities as well. In addition, fusing the HR and fa-
cial channels yielded more accurate prediction results over fusing the facial sin-
gle channel with AUC scores was increased by 0.02, which suggests that the HR 
channel can provide external information on visual facial cues, that is, physio-
logical cues can reveal internal hidden information that can not been found 
through observing a human’s external visual facial cues.  

For the decision-level fusion classifiers, in which we used a voting method on 
the output of each single-channel classifier and made the final decision for the 
classification results, we got a mean AUC score of 0.75 for the MLP classifiers 
and 0.74 for the RF classifier, which guarantees that our models could still work 
well even though some modalities were not available.  

Furthermore, we would like to give a comprehensive demonstration of the 
performance of the experiments on recognizing affective states. We chose the RF 
classifiers that demonstrated a better recognition performance with all three 
multimodal fusion approaches and report the mean AUC scores of the classifiers 
for both single-channel fusion and feature-level fusion approaches on classifying 
each affective state. Figure 7 presents the mean AUC of each affective state class 
of the single-channel fusion RF classifier. As is shown, the audio modality 
showed an overall better ability in recognizing all affective state classes than the 
other two modalities, reaching an AUC of 0.8 accuracy in identifying the con-
centration class. From an educational aspect, we hope that our classifier could 
identify negative states as much as possible, especially the ability to recognize the 
state of frustration in order to help teachers in direct-coaching intervention in 
real time. All of the single-channel level RF classifiers could precisely recognize 
the state of frustration with AUC scores of over 0.70, which indicates the effec-
tiveness of the predictive abilities of the features we proposed from each modal-
ity. 

Figure 8 shows the mean AUC scores of each affect class of the feature-level 
fusion RF classifiers. We can see that even though the Facial + Audio fea-
ture-level fusion RF classifier showed much better classification abilities than the 
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other fusion set, however, the Heart rate + Audio feature-level fusion RF clas-
sifier did a better job at identifying the states of concentration and frustration 
with increased AUC scores by 0.01 and 0.03 for each, while the Facial + Audio 
feature-level fusion classifier was better at recognizing the affective states of 
confusion and boredom. These remarkable results suggest that we can take good 
advantage of the identification abilities of a set fusing different modalities in re-
cognizing different affective states. Furthermore, the feature-level fusion RF 
classifiers also showed more powerful identification abilities in recognizing the 
state of frustration than single-channel classifiers, which validated our proposal 
that multimodal analytics could increase the recognition performance of learn-
ing-centered affective state classification than single modal analytic approaches. 

Finally, we looked into the classification performance for each affective state 
at the student level. All of the classification experiments were evaluated by per-
forming level-one-student-out cross-validation in order to further examine the 
proposed method’s ability to recognize the learning-centered affective states of 
each student. The facial-audio feature-level fusion RF classifiers were chosen in 
this part because they had the best classification abilities in the recognition tasks. 
Figure 9 presents the ROC and AUC scores of each affect class for each student. 
The proposed Facial + Audio feature-level fusion model showed an excellent af-
fect recognition ability for each test student. In particular, for some test students 
(C and D), our proposed feature-level fusion classifier yielded AUC scores close 
to 0.80 in recognizing the state of frustration. Furthermore, for all test students,  
 

 
Figure 7. Mean AUC scores of each affect class of single-channel fusion RF classifiers. 

 

 
Figure 8. Mean AUC scores of each affect class of feature-level fusion RF classifier. 
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Figure 9. AUC scores of each affective state of facial + audio fusion RF clas-
sifiers at person level. 

 
the classifier’s recognition abilities in identifying the states of concentration, 
confusion, and boredom lead to AUC scores higher than 0.70. These exciting 
results have validated the outstanding predictive abilities of our proposed fea-
tures and multimodal fusion approach on identifying students’ learning-centered 
affective states “in-the-wild” and on conquering the influence of individual dif-
ference in the affective-state recognition problem. 

6. Conclusion and Future Work 

In this study, we attempted to use multimodal analytics to recognize students’ 
learning-centered affective states including concentration, confusion, frustra-
tion, and boredom displayed during coach-led conversations with their profes-
sor. To achieve this goal, we first developed an advanced multi-sensor-based 
multimodal data collection system that can support the long-term recording of a 
set of multimodal conversational data including the speaker’s audio-video in-
formation and physiological data (heart rate). A three-month-long multimodal 
“in-the-wild” conversational dataset was collected in a university research lab. 
This dataset recorded four students’ video-audio and heart rate data as they had 
coach-led conversations with their professor. 500 minutes were accumulated for 
each student. We adopted a third party annotation approach in which we em-
ployed two independent annotators to annotate the video segments of conversa-
tions by using a video-audio-based annotation tool and created 1772 labeled 
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speech video segments with an average length of 10 sec.  
We derived a series of interpretable proxy features from visual, audio, and 

physiological modalities separately to characterize the students’ learning-centered 
affective states. For visual, we extracted lines of facial related features to describe 
dynamic patterns of eye blinking and mouth movements (speaking and smiling). 
For audio, we used the open SMILE tool to compute numbers of features for 
capturing students’ affective states from acoustic cues. For the physiological 
modality, in addition to the use of statistic features, we also attempted to capture 
moment-by-moment temporary patterns from heart-rate time-series data by ex-
tracting SAX HR sequences. Then, we trained a set of supervised learning SVM, 
RF, and MLP classifiers separately using different multimodal fusion approaches 
including single-channel-level, feature-level, and decision-level fusion for recog-
nizing learning-centered affective states. We built three single-channel-level 
classifiers for individual modalities, facial, audio, and HR, separately. Then, four 
feature-level fusion classifiers were trained on combinations of three modalities: 
HR+ audio modalities, HR + facial modalities, and facial + audio modalities. Fi-
nally, a decision-level fusion classifier was generated by running a voting me-
chanism on the outputs of base single-channel level classifiers.  

We performed leave-one-student-out cross-validation to evaluate the perfor-
mance of these classifiers and reported the mean AUC scores for the aggre-
gated-level, affective-state level, and person level. Evaluating the aggre-
gated-level, feature-level fusion classifiers had an advantage over all sin-
gle-channel classifiers, which indicates that fusing different modalities can pro-
vide addition information on individual modalities in order to improve the pre-
dictive abilities. Furthermore, the Facial + Audio feature-level fusion classifier 
yielded the best accuracy with an AUC of 0.76 in detecting learning-centered af-
fective states compared with the other fusion models. The decision-level fusion 
approach also achieved AUC scores of 0.75 for the RF classifier and MLP clas-
sifier, which guarantees the practical ability of the proposed method, when faced 
with inevitable phenomena in “in-the-wild” data sets, such as some modalities 
not being available due to device problems. We also checked the recognition 
performance of the classifiers at the affective-state level. The Heart rate + Audio 
feature-level fusion RF classifier showed outstanding identification abilities in 
recognizing the states of concentration and frustration, while the Facial + Audio 
fusion classifiers were good at recognizing the states of concentration and bore-
dom, which suggests that the flexible usage of different feature-level fusion sets 
can be beneficial in recognizing special affective states. A person-level evaluation 
was done last; our remarkable results provide evidence that our proposed mul-
timodal analytics could overcome the influence of individual differences in stu-
dents’ affective states tasks. 

For future work regarding our results, 1) we are looking forward to extending 
the size of our multimodal conversational dataset. In our previous work (Peng, 
Ohira, & Nagao, 2020b), in which we used small-scale facial and heart-rate mod-
alities only for recognizing affective states, MLP classifiers performed far worse 
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than the other classifiers. However, in the present study, MLP started to show 
close to or even better identification abilities with feature-level fusion classifiers, 
which suggests a large-scale dataset can provide the opportunity of using more 
complex deep-learning models in the study of recognizing learning-centered af-
fective states. 2) The professor’s multimodal data were also collected, on which 
we are going to take a deep dive and analyze the potential utility of interaction 
behavior patterns in predicting students’ learning-centered affective states. 3) In 
terms of application, we are going to launch our learning-centered affect states 
recognition model for use with our data collection system. We aim to alert 
teachers when students are facing an “assistance dilemma” shown through their 
confusion and frustration, in order to let teachers provide a timely and adaptive 
intervention to improve students’ learning outcomes. 
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