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Abstract 
A brief history of the Centre for Mathematical and Statistical Sciences, Kerala, 
India, is given and an overview of Mathai’s research and education programs 
in the following topics is outlined: Fractional Calculus; Functions of Matrix 
Argument—M-transforms, M-convolutions; Krätzel integrals; Pathway Mod-
els; Geometrical Probabilities; Astrophysics—reaction rate theory, solar neu-
trinos; Special Functions—G and H-functions; Multivariate Analysis; Algo-
rithms for Non-linear Least Squares; Characterizations—characterizations of 
densities, information measure, axiomatic definitions, pseudo analytic func-
tions of matrix argument and characterization of the normal probability law; 
Mathai’s Entropy—entropy optimization; Analysis of Variance; Population 
Problems and Social Sciences; Quadratic and Bilinear Forms; Linear Algebra; 
Probability and Statistics. 
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The Centre for Mathematical Sciences (CMS) was established in 1977 and regis-
tered in Trivandrum, Kerala, India, as a non-profit scientific society under the 
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Travancore-Cochin Literary, Scientific and Charitable Societies Registration Act 
XII of 1955, and as a research and education centre covering all aspects of ma-
thematics, statistics, mathematical physics, computer and information sciences. 
Applicants for incorporation were K.T. Chandy, A. Abraham, J. Zachariah, V.I. 
Subramoniam, K. Sankara Rao, Y. Sitaraman, and A. George, with Professor 
George taking the lead. 

Research and Education in Mathematical and Statistical Sciences 
Initial activities of research concentrated on population studies and applied 

statistics, the areas of interest of Professor George. Research and project activi-
ties started at CMS and at one time there were 35 project staff. CMS has ex-
ecuted a large number of research and education projects for central and state 
governmental agencies. 

By the end of 1984 Professor George passed away and then governing council 
of CMS requested A. M. Mathai to take over and build it up into an international 
centre of excellence. Professor Mathai agreed to volunteer for five years, from 
1985 to 1990, and build it up into an international centre of excellence, provided 
support came from the State Government in the form of basic building and 
ground. All the senior scientists in mathematical sciences in Kerala gave moral 
support to CMS and volunteered in running research and education programs at 
CMS (Figure 1). 

In 2002, CMS has shifted its office and library into St Thomas College Pala 
compound into a one-story building donated by the Diocese of Palai, Kerala, In-
dia. From 2006 CMS became a Department of Science and Technology (DST), 
Government of India, Centre for Mathematical Sciences with sufficient financial 
support from DST. Then CMS could recruit up to 18 PhD students and a core 
faculty of five. Full-fledged activities of research, education at the undergraduate 
and research level started, conferences, workshops and lecture series by leading 
researchers around the world initiated. By this time CMS had become a research 
 

 
Figure 1. A. M. Mathai’s Research Program in mathematics, statistics, and 
physics developed at the Department of Mathematics and Statistics, McGill 
University, Montreal, Canada, in the 1970’s. 
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centre of Banaras Hindu University (BHU) in Varanasi, India, Anna University, 
Chennai, India, and Mahatma Gandhi University, Kottayam, India. 

Since 2006, the CMS has grown into a leading research centre of international 
repute in aspects of mathematical sciences, particularly those concerning re-
search in astrophysics, special functions of mathematical physics, statistics, and 
fractional calculus. CMS had a publication series (books, proceedings, collec-
tions of research papers, lecture notes), a newsletter of two issues per year, a 
mathematics modules series (self-study books on basic topics) and a mathemat-
ical sciences series for the general public 
(documents archive available at http://neutrino.aquaphoenix.com/cmsintl.org/). 

CMS has been making efforts to keep pace with developments all around the 
world and making contributions to bring India into the frontline research in 
mathematical sciences and allied disciplines. In the publications series CMS 
brought out around 40 publications, two of which were taken as such and pub-
lished by Springer, New York, one in 2008 (Mathai & Haubold, 2008; Figure 8) 
and one in 2010 (Mathai, Saxena, & Haubold, 2010; Figure 9). Newsletter series 
continued until 2015. Ten modules were brought out in the modules series. 
Three of these in the area of linear algebra were combined and published by De 
Gruyter, Berlin and Boston in 2017 (Mathai & Haubold, 2017a; Figure 2) and 
another three in the area of probability and statistics were combined and pub-
lished by De Gruyter, Berlin and Boston in 2017 (Mathai & Haubold, 2017b; 
Figure 3). These two volumes also served as education material for the 
UN-affiliated Regional Centres for Space Science and Technology Education in  
 

 
Figure 2. Mathai & Haubold (2017a): LinearAlge-
bra for Physicists and Engineers (see also Mathai & 
Haubold, 2018a). 
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Figure 3. Mathai & Haubold (2017b): Probability 
and Statistics for Physicists and Engineers (see also 
Mathai & Haubold, 2018a). 

 
Asia and the Pacific, Latin America and the Caribbean, Africa, and Western Asia 
(Mathai & Haubold, 2018a). 

CMS has been functioning as a national centre for mathematical sciences. The 
main aim of the centre was to encourage youngsters to do research by organizing 
activities in mathematical sciences. The research groups at CMS cover major 
disciplines in mathematical sciences. The following are the research groups at 
CMS: Astrophysics Research Group, Fractional Calculus Research Group, Spe-
cial Functions Research Group, Statistical Distribution Theory Research Group, 
Geometric Probability Research Group, Discrete Mathematics Research Group, 
Algebra and Analysis Research Group. The research groups at CMS are active in 
interdisciplinary research. 

Astrophysics Research Group 
The seniors in the group are HJH and A. M. Mathai (Mathai & Haubold, 1988, 

2018a; Figure 4). R. K. Saxena also joined this group. Senior research fellows in 
this group are D. Kumar, D. P. Joseph, S. S. Nair, and N. Sebastian. The research 
group focused on the solar neutrino problem and related issues of thermonuc-
lear reaction rates, closed-form solutions for differential equations governing the 
internal structure of the Sun, and solar neutrino physics. Experimental data 
coming from solar neutrino experiments were analysed by Fourier analysis, 
wavelet analysis and diffusion entropy analysis. Application of special functions 
of mathematical physics has been encouraged in all research topics. 

Fractional Calculus Research Group 
The seniors in the group are R.K. Saxena, A. M. Mathai, and HJH (Mathai & 

Haubold, 2017c, 2018b, 2018c; Figures 5-7). Senior research fellows working in 
this group are Seema S. Nair, Anitha Kattuveettil and Nicy Sebastian. Dilip  
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Figure 4. Mathai & Haubold (2018d): 
Erdélyi-Kober fractional calculus from a 
statistical perspective, inspired by solar 
neutrino physics. 

 

 
Figure 5. Mathai & Haubold (2018c): An 
introduction to fractional calculus. 

 
Kumar also has work in fractional calculus. A national level workshop in this 
area was held at CMS in November 2009. As an emerging field, CMS conducted 
several short courses and included fractional calculus in the syllabus of many 
SERC Schools at CMS. Differentiation and integration are usually regarded as  
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Figure 6. Mathai & Haubold (2018b): Matrix 
methods and fractional calculus. 

 

 
Figure 7. Mathai & Haubold (2017c): Frac-
tional and multivariable calculus: Model build-
ing and optimization problems. 

 
discrete operations, in the sense that one differentiates or integrates a function 
once, twice, or any whole number of times. However, in some circumstances it is 
useful to evaluate a fractional derivative. In a letter to LHospital in 1695, Leibniz 
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raised the possibility of generalizing the operation of differentiation to non-integer 
orders, and LHospital asked what would be the result of half-differentiating x. 
Leibniz replied It leads to a paradox, from which one day useful consequences 
will be drawn. The paradoxical aspects are due to the fact that there are several 
different ways of generalizing the differentiation operator to non-integer powers, 
leading to inequivalent results. Major contributions in this area from CMS are 
that fractional calculus was extended to functions of matrix argument in the real 
and complex domains and extended fractional calculus to the complex domain. 
Further, research focused on the well established fact that fractional time deriva-
tives do not appear in any established fundamental theory of physics such as sta-
tistical mechanics, electrodynamics, or quantum mechanics. Particular attention 
was placed on the correlation between the diffusion equation and Schroedinger 
equation and their fractional counterparts. 

Special Functions Research Group 
The seniors in the group are R.K. Saxena, P. N. Rathie, S. B. Provost, P. Mo-

schopoulos, HJH, and A. M. Mathai. “The H-function: Theory and Applications” 
(Figure 8) and “Special Functions for Applied Scientists” (Figure 9) are the lat-
est books of this group, which were out from Springer, New York, in 2010 and 
2008, respectively. Senior research fellows working in this area are Dilip Ku-
mar, Nicy Sebastian, Dhannya P. Joseph, Seema S. Nair, Anitha Kattuveettil, 
and Naiju M. Thomas. There are mathematical theories in which some classes 
of special functions appear naturally. A familiar classification is by increasing 
complexity, starting with polynomials and algebraic functions and progressing 
through the elementary transcendental functions etc to the higher transcen-
dental functions. Functions of hypergeometric type can be ordered by the be-
havior of singular points of the differential equations representing them, or by 
a group-theoretical analysis of their symmetries. But all these classifications 
are incomplete. For example, Mathieu functions fall outside the hypergeome-
tric class, and gamma and zeta functions are not the solutions of simple diffe-
rential equations. For rate and diffusion equations and their fractional genera-
lizations, generalized hypergeometric functions like Meijer’s G-function and Fox’ 
H-function need to be made available analytically and numerically. They were of 
central interest to research and teaching of this research group. 

Statistical Distribution Theory Research Group 
The seniors in the group are A. M. Mathai, S. B. Provost, W. J. Anderson, HJH, 

and P. N. Rathie. Generalizations of Dirichlet integrals and Dirichlet densities 
are introduced by this group. Seemon Thomas, St Thomas College Palai, who is 
an associate of CMS, has received his PhD in this area. The pathway model in-
troduced by Mathai in 2005 is popular in statistical distribution theory and 
non-extensive statistical mechanics. The first PhD on the pathway model was 
awarded to Shanoja S. Pai in 2010. Other researchers in this group are Nicy Se-
bastian, Seema S. Nair, Dhannya P. Joseph, Naiju M. Thomas, Prajitha P. and 
Princy T. CMS has conducted short-term courses in this area by eminent facul-
ties of national and international standing. Major contributions in this area from  
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Figure 8. Mathai, Saxena, and Haubold (2010): 
The h-function: Theory and applications. 

 

 
Figure 9. Mathai and Haubold (2008): Special 
functions for applied scientists. 

 
CMS is that statistical distribution theory is shown to be a powerful tool in in-
terpreting and developing Mellin convolutions of products and ratios, in estab-
lishing a connection to fractional integrals, in giving physical interpretations to 
the concept of M-convolutions introduced in 1970s (Figure 10). 
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Figure 10. Mathai, Provost, and Hayakawa 
(1995): Bilinear forms and zonal polynomials. 

 
Geometrical Probability Research Group 
A. M. Mathai is the senior in this group and Seemon Thomas has joined and 

is working in the group. Major contribution in this area is the replacements of 
differential and integral geometry techniques with Jacobians of matrix transfor-
mations techniques in the study of certain random geometrical configurations 
and extending the theory to functions of matrix argument (Mathai, 1999a; Fig-
ure 12). 

Discrete Mathematics Research Group 
The seniors in this group are B.D. Acharya (former Advisor to Government of 

India) who joined as a Visiting Full Professor at CMS, R. Natarajan of Lakehead 
University, Canada, who was appointed as Reader at CMS, K.A. Germina of the 
Hill Area Campus of CMS. Two junior research fellows working in this group 
are Miss Alphy Joseph and Miss Sona Jose. The activities of this group also in-
clude building up a strong computer science base at CMS. A national level 
workshop in this area was held at CMS in February 2010 and another one was 
conducted in August 2010 in connection with the visit of Professor T. Zaslavsky 
(USA). Short-term courses are conducted for the enhancement of research in 
this area. 

Algebra and Analysis Research Group 
The seniors in this group are S.C. Mathew and P.G. Romeo. The junior re-

search fellows working in this group are Miss Diana Mary George and Miss Gi-
nu Varghese. Short-term courses are conducted to motivate the students in this 
area. 

Research Recognitions 
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Figure 11. Mathai (1997): jacobians of matrix 
transfromations and functions of matrix ar-
gument. 

 

 
Figure 12. Mathai (1999a): An introduction to 
geometrical probability: Distributional aspects 
with applications. 

 
CMS is an approved research centre of three universities, Banaras Hindu 

University (BHU), Varanasi, Anna University, Coimbatore, and Mahatma 
Gandhi University (MGU), Kottayam. Students joining CMS for research can 
register themselves in any of the above universities for PhD and fulfill the PhD 
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requirements of the respective universities. Some collaborative research is being 
done with other foreign and national institutions also. Six students from CMS 
got their PhDs in the area of statistics from BHU. Three PhD scholars from CMS 
received their PhDs from Anna University in the areas of applied analysis, graph 
theory and fuzzy mathematics. Four PhD scholars from CMS received their 
PhDs from MGU in the areas of fuzzy mathematics, graph theory and mathe-
matical physics. 

Library Development 
Back volumes of more than 400 journals (with over 17,000 volumes) and more 

than 6000 books were available in mathematical sciences for reference purposes 
at the CMS library. Collections of reprints of individual articles are also arranged 
in CMS library for ready reference. CMS had built up a good library with books 
and journals collected by Professor Mathai from Canada and USA. 

Portraits Collection 
CMS library had a collection of the portraits of over 300 world mathemati-

cians. The enlarged and laminated color portraits were placed on the library 
walls at CMS for motivating the school/colleges students to do work in mathe-
matical sciences. Students of mathematical sciences have attended lectures about 
masters in mathematical sciences, they have learnt about the discoveries of these 
masters and the students had the opportunity to see their portraits and learn 
more about these great men and women by studying at CMS library. 

The summary of achievements of CMS (later CMS was renamed CMSS (Cen-
tre for Mathematical and Statistical Sciences)) from 2007 to 2014, when it was a 
DST Centre, is the following: 

Achievements of CMSS 2007-2014 
Number of national/international level awards won by CMSS scholars = 19. 
Number of research papers published in international refereed journals & 

proceedings = 170. 
Number of PhDs produced by CMSS = 13 [6 from BHU, 4 from MGU, and 3 

from Anna University, Chennai]. 
Number of research level students educated through all-India SERC Schools > 

285 (Figure 13). 
Number of undergraduate students educated through Undergraduate Mathe-

matics Camps > 1020. 
Number of paper presentations abroad by CMSS research scholars = 8. 
Number of paper presentations in India by CMSS scholars > 65. 
Number of invited and keynote addresses by the faculty of CMSS, including a 

lead keynote address and 3 keynote addresses at a United Nations’ workshops > 
63. 

Number of conferences sponsored or co-sponsored by CMSS = 7. 
Number of distinguished visitors to CMSS from abroad > 32. 
Number of distinguished national visitors to CMSS > 63. 
Number of international research collaborators with CMSS faculty and scho-

lars = 8. 
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Figure 13. Haubold & Mathai (2010): Pro-
ceedings of the third UN/ESA/NASA Work-
shop on the international heliophysical year 
2007 and basic space science. 

 
Number of national level research collaborators with CMSS faculty and scho-

lars = 7. 
The Honorary Director 
Professor A. M. Mathai was honored by several institutions and national so-

cieties in India and thrice by the United Nations, once in Tokyo, Japan, once in 
Daejeon, Korea, and once in Quito, Ecuador and he gave keynote addresses also. 
He was the President of the Indian Mathematical Society for one term (the old-
est professional society in India), current President of the Society for Special 
Functions and their Applications, Chairman of the Kerala State Statistical Com-
mission (2014-2018), he was given Lifetime Achievement Award and Fellowship 
by the Indian Society for Probability and Statistics, and he is a Member of the 
Loka Kerala Sabha. 

Achievements in Research and Education by A. M. Mathai 
In this article Arak M. Mathai’s research accomplishments in mathematics 

and statistics are discussed which he achieved and shared with collaborators, 
postdocs, and students at McGill University, at the Centre for Mathematical and 
Statistical Sciences, and at annual United Nations workshops over a period of 
time of more than 60 years (Figure 14, Figure 15). 

In the 1970s Mathai and collaborators developed an axiomatic theory provid-
ing axiomatic definitions for basic concepts in information theory and statistics. 
Focus was placed on functional equations, dispersion, principles of statistical  
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Figure 14. A.M. Mathai. 

 

 
Figure 15. Centre for mathematical and statistical sciences. 
 
inference, and inequalities among information theory and statistical measures. 
Conditional distributions, characterizations through independence of linear and 
quadratic statistics and characterizations with the help of differential equations 
and functional equations were developed in detail. Special functions, persistent 
in research and education in mathematics, statistics, and natural sciences, today 
available in the Digital Library of Mathematical Functions and accessible as a 
free Web-based collection of formulas (http://dlmf.nist.gov), cross-linked and 
with live graphics that can be magnified and rotated and downloaded became 
increasingly important in Mathai’s research. New results for theory and applica-
tions of generalized hypergeometric functions, among them Meijer’s G-function 
and Fox’ H-function extended to real scalar functions of matrix argument when 
the argument matrix is real or in the complex domain, became part of Mathai’s 
research. Eventually the full programme for research and education in these 
fields of mathematics and statistics with applications to natural sciences was 
published in a triology of monographs (Mathai & Rathie, 1975; Mathai & Pe-
derzoli, 1977; Mathai & Saxena, 1978; Figure 1). This research and education 
program set the stage for CMS (Figure 15). 

A.M. Mathai was born on 28 April 1935 in Arakulam, near Palai, in the Idukki 
district of Kerala, India as the eldest son of Aley and Arakaparampil Mathai. Af-
ter completing his high school education in 1953 from St. Thomas High School, 
Palai, he joined St. Thomas College, Palai with record marks and obtained his 
B.Sc. degree in Mathematics in 1957. In 1959, he completed his Master’s Degree 
in Statistics from the University of Kerala, Thiruvananthapuram, Kerala, India; 
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he achieved a first class degree, the first rank and a gold medal. Then, he joined 
St. Thomas College, Palai, University of Kerala, as a Lecturer in Mathematics 
and served there until 1961. He obtained a Canadian Commonwealth scholar-
ship in 1961 and went to the University of Toronto, Canada, to complete his M. 
A. degree in Mathematics in 1962. He was awarded a PhD from the University of 
Toronto, Canada, in 1964. Then, he joined McGill University, Canada as an As-
sistant Professor in 1964. From 1968 to 1978, he was an Associate Professor 
there. He became a Full Professor of McGill in 1979 and served the Department 
of Mathematics and Statistics until he took early retirement in 2000. He is also 
the founder of the Canadian Journal of Statistics and the Statistical Science As-
sociation of Canada which became the Statistical Society of Canada. As of this 
date, A. M. Mathai is an Emeritus Professor of Mathematics and Statistics at 
McGill University, Canada (http://www.math.mcgill.ca/people/mathai), and 
Honorary Director of the Centre for Mathematical and Statistical Sciences, India. 
He has published over 300 research papers and more than 25 books on topics in 
mathematics, statistics, physics, astrophysics, and biology (selected titles Figure 
1 to Figure 12). He is a Fellow of the Institute of Mathematical Statistics, Na-
tional Academy of Sciences of India, Indian Society for Probability and Statistics, 
President of the Mathematical Society of India (2015-16), and an Elected Mem-
ber of the International Statistical Institute. He was the Chairman of the Kerala 
State Statistical Commission (2014-2018) and President of the Society for Special 
Functions and their Applications (2018-). He was the principal organizer of the 
elements of Physics and Mathematics in the implementation of the annual 
workshops of the United Nations Basic Space Science Initiative (1991-2012; 
Figure 13), organized by ESA, NASA, and JAXA and hosted by member States 
of the United Nations for the benefit all Member States of the United Nations 
(Mathai & Haubold, 2018a; Pyenson, Mathai, & Haubold, 2019). 

1. Fractional Calculus: Reaction and Diffusion 

Fractional integrals, fractional derivatives and fractional differential equations 
were available only for real scalar variables. The most popular fractional inte-
grals in the literature are Riemann-Liouville fractional integrals given by the fol-
lowing: 

( ) ( ) ( ) ( )11 d , 0,
x

a x a
D f x t f t tαα α

α
−− = − ℜ >

Γ ∫             (1.1) 

where ( )ℜ ⋅  denotes the real part of ( )⋅ . 

( ) ( ) ( ) ( )11 d , 0.
b

x b x
D f t x f t tαα α

α
−− = − ℜ >

Γ ∫              (1.2) 

Here α−  in the exponent of D indicates an integral. The D with positive ex-
ponent ,a x x bD f D fα α  is used to denote the corresponding fractional derivatives. 
Here (1.1) is called Riemann-Liouville left-sided or first kind fractional integral 
of order α  and (2.2) is called Riemann-Liouville fractional integral of order α  
of the second kind or right-sided. If a = −∞  and b = ∞  then (1.1) and (1.2) 
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are called Weyl fractional integrals of order α  and of the first kind and second 
kind, respectively, or the left-sided and right-sided ones. Mathai was trying to 
find an interpretation or connection of fractional integrals in terms of statistical 
densities and random variables. In Mathai (2009), an interpretation is given for 
Weyl fractional integrals as densities of sum (first kind) and difference (second 
kind) of independently distributed real positive random variables having special 
types of densities. Fractional integrals were also given interpretations as fractions 
of total integrals coming from gamma and type-1 beta random variables. Also 
Weyl fractional integrals were extended to real matrix-variate cases there. 

1.1. Mellin Convolutions of Products and Ratios 

Then while working on Mellin convolutions of products and ratios, Mathai 
found that a fusion of fractional calculus and statistical distribution theory was 
possible which also opened up ways of extending fractional calculus to real scalar 
functions of matrix argument, when the argument matrix is real or in the com-
plex domain. Let us consider real scalar variables first. The Mellin convolution of 
a product of two functions ( )1 1f x  and ( )2 2f x  says the following: Consider 
the integral 

( ) ( )2 2 1 2
1 d .

v

ug u f f v v
v v

 =  
 ∫                   (1.3) 

Then the Mellin transform of ( )2 2g u , with Mellin parameter s, is the product 
of the Mellin transforms of 1f  and 2f . That is 

( ) ( ) ( )
2 1 2

,g f fM s M s M s=                   (1.4) 

where 

( ) ( ) ( ) ( )
1 2

1 1
1 1 1 1 2 2 2 20 0

d and d ,s s
f fM s x f x x x f x x M s

∞ ∞− −= =∫ ∫  

whenever they exist. If ( )2 2g u  is written as 

( ) ( )2 2 1 2
1 d

v

ug u f v f v
v v

 =  
 ∫                     (1.5) 

then also the formula in (1.4) holds. Thus, the Mellin convolution of a product 
has the two integral forms in (1.3) and (1.5). But, Mellin convolution of a ratio 
will have four different representations. Two of these are the following: 

( ) ( ) ( )
1 1 21 2g f fM u M s M s= −                     (1.6) 

where 

( ) ( ) ( )1 1 1 2 d
v

g u vf uv f v v= ∫                       (1.7) 

and 

( ) ( ) ( )
1 1 2

2g f fM s M s M s= −                      (1.8) 

where 

( ) ( )1 1 1 22
1 1

d .
v

v vg u f f v v
u u

 
=  

 
∫                      (1.9) 
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1.2. Statistical Interpretations of Mellin Convolutions 

Let 1x  and 2x  be real scalar positive random variables, independently distri-
buted, with densities ( )1 1f x  and ( )2 2f x , respectively. Let 2 1 2u x x=  and  

2
1 2

1

,xu v x
x

= = . Then the Jacobians are 1
v

 and 2
1

v
u

−  respectively or 

1 2 2
1d d d dx x u v
v

∧ = ∧  

and 

1 2 12
1

d d d d .vx x u v
u

∧ = − ∧  

The joint density of 1x  and 2x  is ( ) ( )1 1 2 2f x f x  due to statistical indepen-
dence and then the marginal densities of 2u  and 1u , denoted by ( )2 2g u  and 

( )1 1g u  are the following: 

( ) ( )2
2 2 1 2

1 d
v

ug u f f v v
v v

 =  
 ∫                  (1.10) 

and 

( ) ( )1 1 1 22
1 1

d .
v

v vg u f f v v
u u

 
=  

 
∫                 (1.11) 

In 2u , if 1x  is taken as v then the roles of 1f  and 2f  change in (1.10). If  
1x  in 1u  is taken as v then we get (1.7) with the roles of 1f  and 2f  inter-

changed. Hence 1

2

x
x

 gives two forms and 2

1

x
x

 gives two forms for Mellin  

convolution of ratios. The Mellin convolutions in (1.4) and (1.8) can be inter-
preted in terms of random variables. 2 1 2u x x=  gives  
( ) ( ) ( )1 1 1

2 1 2
s s sE u E x E x− − −=  due to independence where ( )E ⋅  denotes the ex-

pected value. That is, 

( ) ( ) ( )
2

1 1
2 2 2 2 20

d .s s
gE u u g u u M s

∞− −= =∫  

Similarly 

( ) ( ) ( ) ( ) ( )
1 2

1 1 1
1 1 1 1 20

and .s s s
f fE x x f x M s E x M s

∞− − −= = =∫  

This means ( ) ( ) ( )
2 1 2g f fM s M s M s= , which is (1.4) the Mellin convolution 

of a product. Now, consider 2
1

1

xu
x

= . Then ( ) ( ) ( )1 1 1
1 2 1
s s sE u E x E x− − − +=  due to 

statistical independence. This means 

( ) ( ) ( )
1

1 1
1 1 1 1 10

d ,s s
gE u u g u u M s

∞− −= =∫  

( ) ( ) ( )
2

1 1
2 2 2 2 20

ds s
fE x x f x x M s

∞− −= =∫  

and 

https://doi.org/10.4236/ce.2020.113028


H. J. Haubold 
 

 

DOI: 10.4236/ce.2020.113028 372 Creative Education 
 

( ) ( ) ( ) ( ) ( )
1

2 11 1
1 1 1 1 1 1 1 1 10 0

d d 2 .ss s
fE x x f x x x f x x M s

∞ ∞ − −− + − += = = −∫ ∫  

In other words, ( ) ( ) ( )
1 1 2

2g f fM s M s M s= − , which is (1.8), one form of 
Mellin convolution of a ratio. Mellin convolutions of products and ratios make 
direct connection to product and ratio of real positive random variables. 

1.3. Mellin Convolutions, Statistical Densities and Fractional  
Integrals 

Let ( )1 1f x  and ( )2 2f x  be statistical densities as in Section 1.2. Let 1x  have a 
type-1 beta density with parameters ( )1,γ α+  or 

( ) ( )
( ) ( ) ( ) ( ) ( )1

1 1 1 1 1
1

1 ,0 1, 0, 1
1

f x x x xαγγ α
α γ

γ α
−Γ + +

= − ≤ ≤ ℜ > ℜ > −
Γ + Γ

 

and zero elsewhere. In statistical problems, the parameters are real but the inte-
grals hold for complex parameters and hence the conditions are given for com-
plex parameters. Let ( ) ( )2 2 2f x f x=  an arbitrary density. Then the Mellin 
convolution of a product is the following: 

( ) ( )

( )
( ) ( ) ( )

( )
( ) 2

2
2 2 1

1
2 2

2, ,

1 d

1 1 1 1 d
1

1
1

v

v

u

ug u f f v v
v v

u u f v v
v v v

K f

γ α

α
γ

γ α
γ α

γ α
γ

−

−

 =  
 

Γ + +    = −   Γ + Γ    

Γ + +
=

Γ +

∫

∫       (1.12) 

where 

( ) ( ) ( ) ( ) ( )1

2 2

2
2, , 2 d , 0, 1u v u

uK f v v u f v v
γ

αα γ α
γ α γ

α
− − −

>
= − ℜ > ℜ > −
Γ ∫     (1.13) 

is an Erdélyi-Kober fractional integral of order α  and of the second kind with 
parameter γ . This is a direct connection among Erdélyi-Kober fractional 
integral of the second kind, Mellin convolution of a product and statistical den-
sity of product of two independently distributed real scalar positive random va-
riables where one has a type-1 beta density with parameters ( )1,γ α+  and the 
other has an arbitrary density. 

1.4. General Definition for Fractional Integrals 

Motivated by this observation, Mathai has given a new definition for fractional 
integrals of the first and second kinds of order α . Let 

( ) ( ) ( ) ( ) ( )1
1 1 1 1 1 1

1 1 ,0 1, 0f x x x xαφ α
α

−= − ≤ ≤ ℜ >
Γ

 

and ( )1 1 0f x =  elsewhere, and ( ) ( ) ( )2 2 2 2 2f x x f xφ=  where 1φ  and 2φ  are 
pre-fixed functions and ( )2f x  is an arbitrary function, where 1f  and 2f  
need not be statistical densities. Consider the Mellin convolution of a product. 
Then using the same notation as ( )2 2g u  there is 
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( ) ( )

( ) ( ) ( )

2
2 2 1 2

1
2 2

1 2

1 d

1 1 1 d

v

v

ug u f f v v
v v

u u v f v v
v v v

α

φ φ
α

−

 =  
 

   = −   Γ   

∫

∫
 

( ) ( ) ( ) ( )
2

12
1 2 2 d

v u

u v v u v f v v
v

α
αφ φ

α

−
−

>

 = −  Γ ∫           (1.14) 

( ) ( ) ( ) ( )
2

1
2 1 2 2 2

1 d for 1, .
v u

v u f v v x xα αφ φ
α

−

>
= − = =
Γ ∫       (1.15) 

But (1.15) gives a Weyl fractional integral of the second kind of order α . If v 
is bounded above by a constant b then (1.15) is a Riemann-Liouville fractional 
integral of the second kind of order α . Thus, by specifying 1φ  and 2φ  it can 
be seen that all the various definitions of fractional integrals of order α  of the 
second kind can be obtained from (1.14). Evidently when ( )1 1 1x xγφ =  and 
( )2 2 1xφ =  then one has (1.13) or Erdélyi-Kober fractional integral of order α  

of the second kind with parameter γ . 

1.5. First Kind Fractional Integrals 

Let ( )1 1f x  and ( )2 2f x  be as given above in Section 1.4. Consider (1.9), the 
Mellin convolution of a ratio. Then 

( ) ( )

( ) ( ) ( )

1 1 1 22
1 1

1

1 22
1 1 1

d

1 1 d .

v

v

v vg u f f v v
u u

v v v v f v v
u u u

α

φ φ
α

−

 
=  

 

   
= −   Γ   

∫

∫
         (1.16) 

Let ( ) 1
1 1 1x xγφ −=  and 2 1φ = . Then (1.16) reduces to the following form: 

( ) ( ) ( ) ( )
11

11
1 1 1 1, ,d .uv u

ug u v u v f v v K f
γ α

αγ α
γα

− −
− −

<
= − =
Γ ∫         (1.17) 

Then 

( ) ( )
( ) ( ) ( )

1

*
1 1 1, , , 0, 0ug u K fα

γ

γ α
α γ

γ
−Γ +

= ℜ > ℜ >
Γ

         (1.18) 

is a statistical density, when f ia a statistical density. This is an Erdélyi-Kober 
fractional integral operator of the first kind of order α  and parameter γ , de-
noted by 

11, ,uK fα
γ

− . From (1.16), by specializing 1φ  and 2φ  one can get all the 
various definitions of fractional integrals of order α  of the first kind in the real 
scalar case. This formal definition of fractional integrals as Mellin convolutions 
of ratio and product was introduced formally in Mathai (2013). A geometrical 
interpretation of fractional integrals as fractions of integral over a simplex in 
n-space is given in Mathai (2014). 

1.6. Extension of Fractional Integrals to Real Matrix-Variate Case 

Mathai (2009) introduced fractional integrals in the real matrix-variate case but 
they could not be given any physical interpretations. In Mathai (2013) there are 
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interpretations in terms of statistical distribution problem and M-convolutions 
introduced in Mathai (1997) (Figure 11). A meaningful interpretation of 
M-convolutions is given as the densities of product and ratio of matrix-variate 
random variables. 

All the matrices appearing here are p p×  real positive definite matrices, un-
less specified otherwise. The notation jX O>  means the p p×  real symme-
tric matrix, j jX X ′= , is positive definite. 

1
2
jX  means the positive definite 

square root of the positive definite matrix jX . If ( )ijX x=  is m n×  then the 
wedge product of differentials will be denoted by dX , that is, 

1 1
d d

m n

ij
i j

X x
= =

= ∧∏∏  

and it is 1 dp
iji j x

≥ =
∧∏  if m n p= =  and X X ′= . Also,  

( ) ( )d d
B

A A X B
f X X f X X

< <
=∫ ∫  means the integral over all X O>  of the 

real-valued scalar function ( )f X  of X, such that 

, , ,A O B O X A O B X O> > − > − >  where A and B are positive definite con-
stant matrices. Here Jacobians of matrix transformations are needed. These will 
be given as lemmas, without proofs. For proofs and for other such Jacobians see 
Mathai (1997). 

Lemma 1.1. Let ( )ijX x=  be m n×  matrix of distinct real scalar variables 

ijx ’s. Let A be m m×  and B be n n×  nonsingular constant matrices. Then 

d dn mY AXB Y A B X= ⇒ =                    (1.19) 

where ( )⋅  denotes the determinant of ( )⋅ . 
Lemma 1.2. Let X X ′=  be p p× . Let A be a p p×  nonsingular constant 

matrix. Then 
1d d .pY AXA Y A X+′= ⇒ =                    (1.20) 

Lemma 1.3. Let X be a p p×  nonsingular matrix. Let 1Y X −= . Then 

( )

2

1
1

d , for a general
d

d , for

p

p

X X X
Y X Y

X X X X

−

−

− +

= ⇒ = 
′=

          (1.21) 

Lemma 1.4. Let X O>  be p p× . Let ( )ijT t=  be a lower triangular ma-
trix with positive diagonal elements, that is,  

0, , 0, 1, , , ,ij jj ijt i j t j p t i j= < > = −∞ < < ∞ > . Then 

1

1
d 2 d .

p
p p j

jj
j

X TT X t T+ −

=

 
′= ⇒ =  

 
∏                (1.22) 

With the help of (1.22) one can evaluate a matrix-variate gamma integral and 
write the result as 

( )
( )

( ) ( )
1

4 1 1 1,
2 2 2

p p

p
p pα α α α α

− − −   Γ = π Γ Γ − Γ − ℜ >   
   

      (1.23) 

where the real matrix-variate gamma integral is 
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( ) ( ) ( )
1

tr2
1e d ,

2

p
X

pX O

pX Xα α α
+

− −

>

−
= Γ ℜ >∫           (1.24) 

with ( )tr ⋅  denoting the trace of ( )⋅ . Apply Lemma 1.4 to X in the integrand of 
(1.24). Then the integral splits into integrals over jjt ’s and ijt ’s, for i j> , and 
both types of integrals can be evaluated by using a real scalar variable gamma 
integral. Then the final result is that of (1.23). Combining (1.24) and (1.20) one 
can define a matrix-variate gamma density as 

( ) ( )
( ) ( )

1
tr2

1

1e d , , ,
2

0, elsewhere.

p
BX

p

B pX X X O B O
h X

α
α α

α

+
− −

 −
> > ℜ >

= Γ



    (1.25) 

Since the total integral is 1, the identity follows from (1.25), 

( )
( ) ( )

1
tr2

1 1e d , , .
2

p
BX

X O
p

pB X X B Oα α α
α

+
− − −

>

−
≡ > ℜ >
Γ ∫        (1.26) 

This identity will be used to establish fractional derivatives in a class of ma-
trix-variate functions. The real matrix-variate type-1 beta density is defined as 

( )
( )

( ) ( ) ( ) ( )
1 1

2 2

2

1 1, , ,
2 2

0, elsewhere.

p p
p

p p

p pX I X O X I
h X

α βα β
α β

α β

+ +
− −Γ + − −

− < < ℜ > ℜ >= Γ Γ

  

(1.27) 

There is a corresponding type-2 beta density, which is of the form  

( )
( )

( ) ( )
( ) ( ) ( )

1
2

3

1 1, , ,
2 2

0, elsewhere.

p
p

p p

p pX I X X O
h X

α α βα β
α β

α β

+
− − +Γ + − −

+ > ℜ > ℜ >= Γ Γ



 

(1.28) 

1.7. Fractional Integrals for the Real Matrix-Variate Case 

With the preliminaries in Section 1.6 one can define fractional integrals in the 
real matrix-variate case. Let 1X O>  and 2X O>  be p p×  real ma-

trix-variate random variables, independently distributed. Let 
1 1
2 2

2 2 1 2U X X X=  be 

defined as the symmetric product of 1X  and 2X  and let 
1 1

12 2
1 2 1 2U X X X−=  be 

defined as the symmetric ratio of 2X  over 1X . Let 2V X= . Then with the 
help of the above lemmas one can show that, ignoring sign, 

( )1 1 1
2 21 2 2 1 2 1 1d d d d ,d d d d .

p p pX X V U V X X V U U V
+ +

− − +∧ = ∧ ∧ = ∧   (1.29) 

Denoting the densities of 2U  and 1U  as ( )2 2g U  and ( )1 1g U , one can 
compute these by using the densities ( )1 1f X  and ( )2 2f X  through transfor-
mation of variables and they will be the following: 

( ) ( )
1 11
2 222 2 1 2 2 d

p

V
g U V f V U V f V V

+ − −−  
=  

 
∫          (1.30) 
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and 

( ) ( ) ( )
1 11 1 12 221 1 1 1 1 2 d .

p p

V
g U V U f V U V f V V

+
− + − 

=  
 

∫         (1.31) 

Let ( )1 1f X  be a type-1 beta density of the type in (1.27) with parameters 

1,
2

pγ α+ + 
 

. Note that in (1.27) the parameters are ( ),α β . Then ( )2 2g U  

will be of the following form: 

( ) ( ) ( )
2

2

1
2 22 2 2

2, ,

1
2 d

1
2
1

2 .
1

2

p p

V U
p

p

p

U

p

p
U

g U V V U f V V
p

p

K f
p

γ
α γ α

α
γ

γ α

αγ

γ α

γ

+
− − −

>

−

+ Γ + + 
 = −

+ Γ Γ + 
 

+ Γ + + 
 =

+ Γ + 
 

∫

 (1.32) 

This 
22, ,UK fα
γ

−  in (1.32) for 1p =  is an Erdélyi-Kober fractional integral of 
the second kind of order α  and parameter γ  and hence Mathai called the 
integral as Erdélyi-Kober fractional integral of order α  and parameter γ  of 
the second kind in the real matrix-variate case. In a similar fashion, 
Erdélyi-Kober fractional integral of order α  of the first kind with parameter γ , 
available from (1.31) by taking ( )1 1f X  as a real matrix-variate type-1 beta with 
parameters ( ),γ α  is the following: 

( ) ( )
1 1

1
1 21, , 1 d .

p

U V U
p

U
K f V U V f V V

γ α
γ αα

γ α

− − +
−−

<
= −
Γ ∫          (1.33) 

The density of 1U , again denoted by ( )1 1g U , is given by 

( ) ( )
( ) 11 1 1, ,

p
U

p

g U K fα
γ

γ α
γ

−Γ +
=

Γ
                 (1.34) 

where the first kind Erdélyi-Kober fractional integral in the matrix-variate case 
is given in(1.33). The above notations as well as a unified notation for fractional 
integrals and fractional derivatives were introduced by Mathai (2013, 2014, 
2015). 

The above results in the real matrix-variate case are extended to complex ma-
trix-variate cases, see Mathai (2013), to many matrix-variate cases, see Mathai 
(2014) and also the corresponding fractional derivatives in the matrix-variate 
case are worked out in Mathai (2015). The matrix differential operator intro-
duced in Mathai (2015) is not a universal one, even though it works on some 
wide classes of functions. The matrix differential operator is introduced through 
the following symbolic representation. Let D be a differential operator defined 
for real matrix-variate case. Then Dα  and D α−  represent αth order fractional 
derivative and fractional integral respectively. Then 

( ) ( ) ( )1 1, 1,2, , , .
2 2

nn p pD f D D f n nαα α α− − − −
= = ℜ − > ℜ >  
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This is the αth order fractional derivative in Riemann-Liouville sense. Con-
sider 

( ) ( ) ( )1 1, 1,2, , ,
2 2

n n p pD f D D f n nαα α α− − − −
= = ℜ > ℜ − >  

is the αth order fractional derivative in the Caputo sense. In the Caputo case, 
nD  operates on f first and then the fractional integral ( )nD α− −  is taken, whe-

reas in the Riemann-Liouville sense, the ( )n α− th order fractional integral is 
taken first and then nD  operates on this. A universal differential operator D in 
the real as well as complex matrix-variate case is still an open problem for fur-
ther research. 

2. Krätzel Integral: Thermonuclear Functions 

Let x be a real scalar positive variable. Consider the integrals 
1

1 0
e d , 0, 0, 0, 0ax bxI x x a b

δ ργ δ ρ
∞ − − −= > > > >∫            (2.1) 

and 
1

2 0
e , 0, 0, 0, 0.ax bxI x a b

δ ργ δ ρ
−∞ − − −= > > > >∫            (2.2) 

Structures such as the ones in (2.1) and (2.2) appear in many different areas. 
This (2.2) for 1, 1δ ρ= =  is the basic Krätzel integral, see Krätzel (1979). For 

1ρ =  and general 0δ >  is the generalized Krätzel integral. An integral trans-
form of the form 

( )1

3 0
e dax bxI f x x

−∞ − −= ∫                     (2.3) 

where ( )f x  is arbitrary so that 3I  exists, is known as Krätzel transform. Ma-
thai has investigated various aspects of (2.1) and (2.2) in detail and he has also 
introduced a statistical density in terms of Krätzel integral. The structures in (2.2) 
and (2.1) can be generated as Melin convolutions of product and ratio. Consider 
the real scalar variables 1x  and 2x  and the corresponding functions ( )1 1f x  
and ( )2 2f x . Then it is seen from (1.10) that the Mellin convolution of a prod-
uct is given by 

( ) ( ) ( ) ( ) ( )
2 1 2

2
2 2 1 2

1 d and g f fv

ug u f f v v M s M s M s
v v

 = = 
 ∫      (2.4) 

or 2 1 2 2,u x x v x= = , and the Mellin convolution of a ratio, from (1.7), as 

( ) ( ) ( ) ( ) ( ) ( )
1 1 21 1 1 1 2 d and 2g f fv

g u vf u v f v v M s M s M s= = −∫      (2.5) 

or 1
1 2

2

,xu v x
x

= = . Let 1f  and 2f  be generalized gamma functions of the form 

( ) 1e , 0, 0, 0, 1,2.
j

jj ja x
j j j j j jf x x x a j

β
α β−−= > > > =          (2.6) 

Then ( )1 1g u  of (2.5) reduces to the form 

( ) ( ) 1 21 1 21 1 21 1
1 1 1 0

e d .a u v a vg u u v v
β βα α α∞ − −− + −= ∫              (2.7) 
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This is the form in (2.1). Now, consider Mellin convolution of a product when 

1f  and 2f  are generalized gamma functions in (2.6). Then ( )2 2g u  reduces to 
the form 

( )
1

2 21 2
1 2 11 1

2 2 2 0
e d .

u
a a v

vg u u v v
β

β
α α α

 − − ∞− − −  = ∫               (2.8) 

This is the form in (2.2). Hence (2.1) and (2.2) can be treated as Mellin con-
volutions of ratio and product when 1f  and 2f  are generalized gamma func-
tions. 

Note that if 1f  and 2f  are multiplied by the corresponding normalizing 
constants 1c  and 2c  then 1f  and 2f  become statistical densities. Let 1x  
and 2x  be independently distributed real scalar positive random variables. Let  

1
2 1 2 1 2

2

, ,xu x x u v x
x

= = = . Then the densities of 2u  and 1u  are given by (2.4)  

and (2.5) multiplied by the appropriate constants and reduce to the forms in (2.8) 
and (2.7), multiplied by appropriate constants. In other words, (2.1) and (2.2), 
multiplied by appropriate constants, can be looked upon as the density of a ratio 
and product respectively. 

The integrand in (2.2) for 11, 1,
2

δ ρ γ= = = −  and normalized is the inverse 

Gaussian density available in stochastic processes. The integral in (2.2) for 
11,
2

δ ρ= =  is the basic reaction-rate probability integral, which will be consi-

dered later. Mathai (2012) has introduced a Krätzel density associated with (2.1)  
and (2.2) and it is shown that one has general Bayesian structures in (2.1) and 
(2.2). For example, let us consider a conditional density of y, given x, in the form 

( )1 1̂|  e , 0, 0, 0
ya
xh y x c y y x a

ρ

α
 −  
 = > > >             (2.9) 

and 1̂c  can act as the normalizing constant. In other words, the conditional 
density is a generalized gamma density. Let the marginal density of x be given by 

( ) 1
2 2ˆ e , 0, 0, 0a xh x c x a x

δβ δ−= > > > , and 2ĉ  can act as a normalizing constant, 
a generalized gamma density. Then the joint density of y and x is given by 

( ) ( ) 1

1 2 1 2ˆ ˆ| e .
ya x a
xh y x h x c c y x

ρ
δ

α β
 − −  
 =                (2.10) 

Then the unconditional density of y, ( )yf y , is available by integrating out x 
from this joint density. That is, 

( )
1

1 2 0
ˆ ˆ e d .

ya x a
x

yf y c c y x x
δ

δ
δα β

− −∞
= ∫                  (2.11) 

Now, compare (2.2) and (2.11). They are of one and the same forms. Hence 
(2.2), multiplied by an appropriate constant, can be considered as an uncondi-
tional density in a Bayesian structure. 

For 1, 1δ ρ= =  in (2.1) and (2.2) one can extend the integrals to the real and 
complex matrix-variate cases. Mathai has also looked into this problem of 
Krätzel integrals in the matrix-variate cases. There will be difficulty with the Ja-
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cobians if one considers general parameters δ  and ρ  in the matrix-variate 
case. The type of difficulties that can arise is described in Mathai (1997) by con-
sidering the transformation 2Y X=  when X X ′= . In the real matrix-variate 
case the scalar quantity xγ  is replaced by the determinant X γ  and exponent 
e ax−  is replaced by ( )tre a X−  for X O>  or ( )tre AX−  if a is also replaced by a 
positive definite constant matrix A O> . Mathai has also extended Baysian 
structures, densities of product and ratio, inverse Gaussian density, Krätzel 
integral and Krätzel density, to matrix-variate cases. When the matrix is in the 
complex domain X  is replaced by ( )det X  = absolute value of the determi-
nant of X , where X  is a matrix in the complex domain. 

3. Pathway Model: Entropy, Probability, Dynamics 

In a physical system the stable solution may be exponential or power function or 
Gaussian. This is the idealized situation. But in reality the solution may be 
somewhere nearby the ideal or the stable situation. In order to capture the ideal 
situation as well as the neighboring unstable situations, a model with a switching 
mechanism was introduced by Mathai (2005). A form of this was proposed in 
the 1970’s by Mathai in connection with population studies. This was a scalar 
variable case. Then the ideas were extended to matrix-variate cases and brought 
out in 2005. For the real scalar positive variable situation, the model is the fol-
lowing: 

( ) ( ) 1
1 1 1 1 , 0, 0, 1, 0, 0.qp x c x a q x a q x

η
γ δ δ η− = − − > > < > >        (3.1) 

If (3.1) is to be used as a statistical density then 1c  is the normalizing con-
stant there. Otherwise 1c  is a constant, may be 1 1c =  and then (3.1) will be a 
mathematical model. For 1q >  we can write ( )1 1q q− = − −  and then (3.1) 
becomes 

( ) ( ) 1
2 2 1 1 , 0, 0, 1.qp x c x a q x a x q

η
γ δ −

− = + − > > >           (3.2) 

When 1q →  then ( )1p x  and ( )2p x  go to 

( )3 3 e , 0, 0.a xp x c x a x
δγ η−= > >                 (3.3) 

Note that ( )1p x  in (3.1) is in the family of generalized type-1 beta family of 
functions, whereas ( )2p x  is in the family of generalized type-2 beta family of 
functions and ( )3p x  belongs to the generalized gamma family of functions. 
Thus, when the pathway parameter q, goes from −∞  to 1 we have one family 
of functions, when q is from 1 to ∞  we have another family of functions and 
when 1q →  we have a third family of functions. Thus, all the three cases are 
contained in (3.1), which is the pathway model for the real positive scalar varia-
ble case. Replace x by || x , x−∞ < < ∞ , to extend the families over the real 
line. 

When ( ) ( ) ( )1 2 3, ,p x p x p x  are statistical densities, then (3.1) to (3.3) give a 
distributional pathway. Mathai has also established a parallel pathway in terms 

https://doi.org/10.4236/ce.2020.113028


H. J. Haubold 
 

 

DOI: 10.4236/ce.2020.113028 380 Creative Education 
 

of entropy optimization and in terms of differential equations. These give en-
tropic and differential pathways as well. For example, consider the optimization 
of Mathai’s entropy, namely 

( )
( )

1

d 1
, 1, 0, 1

1

q

x
f x x

M f q q
q

η
η

α η η

+ −

−  = ≠ > < +
−

∫         (3.4) 

where ( )f x  is a density function of x, and x can be real scalar or vector or ma-
trix variable. A density means that ( ) 0f x ≥  for all x and ( )d 1

x
f x x =∫ . If one 

takes the limit when 1q →  then (3.4), for real scalar x, reduces to 

( ) ( ) ( ) ( )1 ln d
x

M f f x f x x S fα η
→ − =∫                 (3.5) 

where ( )S f  is Shannon’s entropy or measure of “uncertainty’’ or the com-
plement of “information’’. In (3.5), ( ) ( )ln d

x
f x f x x∫  is taken as zero when 

( ) 0f x = . Consider the optimization of (3.4) subject to the conditions (a): 
( ) ( )1 d fixedq

x
x f x xγ δ− + =∫  and (b): ( ) ( )1 d fixedq

x
x f x xγ − =∫ . For 0γ = , condi-

tion (b) becomes ( )d 1
x

f x x =∫  since the total probability is 1. For 0, 1γ δ= = , 
(a) means that the first moment is fixed. This can correspond to the physical law 
of conservation of energy when dealing with energy distribution. If one uses 
calculus of variation to optimize (3.4) then the Euler equation is 

( ) ( )
1

1 1
1 2 0

q
q qf x f x f

f

η
γ γ δη λ λ

+ −
− − +

 ∂
− + = 

∂   
             (3.6) 

where 1λ  and 2λ  are Lagrangian multipliers. Note that (3.6) gives the struc-
ture 

( )
1

1
1 21

q
qf x xγ δη µ µ

−
−  = −   

for some 1µ  and 2µ , which means 

1
1 21 qf x x

η
γη δγ γ − = −                       (3.7) 

for some 1γ  and 2γ . For ( )2 1a qγ = −  and 1 1cγ =   one has the model in (3.1) 
with γη  replaced by γ . Thus, for 1, 1, 1q q q< > →  one has an entropic 
pathway. Similarly one can consider the corresponding differential equations to 
obtain a differential pathway. 

The original paper Mathai (2005) deals with rectangular matrix-variate case. 
Let ( )ijX x=  be ,m n m n× ≤  and of rank m be a matrix of distinct real scalar 
variables ijx ’s. Let A be m m×  and B be n n×  constant positive definite ma-
trices. Consider the function 

( ) ( )
1

1
1 1 1 , 1, 0qP X C AXBX I a q AXBX q aγ

−′ ′= − − < >         (3.8) 

where 0, 1a q> <  are scalars, I is a m m×  identity matrix and 1C  is a con-
stant. If (3.8) is to be taken as a density then 1C  is the normalizing constant 
there. For 1q > , ( )1P X  goes to 
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( ) ( )
1

1
2 2 1 , 1, 0qP X C AXBX I a q AXBX q aγ −

−′ ′= + − > >         (3.9) 

and when 1q → , ( )1P X  and ( )2P X  go to 

( ) ( )tr
3 3 e , 0.a AXBXP X C AXBX aγ ′−′= >              (3.10) 

If a location parameter matrix is to be introduced then replace X by X M−  
where M is a m n×  constant matrix. 

Note that the structure AXBX ′  is the structure of the volume content of a 
parallelotope in Euclidean n-space. Look at the m rows of X. These are 1 n×  
vectors. These can be taken as m points in n-dimensional Euclidean space. These 
m vectors, m n≤ , are linearly independent when the rank of X is m. These tak-
en in a given order can form a convex hull and a m-parallelotope. The volume of  

this m-parallelotope is the determinant 
1
2XX ′ . Hence 

1
2AXBX ′  is the volume  

content of a generalized m-parallelotope. 
Also AXBX ′  is a generalized quadratic form. For mA I=  and 1m =  it is a 

quadratic form in the 1 n×  vector variable. Thus the theory of quadratic form 
and generalized quadratic form can be extended to a wider class represented by 
the pathway model (3.8). The current theory of quadratic form and bilinear form 
in random variables is confined to samples coming from a Gaussian population, 
see Mathai and Provost (1992), Mathai, Provost and Hayakawa (1995) (Figure 
10). The results on quadratic and bilinear forms can now be extended to the 
wider class of pathway models. One problem in this direction is discussed in 
Mathai (2007). The matrix-variate pathway model in Mathai (2005) is extended 
to complex domain in Mathai and Provost (2005, 2006). Some works in the sca-
lar complex variable case, associated with normal or Gaussian population, are 
available in the literature with applications in sonar, radar, communication and 
engineering problems. Some applications of hermitian forms, corresponding to 
the quadratic forms in Mathai and Provost (1992), in light scattering and quan-
tum mechanics are also available in the literature. 

Note that (3.8) for 1, 0a q= =  is a matrix-variate type-1 beta density or 
AXBX ′  is a type-1 beta matrix. This is the exact form of the matrix appearing 

in the generalized analysis of variance and design of experiments areas, in the li-
kelihood ratio test involving one or more multivariate normal or Gaussian pop-
ulations etc, a summary of the contributions of Mathai and his co-workers is 
available from Mathai and Saxena (1973). The theory available there is based on 
Gaussian populations. Now, generalized analysis of variance can be examined in 
a wider pathway family so that the limiting form corresponding to (3.10), will be 
the Gaussian case. 

While exploring a reliability problem, Mathai (2003) came across a multiva-
riate family of densities, which could be taken as a generalization of type-1 Di-
richlet family of densities. Then Mathai and his co-workers introduced several 
generalizations of type-1 and type-2 Dirichlet densities, see for example Thomas 
and Mathai (2009). For the different generalizations of type-1 and type-2 Di-
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richlet family, a number of characterization results are established showing that 
these models could also be generated by products of statistically independently 
distributed real scalar random variables. This is exactly the same structure avail-
able in the likelihood ratio criteria in the null cases of testing hypotheses on the 
parameters of one or more Gaussian populations as well as in the determinant 
AXBX ′  or in the model (3.8) for 1, 0a q= = . Thus, it is already shown that 

these three areas are connected. 
In (3.1) if one puts 0, 1γ δ= =  then one gets Tsallis statistics in non-extensive 

statistical mechanics. Also, (3.2) for 1δ =  as well as for some general 0δ >  is 
superstatistics (Beck, 2004; Cohen, 2004). (3.2) and its limiting form (3.3) are 
covered in superstatistics but (3.1) is not covered because superstatistics consid-
erations deal with a conditional density of generalized gamma form as well as 
the marginal density a generalized gamma form then the unconditional density, 
which is superstatistics in statistical terms from a Bayesian point of view, can 
only produce a type-2 beta form, namely (3.2) form and not (3.1) form. Thus, 
superstatistics is also a special case of the pathway model in the real scalar posi-
tive variable case. 

In the pathway idea itself there is an open area which is not yet explored. The 
scalar version of the pathway model in (3.1) to (3.3) can be looked upon as the 
behavior of a hypergeometric series 1 0F  (binomial series) going to 0 0F  (ex-
ponential series). That is, 

( ) ( )
1

1
1 0

1 ;  ; 1 1 1 .
1

qF a q x a q x
q

δ δ −
   − − = − −   − 

          (3.11) 

( ) ( )1 0 0 01

1lim ;  ; 1 e   ;  ; .
1

ax

q
F a q x F ax

q
δδ δ

−

−

→

 
− − = = − − 

       (3.12) 

From the point of view of a hypergeometric series, the process (3.11) to (3.12) 
is the process of a binomial series going to an exponential series. But a Bessel se-
ries 0 1F  can also be sent to an exponential series. For example, consider the 
Bessel series 

( )0 1 0 01

1lim   ; ; e   ;  ; .
1 1

ax

q

aF x F ax
q q

δδ δ

−

−

→

 
− = = − − − 

       (3.13) 

Therefore, a generalized form, covering the path towards the exponential form 

e axδ− , is also a Bessel form 0 1
1  ; ;

1 1
aF x

q q
δ 

− − − 
. This path of a Bessel form 

going to an exponential form can produce a large variety of results. This area has 
open problems for further research. 

4. Special Functions of Matrix Argument 
A multivariate function usually means a function of many scalar variables. This 
is different from a matrix-variate function or a function of matrix argument. 
Functions of matrix argument are real-valued scalar functions ( )f X  where X 
is a square or rectangular matrix. For example, for a p p×  matrix X, X  = 
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determinant of X, ( )tr X  = trace of X are real-valued scalar functions when X is 
real. Even for a square p p×  matrix X, the square root cannot be uniquely 
determined unless further conditions are imposed on X. If one uses the defini-

tion, 2A BB B= =  then 
1
2B A=  the square root of A, one can have many 

candidates for B. For example, for a simple matrix like a 2 2×  identity matrix 

2A I= , 1 2 3, , ,B B B   are square roots: 

1 2 3

1 0 1 0 1 0 1 0
, , , .

0 1 0 1 0 1 0 1
A B B B

−       
= = = =       −       

 

If one restricts A and 
1
2A  to be positive definite matrices then 3B  is the 

only candidate here. Hence, if X is p p×  real positive definite or Hermitian 

positive definite then 
1
2X  can be uniquely defined. Therefore, functions of 

matrix argument are developed mainly when the argument matrix is either real 
positive definite or Hermitian positive definite. There are three approaches 
available in the literature for functions of matrix argument, that is, real-valued 
scalar functions ( )f X  of matrix argument X. For convenience, all the matrices 
appearing in this section are p p×  positive definite denoted by X O> , real or 
Hermitian, unless stated otherwise. One definition is through Laplace and in-
verse Laplace transforms. This development is due to Herz (1955) and others. 
Here the basic assumption of functional commutativity is used, that is, 
( ) ( )f AB f BA=  even if AB BA≠ . For example, determinant and trace will 

satisfy this property. When X is real symmetric then there exists an orthonormal 
matrix Q such that ( )1, , diag , , pQQ I Q Q I Q XQ D λ λ′ ′ ′= = = =   where 

1, , pλ λ  are the eigenvalues of X. Then 

( ) ( ) ( ) ( ) ( )f X f XI f XQQ f Q XQ f D′ ′= = = =            (4.1) 

or ( )f X , which is a function of ( )1 2p p +  real variables ijx ’s, when X X ′=  
and real, has become a function of D which is of p real variables 1, , pλ λ , un-
der this assumption of functional commutativity. If ( ) ,ijX x X p p′= = ×  and 

( ) ,ijT t T p p′= = ×  then 

( )
1

tr 2 .
p

jj jj ij ij
j i j

XT x t x t
= <

= +∑ ∑                   (4.2) 

Therefore 
( ) ( ) ( )tre dTX

fX O
f X X L T−

>
≠∫                  (4.3) 

the Laplace transform of ( )f X  because (4.3) is not consistent with the defini-
tion of multivariate Laplace transform. In (4.2) the non-diagonal terms appear 
twice. In the multivariate Laplace transform, the variables and the corresponding 
parameters must appear only once each. If one considers a modified parameter 
matrix ( )* * * *,ij ij jiT t t t= =  for all i and j, and 

( )*
,

, ,1 ,
2

ii

ij ij
ij

t i j
t T t T

t i j

=
 ′= = =

≠

                  (4.4) 

https://doi.org/10.4236/ce.2020.113028


H. J. Haubold 
 

 

DOI: 10.4236/ce.2020.113028 384 Creative Education 
 

then 
( ) ( ) ( )

*tr *e d
T X

fX O
f X X L T

−

>
=∫                 (4.5) 

is the Laplace transform in the real symmetric positive definite matrix-variate 
case, where *T  is the parameter matrix and dX  stands for the wedge product 
of the ( )1 2p p +  differentials d ijx ’s or 

d d .ij
i j

X x
≥

= ∧∏                           (4.6) 

Under this approach, a hypergeometric function of matrix argument, denoted 
by 

( )1 1, , ; , , ; ,r s r sF a a b b X   

where 1, , ra a  and 1, , sb b  are scalar parameters and X is a p p×  real 
positive definite matrix, is defined by a Laplace and inverse Laplace pair. Under 
this definition, explicit forms are available only for 0 0F  and 1 0F . Details of the 
definition and properties may be seen from Herz (1955) and from Mathai (1997). 

The second approach is through zonal polynomials, developed by James (1961) 
and Constantine (1963). Here also functional commutativity is implicitly as-
sumed, though not stated explicitly. Under this definition, a hypergeometric se-
ries is defined as follows: 

( ) ( ) ( )
( ) ( )

( )1
1 1

0 1

, , ; , , ;
!

r KK K
r s r s

k K sK K

a a C X
F a a b b X

b b k

∞

=

= ∑∑


 



        (4.7) 

where ( )KC X  are zonal polynomials of order k,  
( )1 1 2, , ,p pK k k k k k k= + + + =   and 

( ) ( ) ( ) ( ) ( )0
1

1 and 1 1 , 0, 0.
2 j

j

p

jK k
j k

ja a b b b b k b b
=

− = − = + + − = ≠ 
 

∏   (4.8) 

Here ( )
jkb  is the Pochhammer symbol and ( )Ka  is the generalized Poch-

hammer symbol. All terms of the series in (4.7) are explicitly available but since 
zonal polynomials are complicated to compute, only the first few terms up to 

11k =  are computed. Details of zonal polynomials may be found, for example 
from the book Mathai, Provost and Hayakawa (1995). The definition through 
(4.5) and its inverse Laplace form and the definition through (4.7) are not very 
powerful in extending results in the univariate case to the corresponding ma-
trix-variate case. When (4.7) is used to extend univariate results to matrix-variate 
cases the following two basic results will be essential. These will be stated here as 
lemmas without proofs. 

Lemma 4.1. 

( ) ( ) ( ) ( )
1

tr 12e d ,
p

ZX
K K pX O

X C XT X Z C TZ Kα α α
+

− −− −

>
= Γ∫       (4.9) 

where 

( )
( )

( )( )
1

4

1

1,
2

p p p

p j p K
j

jK kα α α α
−

=

− Γ = π Γ + − = Γ 
 

∏       (4.10) 
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with ( )Kα  defined in (4.8). 
Lemma 4.2. 

( ) ( ) ( )
( ) ( )

1 1
2 2

,
d .

,

p pI p p
K KO

p

K
X I X C TX X C T

K
α β α β

α β

+ +
− − Γ Γ

− =
Γ +∫     (4.11) 

Starting from 1970, Mathai developed functions of matrix argument through 
M-transforms and M-convolutions. Under M-transform definition, a hyper-
geometric function r sF  with p p×  matrix argument X O>  is defined as 
that class of functions ( )f X  satisfying functional commutativity and the 
integral equation 

( ) ( )
( )
( )

( )
1

12

1

1d ,
2

r
p p jj

p sX O
p jj

a pX f X X C
b

ρ ρ
ρ ρ

ρ

+
− =

>
=

Γ − −
− = Γ ℜ >

Γ −

∏
∫ ∏

   (4.12) 

where 

( )
( )

1

1

.
s

p jj
r

p jj

b
C

a
=

=

Γ
=

Γ

∏
∏

 

For example 

( ) ( ) ( ) ( ) ( )
1

tr2
1d , e .

2

p
X

pX O

pX f X X f Xρ ρ ρ
+

− −

>

−
− = Γ ℜ > ⇒ − =∫   (4.13) 

Since the left side in (4.12) is a function of only one parameter ρ , one cannot 
normally recover ( ) ( )f X f D=  a function of p scalar variables. It is conjec-
tured that when ( )f X  is analytic in the cone of positive definite matrices 
X O> , one has ( )f X  uniquely recovered from the right side of (4.12). This is 

not established yet and also an explicit form of an inverse or ( )f X  through 
the right-side of (4.12) is an open problem. But (4.12) is the most convenient 
form to extend univariate results on hypergeometric functions to the corres-
ponding class of matrix-variate cases. In general, when one goes from a univa-
riate case, such as a univariate function e x− , to a multivariate case, there is 
nothing called a unique multivariate analogue. Whatever be the properties of the 
univariate function that one wishes to preserve in the multivariate analogue, one 
may be able to come up with different functions as multivariate analogues of a 
univariate function. Hence, a class of multivariate analogues is more appropriate 
than a single multivariate analogue. Properties of M-transforms and properties 
of hypergeometric family coming from (4.12) are available in the book Mathai 
(1997). When Mathai introduced M-convolutions and M-transforms, details in 
Mathai (1997), no physical meaning could be found. Now, a physical interpreta-
tion is available for M-convolutions as densities of products and ratios of matrix 
random variables, as illustrated in Sections 1.7. 

5. Geometric Probabilities: Probability Density Function 

The work until 1999 is summarized in Mathai (1999a). The work started as an 
off-shoot of the work in multivariate statistical analysis. Mathai noted that the 
moment structure for many types of random geometric configurations was that 
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of product of independently distributed type-1 beta, type-2 beta or gamma ran-
dom variables. Such structures were already handled by Mathai and his 
co-workers in connection with problems in multivariate statistical analysis. Ear-
lier contributions of Mathai in this area are available from Chapter 4 of the book 
Mathai (1999a). Then Ruben, a colleague of Mathai at McGill University, one 
day gave a copy of his paper showing a conjecture in geometrical probabilities, 
called Miles’ conjecture about a re-scaled, relocated random volume, generated 
by uniformly distributed random points in n-space, as asymptotically normal 
when n →∞ . The proof was very roundabout. Mathai noted that it could be 
proved easily with the help of the asymptotic expansions of gamma functions. 
This paper was published in Mathai (1982). Then Mathai formulated and proved 
parallel conjectures regarding type-1 beta distributed, type-2 beta distributed 
points and gamma distributed random points and published a series of papers. 
Then Mathai noted that many European researchers were working on distances 
between random points, and random areas when the random points are in par-
ticular shapes such as triangles, parallelograms, squares, rhombuses etc. As ge-
neralizations of all these classes of problems, Mathai generalized Buffon’s 
clean-tile problem, the starting point of geometrical probabilities. He considered 
placing a ball at random in a pyramid with polygonal base, defining “at random’’ 
in terms of kinematic measure, Mathai (1999c). When mixing geometry with 
probability or measure theory, or in the area of stochastic geometry, the basic 
axioms of probability are not sufficient, as pointed out by Bertrand’s or Russell’s 
paradoxes. We need an additional axiom of invariance under Euclidean motion. 
Another contribution of Mathai in this area is Mathai (1999b) where he has 
shown that the usual complicated procedures coming from integral geometry 
and differential geometry are not necessary for handling certain types of random 
volumes but only the simple properties of functions of matrix argument and Ja-
cobians of matrix transformation are sufficient. The procedure is illustrated in 
the distribution of volume content of parallelotope generated by random points 
in Euclidean n-space. The work on geometrical probabilities is currently pro-
gressing in the areas of random sets, image processing etc. The book, Mathai 
(1999a), only deals with distributional aspects of random geometric configura-
tions. 

As an application of geometrical probabilities, Mathai and his co-authors 
looked into a geography problem of city designs of rectangular grid cities, as in 
North America, versus circular cities as in Europe, with reference to travel dis-
tance, and the associated expense and loss of time, from suburbs to city core, see 
Mathai (1998), Mathai and Moschopoulos (1999a). 

6. Astrophysics: Solar Neutrinos 

After publishing the books Mathai and Saxena (1973, 1978) physicists were using 
results in special functions in their physics problems. HJH came to Montreal, 
Canada in 1982 with open problems on reaction-rate theory, solar models, solar 
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neutrinos, and gravitational instability. The idea was to get exact analytical re-
sults and analytical models where computations and computer models were 
available. Mathai figured out that the problems connected with reaction-rate 
theory and solar neutrinos could be tackled once the following integral was eva-
luated explicitly (Critchfield, 1972; Fowler, 1984): 

1
21

0
e d , 0, 0.ax bxI x x a bγ

−∞ − − −= > >∫                  (6.1) 

The corresponding general integral is 

( ) 1
0

, , , , e d , 0, 0, 0, 0.ax bxI a b x x a b
δ ργγ δ ρ δ ρ

−∞ − − −= > > > >∫        (6.2) 

In 1982 Mathai could not find any mathematical technique of handling (6.2) 
or its particular case (6.1). He noted that (6.2) could be written as a product of 
two integrable functions and thereby as statistical densities by multiplying with 
appropriate normalizing constants. Then the structure in (6.2) could be con-
verted into the form 

( ) ( )1 20

1, , , , duI a b f f v v
v v

γ δ ρ
∞  =  

 ∫                  (6.3) 

and the right side of (6.3) is the density of a product of two real scalar positive 
independently distributed random variables with densities ( )1 1f x  and ( )2 2f x  
respectively with 1 2 2,u x x v x= = . Take 

( ) ( )1 2
1 1 1 2 2 2 2e , e , 0, 0, 0, 0x axf x c f x c x x a

ρ δγ δ ρ− −= = > > > >  

where 1 2,c c  are normalizing constants. When 1 2u x x=  the density of u, de-
noted by ( )g u , is given by 

( ) 1 2 0

1 e d , .av bvg u c c v v b u
v

δ ργ ρ−∞ − −= =∫                 (6.4) 

Now, it is only a matter of evaluating the density ( )g u  by using some other 
method. Note that 1 2u x x=  where 1x  and 2x  are independently distributed 
means 

( ) ( ) ( )1 1 1
1 2

s s sE u E x E x− − −=  

where ( )E ⋅  denotes the expected value of ( )⋅ . Then for (6.4) 

( ) ( )11 1
1 1 1 1 10

1e d , 0xs s sE x c x x c s
ρ

ρ ρ
∞ −− −  

= = Γ ℜ > 
 

∫  

which also shows that 1 1
c ρ

ρ

=
 

Γ 
 

 since ( )1
1
sE x −  at 1s =  is 1. Evaluations of 

1c  and 2c  are not necessary for our procedure to hold. 

( ) ( )21 1 2
2 2 2 20

e d , 0.
s

axs s c sE x c x x a s
δ

γ
γ δγ γ

δ δ

+ − ∞ −− + −  + = = Γ ℜ + > 
 ∫  

Therefore 
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( )1 1 2 .
s

s c c s sE u a a
γ
δ δγ

δρ ρ δ
− −−   + = Γ Γ   

  
 

Hence ( )g u  is available from the inverse Mellin transform. That is, 

( )
1

1 2 1 d , 0, 1.
2

s
c i

c i

c c s sg u a a u s c i
i

γ
δ δγ

δρ ρ δ

−
− + ∞

− ∞

   + = Γ Γ > = −    π     
∫    (6.5) 

Comparing (6.4) with (6.5) the required integral is given by the following: 

( )
11

2,0
0,20

1 10, , ,

1 1, , , , e d .av bvI a b v v H a b
v

a

δ ργ ρδ
γ

γδ
ρ δ δ

γ δ ρ
δρ

−∞ − −

   
   

  

 
 

= =  
 
 

∫  

The right side of (6.6) is a H-function.  

For the reaction-rate probability integral, 1δ =  and 1
2

ρ = . In this case, the  

H-function in (6.6) reduces to a G-function and explicit computable series forms 
are also given by Mathai and his co-workers. Problems considered were resonant 
reactions, non-resonant reactions, depleted case, and high energy tail cut off. A 
summary of the work until 1988 is available in the research monograph Mathai 
and Haubold (1988). After publishing papers in physics by using statistical tech-
niques it was realized that the density of a product of independently distributed 
real positive random variables was nothing but the Mellin convolution of a 
product. Hence, one could have applied Mellin and inverse Mellin transform 
techniques there. The work in this area of reaction-rate also resulted in two en-
cyclopedia articles, see Haubold and Mathai (1997, 1998). 

Analytic Solar Models 

Another attempt was to replace the current computer model for the Sun with 
analytic models. The idea was to assume a basic model for the matter density 
distribution in the Sun or in main sequence stars which could be treated as a 
sphere in hydrostatic equilibrium. Let r be an arbitrary distance from the center  

of the Sun and let R


 be the radius of the Sun. Let rx
R

=


 so that 0 1x≤ ≤ .  

The model for the matter density distribution is taken as 

( ) ( )1f x c x
γδ= −                         (6.7) 

where c is the central core density when 0x = . The parameters δ  and γ  are 
selected to agree with observational data. Then by using (6.7), expressions for 
mass, pressure, temperature and luminosity are computed by using physical laws. 
Then by using known observations, or comparing with known data on mass, 
pressure etc the best values for δ  and γ  are estimated so that close agreement 
is there with observational values of mass, pressure etc. Some of the results until 
1988 are given in the monograph Mathai and Haubold (1988).  

Another area that was looked into was the gravitational instability problem 
concerning the evolution of large scale structure in the Universe. The problem 
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was formulated in the form of differential equations. Mathai tried to change the  

operator d
d

D
x

=  to d
d

x
x

. Then the differential equation got simplified. Then  

he changed the dependent variable and found that the differential equation be-
came a particular case of G-function differential equation. This resulted in the 
first paper of Mathai in integer order differential equations and it was published 
in Mathai (1989). Then the results were applied to gravitational instability prob-
lem (Haubold & Mathai, 1988). 

Another area looked into was the solar neutrino problem (Davis Jr., 2003; Sa-
kurai, 2014). HJH and Mathai tried to come up with appropriate models to 
model the solar neutrino data. Mathai had noted that the graph of the time series 
data looked similar to the pattern that he had seen when working on modeling 
of the chemical called Melatonin in human body. Usually what is observed is the 
residual part of what is produced minus what is consumed or converted or lost. 
Hence the basic model should be an input-output type model. The necessary 
theory is available in Mathai (1993c). The simplest input-output model is an ex-
ponential type input 1x  and an exponential type output 2x  so that the resi-
dual part 1 2u x x= − . When 1x  and 2x  are independently and identically ex-
ponentially distributed then u has a Laplace distribution. One model HJH and 
Mathai tried was Laplace type random variables over time so that the graph will 
look like blips at equal or random points on a horizontal line. If the time-lag is 
shortened then the blips will start joining together. If exponential models of dif-
ferent intensities, that is, in the input-output model  
( ) e , 0, 0, 1,2jx

j jf x x jθθ θ−= > > = , if θ  is different for different blips then the 
pattern can be brought to the pattern seen in nature or the pattern seen from the 
data. 

7. Special Functions of Mathematical Physics 

Mathai and his co-workers are credited with popularizing special functions, es-
pecially G and H-functions, in statistics and physics. Major part of the special 
function work was done with co-worker Saxena. They thought that they were the 
first one to use G and H-functions in statistical literature. But D. G. Kabe 
pointed out that he had expressed a statistical density in terms of a G-function in 
1958. This may be the first paper in statistics where G or H-function was used. 
Most probably the use of G and H-function in physics an engineering areas 
started after the publication of the books Mathai and Saxena (1973, 1978). The 
first work on the fusion of statistical distribution theory and special functions 
started by creating statistical densities by using generalized special functions. In 
this connection the most general such density is based on a product of two 
H-functions, which appeared in Mathai and Saxena (1969). Another area that 
was looked into was Bayesian structures. The unconditional density in Bayesian 
analysis is of the form 

( ) ( ) ( )1 | d .
y

f x f x y g y y= ∫                  (7.1) 
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What are the general families of functions for ( )1 |f x y  and ( )g y  so that 
the integral in (7.1) can be evaluated? One can construct some general mixing 
families of ( )1 |f x y  and ( )g y . 

Another family of problems that was looked into were the null and non-null 
distributions of the likelihood ratio criterion or λ -criterion for testing hypo-
theses on the parameters of one or more multinormal populations. Consider the 

1p ×  vector jX  having the density 

( )
( )

( ) ( )11
2

1
2 2

1 e ,
2

j jX V X

j pf X V O
V

µ µ−′− − −
= >

π
          (7.2) 

where µ  is a constant vector, known as the mean-value vector here. For 
1,2, ,j N=   if jX ‘s are independently distributed with the same density in 

(7.2) then we say that we have a simple random sample of size N from the 
p-variate normal or Gaussian population (7.2). Suppose that we want to test a 
hypothesis Ho:V = is diagonal. This is called the test for independence in the 
Gaussian case. Then the λ -criterion can be shown to have the structure: 

2
1

1 2
1 2

N
p

S
u u u u

S S
λ= = =

+
                 (7.3) 

where 1S  and 2S  are independently distributed matrix-variate gamma va-
riables of (1.25) with the same B. Then the structure in (7.3) is distributed as a 
product of independently distributed type-1 beta random variables, 1, , pu u . 
Then the density of u can be written as a G-function of the type ( ),0

,
p
p pG u . The 

density of λ  will go in terms of a H-function. The H-function is more or less 
the most generalized special function in real scalar variable case and it is defined 
by the following Mellin-Barnes integral and the following standard notation is 
used: 

( ) ( ) ( )
( ) ( )1 1

1 1

, , , ,, ,
, , , , , ,

r r

s s

a am n m n
r s r s b bH z H z α α

β β
 =  





                   (7.4) 

( )1 d , 1
2 L

z
i

ρφ ρ ρ−= −
π ∫                      (7.5) 

where 

( )
( ){ } ( ){ }
( ){ } ( ){ }

1 1

1 1

1

1

m n
j j j jj j

s r
j j j jj m j n

b a

b a

β ρ α ρ
φ ρ

β ρ α ρ
= =

= + = +

Γ + Γ − −
=

Γ − − Γ +

∏ ∏
∏ ∏

        (7.6) 

where , 1, , ; , 1, ,j jj r j sα β= =   are real and positive numbers, ja ’s and 

jb ’s are complex numbers. L is a contour separating the poles of 
( ), 1, ,j jb j mβ ρΓ + =   to one side and those of ( )1 , 1, ,j ja j nα ρΓ − − =   to 

the other side. Existence of the contours and convergence conditions are availa-
ble from the books Mathai (1993a), Mathai and Saxena (1973, 1978), Mathai and 
Haubold (2008), Mathai, Saxena and Haubold (2010). When  

1 11 , 1r sα α β β= = = = = =   then the H-function reduces to a G-function 
denoted as 
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( ) 1

1

, ,, ,
, , , , .r

s

a am n m n
r s r s b bG z G z =  





                     (7.7) 

Explicit computable series forms of ( ) ( ) ( ),0 ,0 ,
0, , ,, ,p p p p

p p p p pG x G x G x  and for the 
general ( ),

,
m n
r sG x , were given by Mathai in a series of papers. The first three 

forms correspond to product of independently distributed gamma variables, 
type-1 beta variables and type-2 beta variables respectively. The details of the 
computable representations are available in the book Mathai (1993a). This is 
achieved by developing an operator which can handle poles of all orders. This 
operator may be seen from Mathai & Rathie (1972) and its use from Mathai 
(1993a). This is a modification of a procedure developed in Mathai and Rathie 
(1971) to handle generalized partial fractions. Let 

( ) ( ) ( ) ( )1 2
1 11 2

1 i

k

mk
ij

m m m j
i jk i

c

x a x a x a x a= =

=
− − − −

∑∑


           (7.8) 

where 1,2,im =   for 1,2, ,i k=   and the coefficients ijc ’s are to be eva-
luated. The technique developed in Mathai and Rathie (1971) enables one to 
compute ijc ’s explicitly. 

The G and H-functions are also established by Mathai for the real ma-
trix-variate cases through M-transforms, along with extensions of all special 
functions of scalar variables to the matrix-variate cases. Also Mathai extended 
multivariate functions such as Apple functions, Lauricella functions, Kampé de 
Fériet functions etc to many matrix-variate cases. Some details may be seen from 
Mathai (1993a, 1997). 

By making use of the explicit series forms, MAPLE and MATHEMATICA 
have produced computer programs for numerical computations of G-functions 
and MATHEMATICA has a computer program for the evaluation of H-function 
also. Solutions of fractional differential equations usually end up in terms of 
Mittag-Leffler function, its generalization as Wright’s function and its generali-
zation as H-function. In connection with fractional differential equations for 
reaction, diffusion, reaction-diffusion problems HJH, Mathai and Saxena have 
given solutions for a large number of situations, which may be seen from the 
joint works of Haubold, Mathai and Saxena (2011), see also Mathai and Haubold 
(2018c). In all these solutions, either Mittag-Leffler function or Wright’s func-
tion or H-function appears. Also many other physicists, mathematicians and en-
gineers have tried other fractional partial differential equations where also the 
solutions are available in terms of H-functions. 

A Pseudo Dirichlet Integral 

A type-1 Dirichlet integral is over a simplex  
( ){ }1 1, , | 0 1,0 1, 1, ,k j kx x x x x j kΩ = ≤ ≤ ≤ + + ≤ =   , namely 

( )

( )
( ) ( )

11 111
1 1 1 1

1
1

1
1 1

1 d d ,

, 0, 1, , 1.

kk
k k k k

k
jj

k j
k

x x x x x x D

D j k

ααα

α
α

α α

+ −−−
+Ω

+

=
+

+

− − − ∧ ∧ =

Γ
= ℜ > = +
Γ + +

∫
∏

  





      (7.9) 
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But one can construct a multivariate integral over a hypercube giving rise to the 
same kD  where the integrand is different from type-1 Dirichlet format of (7.9). 
Mathai (2018) constructed such a function which he called it the pseudo Dirich-
let function. Consider the following integral: 

( ) ( )

( ) ( )

( )
( )

1 1 11

1

1 1 1 1
1 20 0

1
1 2 1

1

1

1 1

1 d d ,

.

k k

k

k k k

k k

k
jj

k
k

D x x x x

x x x x x

D

α α α αα

α α

α

α α

−− − + +

− + + −

=

= − −

× − ∧ ∧

Γ
=
Γ + +

∫ ∫

∏





  

 



       (7.10) 

The method of proving this result is to expand ( ) ( )1 1
11 k

kx x α α− + + −− 

  by 
using a binomial expansion, integrate out variables one by one and then use the 
properties of Gauss’ hypergeometric function of argument 1 to obtain the result 
in (7.10). Mathai also extended the integral (7.10) to the real matrix-variate case. 
In the real matrix-variate case the corresponding integral gives a constant mul-
tiple of the form *

kCD  where 

( )
( ) ( ) ( )

2

1*

1

1
1 2= , ,

2 1

k p
p jj

k j
p k p

p
pD C

p

α
α

α α
=

+  Γ   Γ −   ℜ > =
Γ + + Γ +
∏



 

where ( )p αΓ  is the real matrix-variate gamma given by the following: 

( )
( )

( ) ( )
1

4 1 1 1, .
2 2 2

p p

p
p pα α α α α

− − −   Γ = π Γ Γ − Γ − ℜ >   
   

    (7.11) 

The integral is the following: 

1

1

1 1 2 1 1 1

1 1
* 2 21

1
22 3

k

K

k k

p p

k kO X I O X I

p

k

CD I X I X

X X X I A

α α

α α α α α α α−

+ +
− −

< < < <

+ + + + − + + − 
 

= − −

× −

∫ ∫
 

 



 

where A is a symmetric product of matrices given by 
1 1 1 1 1 1
2 2 2 2 2 2

1 2 1 1 2 1k k kA X X X X X X X− −=                 (7.13) 

with 
1
2
jX  denoting the positive definite square root of the p p×  real positive  

definite matrix , 1, ,jX j k=  . The structure in (7.10) gives the same gamma 
product in (7.9) with 1k +  replaced by k. 

8. Multivariate Statistical Analysis and Statistical  
Distribution Theory: Fractional Reaction and Diffusion 

In the area of multivariate analysis, almost all exact null distributions in the most 
general cases and a large number of non-null distributions of λ -criteria for 
testing hypotheses on one or more multivariate Gaussian populations and expo-
nential populations were given by Mathai and his co-workers. The λ -criterion 
is explained in (7.3). Null distributions mean the distributions when the null 
hypotheses are assumed to hold and non-null distributions mean without the re-
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strictions imposed by the hypotheses. In the non-null situations some of the 
cases are still open problems. In the null cases, u, a one-to-one function of the 
λ -criterion, has usually the following representations: 

1 ;pu u u=                              (8.1) 

1 ;pu v v=                              (8.2) 

1 pu w w=                              (8.3) 

where 1, , pu u  are independently distributed real scalar type-1 beta random 
variables, 1, , pv v  are the same type of type-2 beta random variables and 

1, , pw w  are the same type of gamma random variables. The density of u in 
(8.1) can be written in terms of a ( ),0

,
p
p pG u , that of (8.2) as a ( ),

,
p p
p pG u  and that 

of (8.3) as a ( ),0
0,
p

pG u . Computational aspects of these forms are already dis-
cussed in Section 7 above. In geometrical probabilities also the squares of the 
volume content of a p-parallelotope can be written as (8.1) when the random 
points are type-1 beta distributed, as (8.2) when the random points are type-2 
beta distributed and as (8.3) when the random points are gamma distributed. 
There also densities can be evaluated in terms of the three types of G-functions, 
as explained above. 

Also, Mathai and his co-workers have established a connection between λ
-criterion in testing of statistical hypotheses, connected with multivariate normal 
populations, and certain generalizations of type-1 Dirichlet models. Various ge-
neralizations of type-1 and type-2 Dirichlet models were introduced by Mathai 
and his co-workers starting with Mathai (2003). In this area also G and 
H-functions appear. The forms ( ),0

,
p
p pG x  and ( ),

,
p p
p pG x , coming from products 

of scalar variables of type-1 and type-2 beta, appear in this area of generalized 
Dirichlet models. 

Exact 11-digit accurate percentage points connected with the null distribu-
tions of the λ -criteria were developed by Mathai and Katiyar starting with the 
Biometrika paper Mathai and Katiyar (1979). As a byproduct, an algorithm for 
non-linear least squares was also developed by them, see Mathai and Katiyar 
(1993a). Mathai has contributions in integer programming and optimization al-
so, see Kounias and Mathai (1988). 

Mittag-Leffler Function and Mittag-Leffler Density 

HJH, Mathai and Saxena have solved fractional differential equations, starting 
from 2000, where the solutions invariably come in terms of Mittag-Leffler func-
tion, Wright’s function or H-function. Exponential type solutions of integer or-
der differential equations automatically change to Mittag-Leffler functions when 
we go from integer order to fractional order differential equations. There is also 
a Mittag-Leffler stochastic process based on a Mittag-Leffler density, which is a 
non-Gaussian stochastic process. Work in this area is summarized in Haubold, 
Mathai and Saxena (2011). Mathai has also introduced a generalized Mit-

https://doi.org/10.4236/ce.2020.113028


H. J. Haubold 
 

 

DOI: 10.4236/ce.2020.113028 394 Creative Education 
 

tag-Leffler density and has shown that it is attracted to heavy-tailed models such 
as Lévy and Linnik densities, rather than to Gaussian models. 

9. Characterization Problems: Gauss and Beyond 

In this area, two basic books are Mathai and Rathie (1975) and Mathai and Pe-
derzoli (1977). Characterization is the unique determination through some given 
properties. Characterization of a density means to show that certain property or 
properties uniquely determine that density. Unique determination of a concept 
means to give an axiomatic definition to that concept. That is, to show that the 
proposed axioms will uniquely determine the concept. The techniques used in 
this area, to go from the given properties to the density or from the given axioms 
to the concept such as “uncertainty’’ or its complement “information’’ etc, are 
functional equations, differential equations, Laplace, Mellin, and Fourier trans-
forms. For example, look at the distribution of error. The error   may be the 
error in measurement in an experiment, the error between observed and pre-
dicted values etc. If the factors contributing to the error are known then the ex-
perimenter will try to control these factors. Very often the error is contributed 
by infinitely many unknown factors each factor contributing infinitesimal quan-
tities towards  . Put some conditions on this  . Let 

1 2 1, n nS= + + = + +                          (i) 

where 1 2, ,   are assumed to be independently distributed. Assume that each 

j a= +  or -a with equal probabilities. That is, 

{ } { } 1= , 1,2,
2j jPr a Pr a j= = − = =                  (ii) 

Assume that the total variance of   is finite or 

( ) 2Var .σ= < ∞                          (iii) 

Check the consequence of these three assumptions. 

( ) ( ) ( )22 21 1V V
2 2n jar S n ar n a a na = = + − =  

 , where a is fixed and finite. For 

large n one may take 
2

a
n
σ

= . The moment generating function of j  is 

( )
2 2 4 4 2 2

2
1 1e e e 1 1 .
2 2! 4! 2!

j
j

t at at a t a t tM t E O
n n

σ−     = = + = + + + = + +      



  

Hence 

( ) ( )
2 2

2
11 .

2!n j

n
n

S
tM t M t O
n n

σ   = = + +      
  

That is 

( )
2 2 2 2 2 2

2
1 1ln ln 1 as .

2! 2 2nS
t t tM t n O O n
n n n

σ σ σ      = + + = + → →∞          
 

Therefore, as n →∞ , 
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( )
2 2

2e
t

M t
σ

=  

which is the moment generating function of a normal density with mean value 
zero and variance 2σ  or the density is 

( )
2

221 e , , 0.
2

f σ σ
σ

−
= −∞ < < ∞ >

π



                (9.1) 

This is the derivation of the Gaussian or normal density given by Gauss, and 
hence it is also called the Gaussian density or error curve. Mathai and Pederzoli 
(1977) contains such characterizations of the normal probability law by using 
structural properties, regression properties etc. One fundamental idea was in-
troduced in this area by Gordon and Mathai (1972). They tried to come up with 
pseudo-analytic functions of matrix argument involving rectangular matrices 
and by using this, characterization theorems were established for a multivariate 
normal density. 

In Mathai and Rathie (1975), axiomatic definitions of information theory 
measures and basic statistical concepts are given. This is the first book giving 
axiomatic definitions of information measures. The techniques used are mainly 
from functional equations by using the proposed axioms create a functional eq-
uation and obtain its unique solution by imposing more conditions, if necessary, 
thus coming up with a unique definition or characterization of the concept. One 
such measure there is the one introduced as Havrda-Charvát measure, which for 
the continuous case is the following: 

( )
( )
1

d 1
, 1

2 1

f x x
H f

α

α α α
∞

−∞
−

−  = ≠
−

∫                  (9.2) 

where ( )f x  is a density of the real scalar variable x. There is a corresponding 
discrete analogue, which is given by 

( ) 1
1 1

1
, , , 1

2 1

k
jj

k

p
H p p

α

α α α=
−

  − = ≠
−

∑
              (9.3) 

where 10, 1, , ; 1j kp j k p p> = + + =  . A modified form of (9.2) and (9.3) is 
Tsallis entropy given by 

( )
( ) d 1

, 1
1

q

q

f x x
T f q

q

∞

−∞
−  = ≠

−
∫                 (9.4) 

for the continuous case, with a corresponding discrete analogue. Optimization of 
(9.4) under the condition that the total energy is preserved or the first moment is 
fixed, leads to Tsallis statistics of non-extensive statistical mechanics. Tsallis sta-
tistics is of the following form: 

( ) ( )
1

11 1 qp x q x −= − −                       (9.5) 

which is also a power law in the sense ( ) ( )d
d

q
p x p x

x
= −   . Note that a direct  

optimization of (9.4), under the assumption that the first moment in ( )f x  is 
fixed, does not yield (9.5) directly. One has to go through an escort density 
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( ) ( )
( ) d

q

q

p x
g x

p x x
∞

−∞

  =
  ∫

 

and then assume that the first moment is fixed in the escort density ( )g x , to 
get the form in (9.5). Mathai’s entropy 

( )
( )

1

d 1
, 1, 1 , 0

1

q

x
q

f x x
M f q q

q

η
η

η η

+ −

−  = ≠ < + >
−

∫           (9.6) 

when optimized under the condition of first moment in )(xf  being fixed 
leads to Tsallis statistics directly. Also the optimization of (9.6) under two mo-
ment-type conditions leads to the pathway model, discussed in Section 3, where 
(9.5) will be a particular case. 

10. Biological Modeling: Formation of Pattern 

The most significant contribution in this area is the proposal of a theory of 
growth and form in nature and the explanation of the emergence of beautiful 
patterns in sunflower, along with explanation for the appearance of Fibonacci 
sequence and golden ratio there. The mathematical reconstruction of the sun-
flower head, with all the features that are seen in nature, is still the cover design 
of the journal of Mathematical Biosciences. The paper of Mathai and Davis ap-
peared in that journal in 1974 and in 1976 the journal adopted the mathemati-
cally reconstructed sunflower head of Mathai and Davis (1974) as the journal’s 
cover design with acknowledgement to the authors. When this paper was sent 
for publication to this journal, the editor wrote back saying: “enthusiastically ac-
cepted for publication’’ because this was the first time all natural features were 
explained in full. As per Davis and Mathai, the programming of the sunflower 
head is like a point moving along an Archimedes’ spiral at a constant speed so 
that when the point makes an angle θ , a second point starts and moves at the 
same speed. When the second point comes to θ , a third point starts, and so on. 
The rule governing the movement is ( ) ( ) ( )1 2 1 2f f fθ θ θ θ+ = +  or r kθ=  
where k is a constant, giving Archimedes’ spiral. When 137.5θ ≈   or 

5 1 golden ratio
2 2
θ
θ

−
= =

π −
, one obtains sunflower, coconut tree crown, 

certain cactus heads and so on. Such a movement can be generated by a viscous 
fluid flowing up through a capillary with valves so that when a certain pressure is 
built up in one chamber the liquid moves up to the next chamber. The conti-
nuous flow is made pulse-like at the end. The upward motion can be effected by 
an evaporation process in the leaves, and there is no need for a heart-like me-
chanism in trees, pumping the fluid up. Mathai and Davis (1973) showed that 
the arrangments of leaves on a coconut tree crown is ideal from many mathe-
matical points of view. 

11. Design of Experiments and Analysis of Variance 
The first paper of Mathai (Mathai, 1965), was on an approximate analysis of va-
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riance. It was on the analysis of a two-way classification with multiple observa-
tions per cell. Here the orthogonality is lost, and when estimating the main ef-
fects, one ends up in a singular system of linear equations of the form 

( )I A bα− =                           (11.1) 

where ( ) . 1
.

, , , , 0mij
ij ij i ij ijj

i

n
A a m m a n n n

n =
= × = = >∑  for all i and j, is called the  

incidence matrix and the sum of the elements in each row is equal to 1. Thus 
I A−  is singular and hence one cannot write it as ( ) 1I A bα −= −  where A and 
b are known and the 1m ×  vector α  is unknown and is to be estimated. Ma-
thai noted that one could profitably use the conditions in the design and make 
I A−  a nonsingular matrix. One condition in the design is that 

1 0mα α+ + =  where , 1, ,j j mα =   are the elements in α . Let C be a ma-
trix where all elements in the i-th row of C are the median of the i-th row ele-
ments in A, namely the median of 1, ,i ima a  for 1, ,i m=  . Then evidently 
C Oα =  (null). Then 

( ) ( ) ( )I A b I B C b I B bα α α− = ⇒ − + = ⇒ − =          (11.2) 

where ( ),ij ij ij iB b b a c= = −  and ic  is the median of the i-th row elements in A. 
Then a norm of B is 1max m

i ij ijB a c
=

= −∑ . But since the mean deviation from 
the median is the least, B  is the minimum under the circumstances. There-
fore, not only that I B−  is nonsingular but the series 2I B B+ + +  is the 
fastest converging series for the problem at hand. Then 

( ) ( )2 .I B b I B B bα α− = ⇒ = + + +  

A good approximation for α  is available as ( )I B bα ≈ + . This is found to 
be sufficient for all practical purposes of testing of statistical hypotheses on the 
components of α . 

12. Population Problems and Social Sciences 

A problem that was looked into was how to come up with a measure of “dis-
tance’’ or “closeness’’ or “affinity’’ between two sociological groups or how to say 
that one community is close to another community with respect to a given cha-
racteristic. Mathai introduced the concepts of “directed divergence’’, “affinity’’ 
etc from information theory to social statistics. Let 

( )1 1, , , 0, 1, , , 1k j kP p p p j k p p= > = + + =    and  
( )1 1, , , 0, 1, , , 1k j kQ q q q j k q q= > = + + =    be two discrete populations. 

Consider the representation of P and Q as points on a hypersphere of radius 1, 
2 2
1 1kx x+ + = . Then the points are ( )1 , , kp p  and ( )1 , , kq q . Con-

sider cosθ  where θ  is the angle between these vectors or points on the 
hypersphere. Note that the lengths of the vectors are 

( ) ( )1 1, , 1, , , 1k kp p q q= =   

and hence 
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1
cos .

k

j j
j

p qθ
=

= ∑                     (12.1) 

This is a measure of angular dispersion and it is usually called “affinity’’ be-
tween P and Q or Matusita’s measure of affinity between two discrete distribu-
tions. George and Mathai computed “affinity” between communities with refer-
ence to the characteristic of production of children and found that the politi-
cians’ statements did not match with the realities. Thus, some politicians’ claims 
of certain communities producing more children, was repudiated in a scientific 
way in George and Mathai (1974). They also studied the most important variable 
responsible for population growth, namely the interval between two live births 
in woman of child-bearing age group and proposed a model, George and Mathai 
(1975). They also gave a formula for estimating an event from information sup-
plied by different agencies, replacing the popular Deming formula in this regard. 

13. Quadratic and Bilinear Forms 

Major contributions in these areas are summarized in the books Mathai and 
Provost (1992), and Mathai, Provost and Hayakawa (1995). There is a very im-
portant concept in quadratic forms in Gaussian random variables called chisqu-
aredness of quadratic forms. That is, 2~ rX AX χ′  if and only if A is idempotent 
and of rank r, where X the 1p ×  vector having the standard normal distribu-
tion ( ),pN O I , that is, ( )~ ,pX N O I  and 2

rχ  is a chisquare random variable 
with r degrees of freedom. Is there a corresponding concept when dealing with 
bilinear forms? When the samples come from a bivariate Gaussian or normal 
population it is not difficult to work out the density of the sample correlation 
coefficient. But what about the density of the sample covariance, without the 
scaling factors of the standard deviations? Both these questions were answered 
by Mathai (1993c) where Mathai introduced a concept called Laplacianness of 
bilinear forms (Mathai, 1993b) and also worked out the density of the covariance 
structures observing that covariance structure is a bilinear form. The necessary 
and sufficient conditions for a bilinear form to be noncentral generalized Lapla-
cian are given in Corollary 2.5.2 of Mathai, Provost and Hayakawa (1995). For a 
noncentral generalized Laplacian the moment generating function is of the form 

( ) ( ) ( ){ }12 2 2 21 exp 2 2 1M t t t
α

β λ λ β
− −

= − − + −  

where λ  is the non-centrality parameter. 

14. Reliability Analysis: Extension to Pathway Model and 
Matrix-Variate Case 

In the area of reliability analysis, the basic concepts are survival function, hazard 
function, cumulative hazard, system reliability, reliability in the presence of oth-
er variables such as covariates etc. In a series of papers, Mathai and Princy in 
2016 introduced the pathway model into the area so that the desired shapes for 
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hazard function and the desired reliability for systems with components in series 
and parallel architecture could be obtained by selecting appropriate models from 
the pathway family of functions. Then, these ideas were extended to situations 
where the input variable or the variable under consideration is a rectangular 
matrix. As a byproduct, Maxwell-Boltzmann distribution, Raleigh distribution, 
Dirichlet averages etc were extended to matrix-variate cases, see for example 
Mathai and Princy (2017a, 2017b). 

15. Mellin Convolutions of Products and Ratios and 
M-Convolutions 

Mellin convolutions of products and ratios involving two functions are available 
in the literature. Mathai illustrated how these concepts are connected to statis-
tical distribution theory and fractional calculus. In fact, a general definition for 
fractional integrals is given by Mathai using Mellin convolutions of products and 
ratios involving two functions. Corresponding M-convolutions involving two 
functions of matrix argument is Mathai’s contribution. He has also given physi-
cal interpretations for M-convolutions as densities of symmetric products and 
symmetric ratios of matrices. Mathai also extended Mellin convolutions and 
M-convolutions to three or more functions, see Mathai (2018). When three 
functions are involved, one can obtain several integral representations for the 
same Mellin convolution and M-convolution. For example, consider the sym-
metric product of three p p×  real symmetric positive definite matrices  

, 1,2,3jX O j> = . One can take symmetric products as 
1 1 1 1
2 2 2 2

1 2 3 2 1X X X X X , 
1 1 1 1
2 2 2 2

1 3 2 3 1X X X X X , 
1 1 1 1
2 2 2 2
2 3 1 3 2X X X X X  etc. When the original densities are assumed  

to be functionally symmetric then all such symmetric forms will produce the 
same densities whereas each symmetric product produces an integral represen-
tation which will be all different. Thus, one gets a large number of different 
integral representations for the same density or M-convolution of a product. 

One can also obtain further representations by taking for example, 
1 1
2 2

1 1X YX , 
1 1
2 2
2 3 2Y X X X=  and consider the original symmetric product of three matrices as 

symmetric products of two matrices each, which will produce several more 
integral representations. In the real scalar case the Mellin convolutions can be 
evaluated in terms of generalized special functions, thus producing integral re-
presentations for these special functions. For example, let , 1,2,3jx j =  be real 
scalar positive random variables, independently distributed and let 1 2 3u x x x=  
the product. 

( )1 1 1 1
1 2 3

s s s sE u E x E x E x sψ− − − −       = =         

where ( )sψ  will be gamma products when jx ’s have densities belonging to 
the pathway family of functions, namely type-1 beta, type-2 beta and gamma. 
Then the inverse of ( )sψ  is a G-function. Then this G-function has several 
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different types of integral representations. A series of papers are written by Ma-
thai by using these ideas connecting statistical distributions, fractional calculus, 
Mellin convolutions and M-convolutions, see for example Mathai (2017, 2018, 
2019). 

16. Above Topics Itemized: New Concepts and  
Procedures 

The following are the new concepts, new ideas and new procedures introduced 
by Mathai (Figure 16): 
- Developed “dispersion theory’’ in 1967; 
- Developed a generalized partial fraction technique, with Rathie, in 1971; 
- Developed an operator to evaluate residues when poles of all types of orders 

occur (1971); 
- Introduced the phrases “statistical sciences’’ in 1971 thereby the phrase “ma-

thematical sciences’’ came into existence; 
- Proposed a theory of growth and forms in nature (1974), the theory still 

standed, mathematically reconstructed a sunflower head; 
- Introduced the concepts of “affinity’’, “distance’’ etc. in social sciences and 

created a procedure to compare sociological groups (1974); 
- Introduced functions of matrix argument through M-transforms and 

M-convolutions; 
- Introduced a non-linear least square algorithm (1993); 
- Solved Miles’ conjecture in geometrical probabilities, created and solved pa-

rallel conjectures (1982); 
- Introduced Jacobians of matrix transformations in solving problems of ran-

dom volumes, replacing the complicated integral and differential geometry 
procedures (1982); 

- Now meaningful physical interpretations are given for M-convolutions; 
Unique recovery of ( )f X  from its M-transform is still a conjecture; 

 

 
Figure 16. H.-J. Treder. 
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- Extended Jacobians of matrix transformations from the real case to complex 
matrix-variate cases in a large number of situations; 

- Introduced the concept of Laplacianness of bilinear forms and established the 
density of covariance structures (1993); 

- Introduced pathway model and pathway idea (2005); 
- Extended fractional calculus to real matrix-variate cases (2007); 
- Established a connection between fractional calculus and statistical distribu-

tion theory (2007); 
- Introduced Mathai’s (2007) entropy; 
- Geometrical interpretation and a general definition for fractional integrals 

were given (2013-2015); 
- Extended fractional calculus to complex matrix-variate case and complex 

domain in general (2013); 
- Extended fractional calculus to many matrix-variate cases (real and complex) 

(2014); 
- Developed a fractional differential operator in the matrix-variate case (2015); 
- Extended reliability analysis concepts to rectangular matrix-variate case 

(2017). 
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