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Abstract

In this paper, we investigate the algebraic structure of certain 2-generator
groups of permutations of the integers. The groups fall into two infinite classes:
one class terminates with the quaternion group and the other class terminates
with the Klein-four group. We show that all the groups are finitely presented
and we determine minimal presentations in each case. Finally, we determine
the order of each group.
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1. Introduction

We determine finite minimal presentations for certain 2-generator groups of
permutations of the integers. Much of the work contained herein appeared in
[1]. For further results in this area, we recommend [2] and [3]. For all algebra
definitions and terminology not found in this paper, we refer the reader to [4],
and for more background on permutation groups, we refer the reader to [5].
First, we introduce some notation that we will follow in this paper. We will
denoteby Z* and Z  two separate copies of the integers, ie,
Z'={- =320 -1,0°, 17,2730 o, 2=l 23,2 -1,07,1,27.3 )
andlet S=7Z"UZ . Wedenoteby X the group of all one-to-one mappings of
S onto itself. We will refer to X as the infinite symmetric group, and its ele-
ments will be called permutations of S. This paper will, for the most part, deal
with the combinatorial group theory aspects of the permutation group G gener-
ated by o and 7. In our notation, or denotes r followed by o . The

permutations o,z € X that are the focus of this work are defined as follows:
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. (x+2)  x=0(mod2)
( (x-2)  x=1(mod2)

We illustrate o and ¢ in Figure 1.

We state a few pertinent definitions.

Definition 1.1 Let G be an arbitrary group.

1) A group G is finitely generated by elements g, 88, eG if each
x € G hasarepresentation x = xx,---x, with each
X, € {gl,gl’l,gz,gz’l,---,gj,g;.‘} . For the following definitions, we assume that
G has a specified set of generators g,,g,,":-,g; -

2) Awordin G isasequence x,x,,--,x, witheach
X, € {g,,gl’l,gz,gz’l,---,gj,g;l} . The word w=ux,x,,---,x, represents the ele-
ment xx,---x, € G, so we will write w=xx,---x,. We will allow the empty

word (no symbols) which represents the identity in G.

1 -1_-1

— 1 - -1
3)If w=x;x,---x, isaword,then w'=x"x" ---x".

4) A relator is a word that represents the identity. A trivial relator is a word
w=xx"" with xa word. The set of relators is denoted R (G) .

5) Two words are equivalent if one can be transformed into the other in a fi-
nite number of steps by inserting or deleting a trivial relator at an arbitrary loca-
tion during each step. This is a valid equivalence relation on the set of words.
Hereafter, a word will mean the equivalence class of the word.

6) If x,y are words, then x'yx is a conjugate of y. The conjugate of a re-
lator is itself a relator, and a finite product of relators is also a relator.

7) A relator z can be inserted into a word @, = AB (with 4,B words) to
obtain a new word @, = 4zB by multiplying @, on the right by B'zB, ie,
@ = AB — AB(B™'zB)= AzB = w, .

8)If w,w,,,0, arewords, then N(a)l,a)z,...,a)

n

) is the set of words that
are the finite products of the conjugates of w,,0',®,,®,",--,®,,w,". If each
, eR(G),then N(a)l,a)z,~~-,a)n)cR(G).

9) G is finitely presented if there is a finite set of relators {z,z,,---,z,}
such that R(G) =N(z,z,,+,2,). The presentation {z,,2,,---,z,} is minimal
if R(G) # N(Zl,Zz,'",Z,«,l,Z,-H,"',Z,,) for i=1,2,---,n.

1t ot 1t 2t 3t 4t

Figure 1. The permutation o is represented by the single arrow, and 7 is represented
by the double arrow.
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2. Main Results
2.1. Properties of rand o

Theorems 2.1 and 2.2 demonstrate how the application of 7 and o to integers
impacts the resulting parities.
Theorem 2.1 The permutations t and o satisty the following properties:
1) If x=0(mod2), then

r? (x+ =

2 —
7 (x

[ ]
3

)

¢ (w0 x‘)=(x+2) ,and (7o

2)If x=1(mod2), then

rz(x+)=(x—2)+,and T 2(x")z(x+2)+

o 7’ (xz’)z(x—Z) ,and 77 (x’)j(x+2)7
o (10')2 (x+ ) =(x+2)",and (10')72 (x_) =(x-2)"
e (70) (x’) =(x-2) ,and (7o) (x+ ) =(x+2)

Proof: (1. Suppose x= O(rnod 2). We prove the first formula
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raro-(x’) = z’ar((x+ 1) ) = m'((x+ 1) ) = r(x+ ) =(x+2) .

To determine inverses, note that z° and (z-o-)2 preserve both sign parity
(ie, +, —) and even/odd parity. If 77 (x+ ) =y", then x'=7¢’ (y+ ) =(y+2),
so y=x-2,and thus, 77 (x+ ) =(x— 2)+ . The proofs of the other formulas are
similar. (2.) Suppose x=1(mod2).We prove the first formula:

o 7’ (x*):z'((x—Z)_) :(x—2)+,

o 7’ (x’)zr(x*):(x—Z)f ,

. z’m’a(f ) = Tcrz'((x—l)+ ) = ra((x+1)_ ) = r((x+ 2)_) = (x+2)+ ,

. m'm'(x_) = z’az’((x+ 1) ) = 1'0'((x+1)+ ) = r()c+ ) =(x-2) .

The inverse properties follow as in part (1.), and the other formulas follow
similarly. W

The next theorem generalizes Theorem 2.1.

Theorem 2.2 Let a,b,ceZ and xe€?2Z.

1).

-a)’, =0 d2

. (o) (x)= { (x=a).  a=0(mod2)

(x—a-2), a=1(mod2)

. (ro)“((xﬂr):{(“l”)’ a=0(mod2)

(x+1+a) , 1(mod?2)
(x+a), a=0(mod2)
(x+a)", a=1(mod2)

* (o) (x‘>={
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o o'z (x _ (x=b+c)", c¢=0(mod2)
(x+l+b+c)7, czl(modZ)
o o' ((x+1) )= (x+1-b—c)", ¢=0(mod2)
((x+1)) {(Hb_c)‘, c=1(mod2)

o o't (x ): (X+b+c)7, CEO(mOdZ)
(x—b+c—l)+, c=1(mod2)

o7 ((x+l)-):{(x+l+b—c), ¢=0(mod2)

(x—b—c+2)+ , c=1(mod2)

Proof:
1) First, suppose @ =0(mod2),so a=2k.By Theorem 2.1,

o) () =[(o) [ (+')=(e-28)" =(x-a)
o) (x)=[(e0)' | (x')=(x+2k) =(x+a)
(x+1 -

(ro
(TO‘) (x+1 ) [( ] (x—i—l ) x+1-2k) =(x+1-a)
I(

mod2),s0 a=2k+1.Then

T(x+1) (x+1+2k)" =(x+1+a)"

Now suppose a =

() (x') = (zo)(r0)" (x') = (z0) (x~2k)") = (x=2k=3) =(x=a-2)
(7o) (x7) = (s0)(z)" (") = (r0)((x + 24) )= (x+2k+1)" = (x+a)
() ((e+1)) = (zo)(z0)™ ((x+1)") = (o) (x+1+ 26)")
(

(

x+2k+2) =(x+1+a)

w0)(z0)" ((x+1) ) = (zo)((x+1-24))
=(x+2-2k) =(x+3-a)’

2) Suppose c¢=0(mod2),s0 c¢=2k.Then

( ) ( )( ) (x+2k ) (x+2k—b)+=(x—b—i-c)+
i (x) =o' (s )( =0

o'7¢ (x+l J=c" () ((x+1)" )= 0" ((x+1-2k)")

(o) ((x+1))

(x+2k ) (x+2k+b) =(x+b+c)

_(x+1—b—2k) —(x+1—b—c)+
O_bz_c((x+1)_):0h(z'2)k ((x+1)_):o'h((x+1—2k)_).
=(x+1+b-2k) =(x+1+b—c)

Also, if ¢=1(mod2),s0 c¢=2k+1,then
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o't (x*) =o’rr*t (x*): O'bz'((x+2k)+): o’ ((x+2k+2)7)
=(x+2k+2+b) =(x+b+c+1)
o't (x’) =o'l (x’) = sz'((x+2k)7) =o’ ((x+2k)+)
:(x+2k—b)+ =(x—b+c—l)+
o't ((x+1)+):abn'2k ((x+1)+):0'br((x+l—2k)+)
=ot ((x—l—zk)’)z(x+b—1—2k)’ =(x+b—c)

o’z ((x +1) ) =o't ((x +1) ) =o't ((x +1-2k) )
] . .
=" ((x+1-2k) ) = (¥ +1-2k =) =(x=b-c+2)’

We can use Theorem 2.2 to prove a uniqueness of representation theorem for
the permutations o,7.

Theorem 2.3 Let a,b,ceZ and a>0. Suppose (to)' =c’t‘. Then
a=b=c=0.

Proof. If (7o)’ =c”z¢, then their images agree on all values in 8. In particu-
lar,on 07,17,0° and 1 . There are two cases:

1) First suppose a=0(mod2). Then we must have ¢=0(mod2) in order
to preserve sign parity. We substitute the values 07,1",0 and 1™ into the eq-
uation (7o)’ =o”z° and use Theorem 2.2. This yields
At 0",have —a=-b+c.

At 1" ,have a+l=-b-c+1.
At 07, have a=b+c.
e At 1",have —a+1=b-c+l1.

These equations imply that a=b=c=0.

2) Now suppose that a =1(mod2), and again substitute the values 0°,17,0”
and 17, respectively. Now,
e At 0",have —a-2=b+c+1.
e At 1",have a+l=b-c.
e At 0 ,have a=-b+c-1.
e At 1",have —a+3=-b—c+2.

These equations imply that @ =5b=c=-1. Since we assumed a >0, this is
impossible, so the desired result follows. W

1

Now we return to the group G generated by the permutations o,7,0~ and

77", We will show that G is finitely presented and determine a minimal presen-
tation.

Theorem 2.4 The following words are in R(G) .
* o =7"'0%10’
* w,= o 'T’or’
-2

2 -1 -2 -2
® w,=0"w O =7 O 10

-2 -1 __2 2_-1_2
®* w,=0"TtWOT O =107 O
* w = o't =107t o7

~-1 2 2 __-1
* w,=ow,0 =tr0rTC
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* w, = o, =107 'r’c
* w; = T’zaa);a’lz'z =t7or 0!

Then N(w,w,)=R(G),and {w,w,} isa finite presentation for G.

Proof. We will prove this theorem by demonstrating containment in both di-
rections. To show N(w,w,)= R(G), we first show that @, and w, are in
R(G).If x=0(mod2), then

o a(x)=rlot0 (v )= o ((x-2) )= o7 (x ) =27 (x4 2) )=
o () =0"T0r (") =07 ((x+2) ) =077 (x+1)')
=0 ((x-1))=x"
o (v )=t'o%0 ()= o7 ((x+2) )= 7'0? (x+2)")
o ()=
o, (x)=0"T0r (x ) =070 ((x+2) =077 ((x+3))
=0 ((x+1) ) =x

If x= ](mOdZ) , then

, (x’ ) =o't’or’ (x’ ) = o’l‘rzcr((x - 2)7) =o'’ ((x - 1)7)
=o' ((x+ 1)7) =x

Since the conjugate of an element in R(G) isalsoin R(G), it follows that
N(w,,w,) =R(G) . In addition, since @;,®,,-,@; are conjugates of o, @', w,,
or w,',theyarein R(G).

Now, to show that the reverse inclusion holds, we assume that gis a word in G
having the form g = AxyB, where A,B are words in G. Then g can be trans-
formed to g=Ay¥B by multiplying g on the right by B~'y'zyB where

X,X,y,¥,z are as indicated below:

x ¥ ¥y X z
T o o’ T ,
o I ! o’ N
o I T’ o o,
7’ o’ o’ T ;'
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Continued

T o’ o’ T w,
sz Tfl T—l 0_2 w;‘
T 1 o 2 0_2 T 1 w4
o’ T T o ;'
I o’ o 7! s
o’ T T o’ o]
? o o 7’ w,
o 7’ 7 o @,
I c! I o @,
o T I o ;'
7’ o o T ,
o_—l T—z Tz O_—] a)s:]

Hence, g=gB 'y 'zyB,implyingthat g=gB "'y 'z"'yB . Since
B'y"'z"'yBe N(w,,®,), this shows that any word g€ G can be transformed
to an element ¢ by moving even powers of o to the left and even powers of
T to the right. When this process is completed, g has the form o”xz,
where x has the form ¢/ z2¢” ...¢" o/, with each i, j, =+1. If some ex-

-2 -2
"= 777, Now, the 7

ponent is —1, say, 7', then we can represent this as 7~
can be moved to the right. In this way, we eventually arrive at

g§=0"(r0) r°,a20,and g=gC,with CeN(w,,).Now, suppose

g€ R(G).Since CeN(w,w,), it follows that C e R(G). Therefore,
geR(G),s0 o’ (ro)" ¢ is the identity, and (7o)’ =c "z in G. By Theo-
rem 2.3, a=b=c=0. This means that g is the empty word, and g is the
word C™' € N(@,,®,). Thus, R(G)< N(w,,,),and we have
R(G)=N(o,0,). R

Theorem 2.4 has an immediate corollary.

Corollary 2.5 Every word @€ G has an equivalent form o =o"(10)" t°x,
where xe N(w,w,).and a>0.

We are now ready to prove our main result.

Theorem 2.6 {w,,w,} isa minimal presentation for G.

Proof. We must show that o enN (602) and @, ¢N (a)l ) ,  where
o =7t 'c’tc? and w, =o 'r’cr’. For any word x=0'"7"---c" 7", define
e, (x)=i +i,+-+i, , and e (x)=j+j,++j, - f y=z"'oz, then
e,(y)=4.1f y=z"w,z,then e (y)=4.1f y=z"w 'z, then ¢, (y)=-4.1f
y=z"'w,'z,then e (y)=-4.If xisaconjugate of w, or ,',then
e,(x)=0.If w eN(w,), then @ =xx,---x

n?

with each x, a conjugate of
@, or @,'. Therefore, 4=¢ (w)=¢,(x)+e,(x,)++e,(x,)=0, a con-

tradiction. Hence, @, ¢ N(w, ). By a similar argument, w, ¢ N(w,). B
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Example 2.7 Transform w=t'c"'tc’t’c” by AxyB —> Ay%B of Theorem
2.5 and show that w e N(o,,w,) -

The step-by-step process involves multiplying AxyB on the right by
C=B"y"'zyB (where z is a particular value of ®, or o') to obtain AyxB.
At each stage, we make use of the reductions c'c” =", 't =", delete

0',7°. We halt the procedure when the identity, ie., the empty word, is

reached.
4 x y B ¥ ¥ z C=B"y"zyB
A4 =7 r o t0’t’c’ =B, o r? ' C =B'ow,'c'B,
A, = empty r o t'o’t’c’ =B, o r? ' C,=B,'ow,'c"'B,
A =077 ! o’ r'c’ = B, c? ! o, C,=B;'c”w,0’B,
R 1 Py o' =B 1 C =B 2 p
, =0 T T o ‘L'O'—4 o T 0)4 4= 40'0_740' 4
A;=0c" ! o’ 70’ = B, o? ! o, C,=B'c”w,0’B,

So the first step replaces 7’0" with ¢ 'z and simplifies by reducing ex-
ponents. At the final step, we obtain «C,C,C,C,C, =1 (ie., the empty word).
Hence, o=(C,C,C,C,C;) " =C;'C;'C;'C;'C;™ . Expressing everything in terms
of powers of & and 7 reduces the equation to @ =t'c"'76°r’c", with dele-

tionof ¢°,z°. M

2.2. The Finite Permutation Groups Gsn

We define a translation operation on S =Z"UZ" for each positive integer n.
We then form equivalence classes denoted by S,,. The permutations o,7 are
well-defined mappings on S,,. The permutation group generated by o,7 on
S,, is denoted by G,,. Theorem 2.2 is generalized in order to determine the
relators R(G,,) of G,,.Wealso determine the order of each G,,.

Definition 2.8 Let n be a positive integer and S =7"UZ" . Define a map-
ping ¢,:S—>S by
. 9 ()c+):()c+n)+ =c" (x+)
° 4 (x’) =(x+n) =o" (x’)

If xeS,then x+n denotes ¢, (x) .

Theorem 2.9 Ifn is even, then o(x+n)=o(x)+n,and t(x+n)=17(x)+n

Proof. If x=x", then O'(x+ +n) = G((x+n)+) = ()c+n—l)+ = O'()C+)+I’l ,

and

. (s n) ) = (x+n+2)7, ifxEO(modZ)
T<x +n)_ (( )) (x+n-2), if x=1(mod2)

r(x+)+n, if x=0(mod2)
r(x+)+n, if x=1(mod2)
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If x=x,then a(x" +n) = O'((x+n)_)=(x+n+1)_ = o*(x’)+n ,and
T(xi +n) = r(()c+n)f)=(x+n)+ = z'(xf)+n. [ |

Definition 2.10 Let n be a positive integer. Define a relation i on S by
o x'Ay" if x=y(mod2n)

e x iy if x=y(mod2n)

Theorem 2.11 7 isan equivalence relation on S.

Proof. Trivial, since x= y(mod 2n) is an equivalence relationon Z. W

Remark: For simplicity of notation, we write ~ instead of 77 when nis a fixed
positive integer.

Definition 2.12 S,, is the set of equivalence classes of S under .

Example 2.13 Zet || denote an equivalence classin S,,. Then
o se=jfo Lo L[]

o« so={loJ e ) o M2 1

Theorem 2.14 Let x,yeS. If xy, then o(x) o(y) and 7(x) z(y).
Therefore, o,v induce permutationsof S,,.

Proof. Suppose x* y*. Then x= y(mod2n), so x" =y" +2kn for some
k € Z . By Theorem 2.9, o-(x*) = a(y+ +2kn> = o-(y*)+2kn ,and
r(x*) = r(y+ +2kn) = r(y*)+2kn . Therefore, a(x+ )~ o-(y+) and
z’(x* )N z'( y* ); an identical argument applies to x~ y~ . Therefore, o,z in-
duce maps of S, to S, .Since o,7:S— S are onto, the induced maps on
S,, are onto.

RTS: the induced maps are 1-1. Suppose O'(|:x+:| = 0'( v ) . Then
O'(x+)0'(y+) , implying, for some keZ, cr(x+) =o(y" )+2kn= O'(y+ +2kn)
by Theorem 2.2. Since o is 1-1, x* =y" +2kn, and [Jx*] :[y*] Identical

d

arguments apply to J([x’]) = O'([Jf 1),1([x+ ]) = T([y+ ) ,an
A )=r((>) m

Definition 2.15 G,, is the group of permutations of S,, generated by the
permutationsof o and 7.

Corollary 2.5 still applies, so that each word win G,, has an equivalent word
representation w=0" (7o) r°x with ¢>0 and xeN(w,,). However,
Theorem 2.3 no longer applies, so we require a modification.

Theorem 2.16 Let o,7:S,, > S,, as defined above. Let a,b,c be integers.
Then (r0)' =o"t¢ if

1) a=b=c=0(mod2), 2b=0(mod2n), 2c=0(mod2n),
a=b+c(mod2n), or

2) a=b=c=1(mod2), 2(b+1)=0(mod2n), 2(c+1)=0(mod2n),
a=b+c+1 (mod 2n).

Proof. First suppose a=0(mod2) and (7o)’ =c’z°. The formula for
(ro)" in Theorem 2.2 imply that ¢=0(mod2). Let x=0(mod2). Equating
(ro)" and o”z° on the classes [x* J ,[(x + 1)+ ﬁ , [x’ ] ,[(x + 1)? )

1) Px—a)ﬂ z%(x—b+c)+}

2) [(x+1+a)’ =[(x+1—b—c)+}
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3) (x+a):L= (x+b+c)7}

4) |(x+1-a) :|:(x+l+b—c)_J

5) Equations (1)-(4) imply, by Definition 2.10, that —a=-b+ c(mod Zn)

6) a+l=-b—c+1(mod2n)

7) a=b+c(mod2n)

8) —a+1=b-c+1(mod2n). Now, (5) and (7) imply that 2c¢=0(mod2n).
Additionally, (5) and (6) imply that 2b = O(mod 2n). Finally, (7) implies
a=b+c(mod2n). Hence, a=0(mod2),and Equations (1)-(4) imply

9) a=b=c=0(mod2)

10) 2b=0(mod2n)

11) 2c¢=0(mod2n)

12) a=b+c(mod2n)

Conversely, suppose 9 - 12 hold. Then, working mod 2,

—a E—(b+c)5—b—c+2cz—b+c, while
a+l=b+c+l=b+c+1-2b—-2c=-b—c+1,with a=b+c, and thus,

—a+l= —(b +c)+1 =-b—c+1+2b=b—c+1, so Equations (5)-(8) hold. This
Implies (1)-(4), which implies (7o)’ =o'z

Now suppose a=1(mod2) and (7o)’ =o"z°. Again, by Theorem 2.2, we
must have ¢=1(mod2) and the equations

1) —a—2=(b+c+1)(mod2n)

2) a+1=(b-c)(mod2n)

3) a=(-b+c-1)(mod2n)

4) —a+3=(-b—c+2)(mod2n) ; substituting a=c=1(mod2) into (2
yields 2= (b —1)(m0d2) , SO

5 a=b=c= l(mod 2) ; (1) and (2') yields

6') 2(b+1) = O(modZn); (1') and (3") yields

7) 2(c+1)=0(mod2n); (4') yields

8) a=(b+c+1)(mod2n)

Conversely, if (5')-(8') hold, then, working mod 2n,

° —a—ZE—b—c—1—2+2(b+1)+2(c+1)Eb+c+1
o a+l=b+c+l+1-2(c+1l)=b-c

e a Eb+c+l—2(b+1)s—b+c—l

e —a+3=-b—c—-1+3=-b—-c+2

Hence, (1')-(4") hold, which implies (ro-)a =c"r.

Corollary 2.17 o” (7o) t¢ is the identity in G,, ifand only if

1) a=b=c=0(mod2), 2b=0(mod2n), 2c¢=0(mod2n),
a+b+c=0(mod2n), or

2) a=b=c=1(mod2), 2(b-1)=0(mod2n), 2(c—1)=0(mod2n),
a+b+c=1(mod2n)

Proof. ¢’ (70)" ¢
b,c with —b,—c¢ in Theorem 2.14. W

Corollary 2.18 Ifa word  represents the identityin G, , ie,
weR(G,,), then w=0"(rc)" t°x where xe N(w,w,) and a,b,c satisty

is the identity if and only if (7o)’ = o’z . Now, replace
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(1) or(2) of Corollary2.17.

Proof. By Corollary 2.5, thereisaword ye N (a)1 ,0)2) such that
wy=0"(10)" °. Hence, w=0"(zc) r°y™" . Since @ and y' represent the
identityin G,,, o’ (7o)’ ¢ represents the identity, and Cor. 2.17 applies. W

We can improve Corollary 2.18 as follows:

Theorem 2.19 A word weR(G,,) if w=go’(w0) t°g '@ , where
w'eN(w,w,), g=0 orl (ie, empty word), and a, b, c satisty (henceforth
("): a=b=c=0(mod2), 2b=0(mod2n), 2c=0(mod2n),
a+b+c=0(mod2n).

Proof. Suppose weR(G,,). By Corollary 2.18, w=0" (7o) t°x where
xeN(w,,),and a, b, c satisfy (1) or (2) of Corollary 2.17. Suppose they satisfy
(2). Making use of 7°c = o7 2, which follows from the relator @, =7’c7’c™",
and 7’0 =07, which follows from the relator @, =707 *0"', we can move

even powers of 7 to the right to obtain
a . -1 a e 1
w=0"(t0) t°x=00""(10)" 1700 'x
= a l-c__-1 b a o
=00’ (10) 107" 0" xy = 00" (10)" 707 &

where yeN(w,,), a'=a+l, b'=b-1, ¢'=l-c, &' =xyeN(o,0,).
Then

a'=b'=c'=0(mod2), 2b'=0(mod2n), 2¢'=0(mod2n),and
a+b' +c'=a+l+b-1+1-c=a+b+c-2(c—1)-1=0(mod2n).

If (1) holds, we can take g=1and w'=x. W

Next we determine the relators R(G4n) and minimal presentations for G,,.
We first consider n =1, then 7 odd and greater than 1, then n even.

Theorem 2.20 R(G4 ) = N(a2,(r0')2 ,12) and {0'2,(1'0')2 ,2'2} Is a minimal
presentation for G, .

Proof. The diagram for S, (see Figure 2) shows that o-z,(m')2 ,and 77 all
belong to R(G,). Therefore, N (02,(10)2 ,12) CR(G,). Conversely, suppose
weR(G,). By Theorem 2.19, o=go’(r0) t°g '@ with a,b,c even and
o' eN(w,0,),and g=0 or 1. But o, =7 'c’ro’ and @, =0 'r°0r’ be-
long to N(O'z,(m')2 ,12) ,s0 R(G,)c N(O'Z,(m')2 ,72) )

Now we show that {0'2,(10)2 ,rz is a minimal presentation for G, . First,
we show that (ra)2 cannot be expressed as a product of conjugates of
o?,07%,7%,772 . Suppose it could, so (a) (7o)’ =cc, ¢, , where each ¢, isa
conjugate of o*,07°,7%,7 . Now (a) is an equation valid in the free group on
the symbols o,7. It must hold if o,7r take values in any group G. Let G be the
permutation group on {1,2,3} and o=(12), 7=(23). Then o’ =7’ =id,

Sy
0%] = [1*]
N N

Figure 2. The diagram shows o,z on §,.

DOI: 10.4236/apm.2021.1110055

826 Advances in Pure Mathematics


https://doi.org/10.4236/apm.2021.1110055

S. Aloff et al.

and 7o = (132) , (1'0')2 =(123) as permutations in G. In G, (a) becomes
(123)=id , which is a contradiction. Therefore, (1-0-)2 cannot have (a) as a re-
presentation in the free group of o,7.

For the other two cases, take (b) o’ =cc, ¢, , with ¢ conjugate in
12,(10')2 . Choose o = (132),1 = (23),(1’0) = (12) . Then (b) yields (123) =id,
a contradiction. Finally, take (c) 7° =cc,---c,, ¢; conjugate in o-z,(ra)2 .
Choose o = (12),1 = (132),(1’6) = (23). Then (c) yields (123) =id , a contra-
diction. Therefore, 02,(10)2 ,2'2 is a minimal presentation for G,. W

Theorem 2.21 Ifnisoddand n>1, then
R(G,,)= N(02”,(ro)2" ,r“,a)l,a)z) and {02",(70)2" ,r”,wl,a)z} isa
minimal presentation.

Proof. Clearly, o*,(z0)”,z*" all satisfy the hypothesis of Theorem 2.19, so
they clearly belong to R(G4n ). Since @,,®, also belong to R(G4n), we have
N(az”,(ra)zn o, 0, ) cR(G,,).

Conversely, suppose @ € R(G,,). By Theorem 2.19, w=go’(z0) °g"'@’,
with a,b,c satisfying (*), and '€ N(@,®,) with g=o or 1. Then a,b,c
are multiples of 211, 50 we N 62”,(Ta)2" ,72”,601,602) )

Let F(o,7) bea free group on the symbols &,z . To show
{0'2",(70')2" , 0", @,,,! isa minimal presentation, we argue as follows:

Let w=c"7"---c"%c’ . Define e, (a)) =0 +i, -+,
e,(w)=j,+j,++j, Then e, e, are well-defined for we F(o,r). Since
o =t"'c’t0’, w,=0 't’or’, we have e, (®)=4, e, (w)=0. Also,
e, <0'2” ) =e, ((ra)zn ) =2n, and e,(7")=0. If @€ N(az”,(m')zn ,z'2",a)2) ,
applying e_ to the representation for @, yields 4= O(mod 2n). Since n2>3,
this is a contradiction. Therefore, @, ¢ N (a”,(ra)zn ,r“,a)z). Using e, and
employing a similar argument, we obtain o, ¢ N (02",(TG)2" o, .

Now suppose (7o) e N( a)],a)z) so that (7o) =cc, - ¢,, where

each ¢, is a conjugate in N(az”

,a)l,a)z). Since this equation holds in
F(o,7), it most hold in any group Gin which o,z are assigned values. Let Gbe
the permutation group on {1,2,---,2n+1} and set o =(12)(34)---(2n-1,2n),
r=(23)(45)---(2n,2n+1). Then o’ =7’=id, so cc,-:c, =id in G, but

:(1,3,5,~--,(2n—1),(2n+1),2n,(2n—2),-~,2), which has order 2n+1, so
that (ro-)z" #id in G. Therefore, (10')2" N 0'2",7.'2”,601,602).

To show that o ¢ N(z’z",(ra)ZH ,0,0,] , let G be as above, with
0':(1,2,3,---,2n,2n+1) , z':(1,2)(3,2}1+l)(4,2n)(5,2n—1)---(n+1,n+3)
Then 7o = (2,2n+1)(3,2n)---(n +l,n+2) , while
o :(1,2n+1)(2,2n)(3,2n—1)---(n,n+2) .Thus, " #id ,but
" :(10')2" =id, o,=0"'t’cr’ =id, , =17"'0’7t0" =id . Therefore,

o eEN( ” (zo)", a)l,a)2)

Finally, we show that 7" ¢ N ( o a)l,a)z). Let G be as above, with

=(l,2,3,---,2n,2n+1), ( , )(3 2n+1)(4 2n)(5,2n—1)---(n+1,n+3).
Then 7o =(1,3)(4,2n+1)(5,2n)---(n+2,n+3),
oz’ =(1,2n+1)(2,2n)(3,2n—-1)--(n,n+2) . Thus, o' =(TG)2n =id ,
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o =1"'0’t0’ =id, ®,=0"'t’cr’ =id ,but 7*" #id . Therefore,
g N(a“,(m)zn ,a)l,a)z) . This proves that {02”,(m)2" ,rz”,a)l,a)z} is a
minimal presentation for R(G4n ) , the relatorsin G,,. W

Theorem 2.22 Ifn is even, then

R(G,,)=N((w0)" 0" (w0 (w0) ".a1,0,).
Proof. First note that 72",0" eN( 2'0')2", ”(2'0') (7o) z'",a)],a)z),since
e =(w0) ™| (o) [ () 7" |(e0) " () 7" a

o =o' ()| (ro) " " (s > "}(

m') " Therefore it is sufficient to
show that R(G,,)=N= N(O'z", 2"( o) 0" (w0)" ,(wo)" r”,a)l,a)z).By
b

Theorem 2.19, @€ R(G,,) if w=go’ (o) t°g"'w’ , with ©'eN(a,o,),
g=0 orl,and a=b=c=0(mod2), 2b=2c=0(mod2n),
a+b+c=0(mod2n). The conditions on a,b,c are equivalent to
a=b=c=0(mod2), a=b=c=0(modn), a+b+c=0(mod2n).Each of the
elements o>, 7% ,(10)2" ,0"(z0)" (r0)" v", 0,0, has the required form
of Theorem 2.19. Therefore, N < R(G4n ) .

Conversely, suppose ® < R(G,,) with @=go’(70) t°g"'@' as above. It
remains to show that o° (ro-)a 7 € N, which would imply that @ e N . There
are four cases.

1) b=0(mod2n) and ¢ =0(mod2n)

Then a= O(mod 2n) ,80 a=2na',b=2nb',c=2nc',and

o’ (to)' ¢ = (0'2” )b, [(ra)zn T (rz" )c' eN.
2) b=0(mod2n) and ¢ # 0(mod2n)
Since a+b+c= 0(m0d2n) , we must have a # 0(mod2n) . Then

a=2na'"+n,b=2nb",c=2nc' +n,so

o’ (TO‘)u ¢ = (0'2” )b’ [(m')zn T, |:(T0)n " J(rz” )c’ eN.
3) ¢=0(mod2n) and b # 0(mod2n)
Then a # 0(m0d2n) ,80 a=2na'+n,b=2nb"+n,c=2nc',and
o’ (o) ¢ = (0'2” )bv [o-" (zo) J[(m‘)z" T (72" )C’ eN.
4) b#0(mod2n) and ¢ # 0(mod2n)
Then a=0(mod2n),so a=2na',b=2nb"+n,c=2nc'+n,and
b a-1 ¢~
o’ (o) t° = (0'2”) [o-” (zo) J[(m‘)z"} [(ro-)" r"](rz”) eN.
Therefore, R(G,,)c N.®

We can improve Theorem 2.22 with the following result.

Theorem 2.23 Let n be an even positive integer. Let G be any group contain-
ing elements x,y suchthat x"(yx)" =(yx)"y" =y "'x*yx* =1. Then
( yx)zn =1.

Proof. First note that y'x")x” =1 for all even m>0. This is true for

m=2 by hypothesis, and the general result follows inductively from

-1 m+2

Y N =y’1x”’y(y"x2yx2)x”’ =y 'x"yx" =1. Also, x" (yx)n =1
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implies x" =(yx)™", and (yx)'»" =1 implies 3" =(yx)", so x"=)" and
( yx)zn = y™2". Therefore, it suffices to show that »*" =1. But x" =)" and
y'x"yx" =1 imply that y*" =y "'y " =y ¥ x" =1. B

Corollary 2.24 Ifn is even, then R(G,,)= N(o"’ (ro) .(r0) ", 0, 0, ) )

Proof. Since @, =7 '6°ro”, Theorem 2.23 implies that
(ra)zn € N(a” (ra)n ,(2'0')" r”,a)l,a)z) . Therefore,

R(G,,)= N(a” (ro)" ,(t0) ", 0, 0, ) B Now we determine minimal pres-
entation for R(GM ) when nis even. We start with n=2.

Theorem 2.25 {02 (Td)z ,(TO‘)Z 7 ,a)l} is a minimal presentation for G.

Proof.

1) Since o’ =7" follows from o (ro-)2 = (70')2 7° =1, this implies that
o, =0"'t’or’ € N(O'2 (z0),(z0)’ Tz,a)l) .

2) We have o’ (10)2 ¢ N((z'O')2 r2,a)1) since e, (02 (10)2): 2, whereas
e, ((1'0')2 7 ) =4 and e (@ )=0 areboth divisible by 4.

3) We have (1'0')2 ' g N(c72 (T(T)2 ,a)l) since e, ((70)2 72) =2, whereas
e, (0'2 (ro)’ ) =4 and ¢,(m)=e,(c 0’70’ )=4 areboth divisible by 4.

4) To show that @ ¢ N (02 (10)2 ,(10)2 %), let G be the permutation group
on {1,2,3} and set o=7={1,2,3}. Then (z-o-)2 * =0’ (ro-)2 =c%=1, but
o =1t"c'tc’=c"=c#1,50 o ¢ N(cr2 (z0),(z0)’ 12). [

Theorem 2.26 If n is even, n>2, then {c" (o) (o)’ r",a)l,a)2} is a mi-
nimal presentation for G,, .

Proof. Corollary 2.24 states that it is a presentation. To demonstrate its mini-

mality, we consider two cases:
1) n# 0(m0d4): In this case, n=2m with m>1, modd.
(@) o"(t0) ¢ N((z’o*)" z’”,a)],a)z)

because e, (o"’ (ro)’ ) =n#0(mod4), whereas

e ((m‘)n " ) =2n=0(mod4),e, (v )=e, (r’lazraz ) =0=0(mod4),

and

e (w)=e¢, (o"lrzcrz'2 ) =4=0(mod4)

() (ro)' "¢ N(o-" (ro)’ ,a)l,a)z) , because e, ((ro-)" 7" ) =n#0(mod4) ,
but ¢"(70)",w,w, allhave e, values divisible by 4.

(c) o¢ N(O'” (ro)" (7o)’ r”,a)z) because e, (@ )=4#0(modm), but the
other elements have e_ values divisible by m.

d) o, eN(o-" (r0)",(z0) r",a)l) because e, (w,)=4#0(modm), but the
other elements have e, values divisible by m.

2) n=0(mod4): In this case, n=4k.

(a) (TO')" "¢ N|o" (ra)”,a)l,a)z). Let G be the permutation group on
{1,2,,2n,1,2,-,2n}  Let
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o =(1,3,57,,21=1)(1,3,5,7,+-,(2n-1))(2n,21=2,-+-,2) (2n,(2n-2),---,2)
and 7=(1,2,3, 2n)(2n 2n—1,--,2 i). Then o" =1,7" #1. Also, (ra)2 =1,

so (zo)" =1.Therefore o”(zc)" =1,but (ro)" " =7" #1. Let
, |y, ifx=y
X =
y, ifx=y

Let a+b denote addition (mod 2n).
If xis odd, x—C—>x+4—>(x+4)t1—T>x+]—"5x
If xis even, x—Z—>x—4 T (x-4)+1 oyl — sy

-1_2 2 .
so wy=7 010 =1 inG

For example, if n =4, then Gis the permutation group on
{1 2,3, 8,1,2 é}
3,57)(1.3,
(§ 7

3,5,7)(8,6.4.2)(8,6.4.2)
)(1 (3,7)(8,4)
, )

( 1)L aé)

T)E4(6:2)(3.4)(62)

5)

r=(

T

3,.8)(8.7,

) r"azz'a = 1

2
For w, =0 't’o1r’, we have:

If xisodd, x SN, S [(xi2)+2}'L>(x+2)’L>x
e

If xis even, xr—2>xi2i>[(xi2)—2]’ e ,(x—Z), —> X

Therefore, w, =1 in G

Since " (70)",w,,w, are equal to the identity in G, but (zo)" " %1, it fol-
lows that (7o) 7" ¢ N(O'” (o), o ,a)z) .

(b) o"(r0) ¢ N((ra)n " o,0,)|.

Using o and r from part (a), we note that (ar)2 =1. Therefore, if we
exchange the definitions of o and 7, we obtain o&” (z-o-)'1 #1, but
(r0)' " =w =w, =1 in G, which proves (b).

() w¢ N(o"’ (ro)" (7o)’ z’”,a)z) :

Recall that 7 =4k . Let Gbe the permutation group on {1,2,---,8k} .

If k=1,let 0=(1,2,3,4)(5,6,7,8),7=(1,5)(2,6)

Then 70 =(1,6,7,8)(2,3,4,5), so o' =7"= (10)4 =1, but (using 7~
o (1)=10’t0? (1) =10’r(3) =10" (3) =7(1) =5.

If k>1,let o=(1,2,-,4k)(4k+1,4k+2,---,8)) and
v =(1,4k +1)(2,4k +2)---(4k, 4k + 4k )

Then 0" =7"=w, =1.

Also,

=(1,4k +2,3,4k +4,---, 4k — 1,4k +4k)(2,4k +3,4,4k +5,---,4k, 4k +1) , so

(1'0')'1 =1

But o (1)=r0’t0” (1) =10"7(3)=10" (4k +3) =7 (4k+5)=5.

122_)
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Therefore @, ¢ N(o"’ (ro)" (o) r”,a)z) .

d) o¢ N(o"’ (ra)” ,(TO‘)" z"’,a)l) . Let Gbe defined as in part (c).

If we exchange o,7 from part (c), we obtain @, € N (0'" (ro)" (o) r”,a)l) )
|

In summary, minimal presentations for R(G4n) are:

(a) 0'2,2'2,(2'0)2} for n=1;

(b) {o’ (ro-)2 ,(m')2 rz,a)l} for n=2;

(©) {az",r“,(fo)z" ,a)l,a)z} fornodd, n>1;

(d) {a” (ro)" (7o)’ f”,a)l,coz} for neven, n>2.

Definition 2.27 The order of a group is the number of elements in the group.
We require two lemmas to prove a theorem about the order of G, :

Lemma 2.28 The following identities holdin G, :

1) (ra)_l cl=0" (TO')_I

2) (rcr)*l o?l=0" (10')71

3) T(Td)a ‘= o? (z’a)_l ! (TG)a_l °,a,cel

4) (o) =0’ (m')fl T(TG)H °,a,cel

Proof (of Lemma 2.28):

1) o =7"'c’tw’ €R(G,,),s0

1

-1_2 -2_- -1 2 -1_-1_2 2 __~1_-1 -2 -1
T OO=0"71 —)(TO')O'=O'TO'=O'O'T=O' (TG).

2) w,=7'c 0"’ eR(G,,),s0

1 -2 1

e =0 > (TO')_l cl=c"r"or =00t =52 (z’a)_l .
3) 7(r0)' ¢ = TZO'(m'){H ‘=01 (TO')W1 7° (since

w, =0 't’or’ eR(G,,))

= |:G2 (TO‘)_I r} ? (TO')a_l ‘=0 (ra)_l 7! (TO')a_l 7°.

4) ' (r0)' ¢ = O'(TO')H ‘=0’ (m')f1 z’(m‘)m1 . i
Lemma 2.29 Every element xeG,, has representation x=c"(rc)" 7
with b even.

Proof (of Lemma 2.29): By Corollary 2.5, every x € G,, has a representation
x=0"(70)" ¢, with a>0.If bis even, the proof is complete. Let 5 be odd and

set b= B+1, Beven. Then
x= (TBO'(TG)a ¢ =glo? (TG)_l T|:(T0')a z"} =gfs? (z’a)_1 o’ (2'0')_1 7! (1'0')‘1_1 ¢

(by part (3) of Lemma 2.28) =c’c” (rcr)*] c? (ro—)f1 o’ (ro-)f1 r(ro-)”*2 ¢ (by
part (4) of Lemma 2.28)
Continuing to apply parts (3) and (4) we obtain
a+1
o’ [0'2 (z’a)flJ r7'7¢, a odd
X =
o’ [0'2 (ra)fl}a l 7, a even

By parts (1) and (2) of Lemma 2.28, all powers of o’ can be commuted to

a+l) Tcil

the left of (zo)" while preserving even parity. Hence, x:o-B'(ro-)f(
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with B’ even. W

Theorem 2.30 The order of G,, is

1) 42 if nis odd

2) i if nis even.

Proof.

1) Suppose n is odd. By Lemma 2.29, x =" (7o) z°, with b even. By Theo-
rems 2.20 and 221, o*,(zo)”,7*" all belong to R(G,,). Therefore we can
take x=o" (z-o-)a °, with 0<a@,b,c<2n, and b even. There are
(2n)(n)(2n)=4n" possibilities for a,b,c . If o (ro-)a1 4 = ogh (ro')a2 T,
then (z0) " o"™ (ro-)a' 797 =1. Since b —b, is even, we can use the com-
mutation rules to obtain o ) (o)™ 57 =1,

Also, Corollary 2.17 implies that @, —a, and ¢, —c, areboth even, and
o b —b,=0(modn)

* ¢ -0 =0(modn)

e a-a,=0(modn).

Since b —b, =¢,—¢, =a,—a, =2(modn), and nis odd, this implies
o b —b, =0(mod2n)
e ¢ -0, =0(mod2n)
e g -a,=0(mod2n),
which implies b, =b,,¢, =¢,,a =a, because of the conditions on El.,l;ifi .
Therefore the representation o’ (1-0-)(7 r° is unique, and G,, contains 4n’
elements when nis odd.

2) Now assume 711 even. Again, let x =o” (ro-)a ¢, with beven.

By Theorem 2.19, o"(zo)",(z0) ¢",(z0)”" belong to R(G,,). Using
o' = (ro-)_" , we can transform x so that 0<b<n and b is even. Using
(zo)" =7, we can transform xso that 0<a <n . Finally, using (z0)” =1, we
can transform xinto:

(MNx=0"(zc)" ¢ with 0<b<n,0<a<n0<c<2n, beven.

The total number of choices for a,b,c is n[ﬁzj(Zn) =n’. The choices

yield distinct elements of G,,, for if o” (70)" 7% =c” (10)" ¢, then
(ro) ™ 6" (z0)" ™% =1, and by commuting even powers of o with
(z0)", we obtain o-i(gl_gz)(ro-)a'ﬁ72 7972 =1. By Condition (1) of Corollary
2.17, we obtain

o b —b,=0(modn)

* ¢ -, =0(modn)

e g -a,=0(modn).

Since 0<|g, —c_12|,|51 —52| <n,wemusthave b =b, and @ =a,. However,
by Condition (1) of Corollary 2.17, ¢, —c, = 0(m0d2n) , S0 ¢ =¢,, since
0<|e, —c,| <2n . Therefore, all the elements x=c"(z0)" z° in (*) are distinct
and the orderof G,, is n’. A

Finally, we determine isomorphic group structures for G, and G;.

Theorem 2.31

1) G, isisomorphic to the Klein-4 group V.

2) G, is isomorphic to the multiplicative quaternion group Q.
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Figure 3. The diagram shows o,z on S;.

Proof.
1) The diagram for G, is:

(o issingleline, 7 is double line).
0" ]=(r"]
o
[ ]=[r]
By Theorem 2.30, G, has order 4, so G, = {1, 0,7,0T = TO‘} . Since
o?=7>=(or)’ =1, G, is Abelian, but not cyclic, itis V. W
2) Quaternions Q= {l,i,j,k,—l,—i,—j,—k} , with

o =k

o ji=—k

N i2=j2=k2=—1
o jk=i

° kj:—i

o ki=j

o jk=—j

each has a unique representation of the form i*;’, with 0<a<3, 0<;<1.
Also, ji=—k=iij=ij.The diagram for G; is shown in Figure 3.

Clearly, o’ =7%, and each xe G; has a representation x= o’t’ , with
0<a<3, 0<h<1. Also, 70 =0c"t. Therefore, ¢:Q— G, is an isomor-
phism defined by ¢(i*;")=0c"z" for 0<a<3, 0<h<1. W
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