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Abstract 
The segmentation of unlabeled medical images is troublesome due to the high 
cost of annotation, and unsupervised domain adaptation is one solution to 
this. In this paper, an improved unsupervised domain adaptation method was 
proposed. The proposed method considered both global alignment and cate-
gory-wise alignment. First, we aligned the appearance of two domains by im-
age transformation. Second, we aligned the output maps of two domains in a 
global way. Then, we decomposed the semantic prediction map by category, 
aligning the prediction maps in a category-wise manner. Finally, we evaluated 
the proposed method on the 2017 Multi-Modality Whole Heart Segmentation 
Challenge dataset, and obtained 82.1 on the dice similarity coefficient and 4.6 
on the average symmetric surface distance, demonstrating the effectiveness of 
the combination of global alignment and category-wise alignment. 
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1. Introduction 

Medical image segmentation is a basic task of intelligent medical diagnosis, 
which aims at extracting target regions like organs, tissues or lesions from med-
ical images. In recent years, deep learning has developed fast in the field of med-
ical image segmentation [1] [2] [3], but still remaining some problems to be 
solved. On the one hand, deep learning needs sufficient annotated data, but the 
annotation of medical images is highly cost. On the other hand, deep learning 
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assumes that the test data and training data are of independent identically dis-
tribution, while the distributions of medical image modalities vary largely, as 
shown in Figure 1. So, the segmentation for modality with few annotations is 
troublesome.  

Domain adaptation is one commonly used method to this problem. It aims at 
transferring the knowledge of labeled data to few labeled or unlabeled data, 
helping to promote their task performance [4]. In domain adaptation, the la-
beled data are called source domain data, the few or unlabeled data are called 
target domain data. When there are no labeled data in the target domain, calling 
it unsupervised domain adaptation. In this paper, we focus on unsupervised 
domain adaptation. 

Aligning the distributions of source and target domain data is a common 
strategy for unsupervised domain adaptation. When the distributions of data are 
aligned, the two data can share one same model. The way of aligning distribu-
tions can be divided into two categories: global alignment and category-wise 
alignment. 

The global alignment aligns the marginal distributions of two domains and 
has been implemented in different spaces. 

For example, some unsupervised domain adaptation works implement global 
alignment in the input image space [5] [6] [7] [8] [9], regarding each input im-
age as a whole sample. By aligning the distributions of input images, the ap-
pearance gap of two domains can be narrowed. 

Some other works implement global alignment in the feature space [10] [11] 
[12] [13], taking each feature map as a sample. Once the features of two domains 
follow the same distribution, they can share one classifier. 

In addition, some works implement global alignment in the output space, 
taking every output map as a sample. The alignment of output maps provides a 
low computation way for feature alignment, which has been widely used in un-
supervised domain adaptation segmentation [14] [15] [16]. 

Also, there are works that combines the above aspects [17]-[25].  
The global distribution alignment can effectively align the marginal distribu-

tions of data, but lacking of considering the category information within each 
data, which may cause the misalignment between categories. So, some works ad-
ditionally consider the category-wise alignment, to further regularize the seg-
mentation results of each category. Currently, category-wise alignment in unsu-
pervised domain adaptation segmentation is mainly implemented at the feature  
 

       
Figure 1. Different modalities of cardiac images. 
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level and applied in natural image segmentation. For example, Chen et al. [26] 
firstly assign class for each feature vector using the segmentation prediction, 
then put the features of same category into a discriminator, to align the segmen-
tation results of same category; in a reverse order, Menta et al. [27] firstly put the 
whole feature map into a discriminator, then assign class to the output map of 
the discriminator; Zhang et al. [28] calculate each category’s center, and aligns 
the centers of two domains. In the field of medical image segmentation, catego-
ry-wise alignment has not been involved yet.  

Based on the above works, we propose an improved unsupervised domain 
adaptation model which combines global alignment and category-wise align-
ment, and apply it to cross-modality cardiac segmentation. The contributions of 
the proposed method are as follows:  
 Both global distribution alignment and category-wise alignment are intro-

duced to medical image segmentation.  
 Category-wise distribution alignment is creatively implemented in the se-

mantic prediction space rather than the feature space. 
The organization of the rest of the paper is as follows: in Section 2, we intro-

duce the related works; in Section 3, we illustrate the proposed method; in Sec-
tion 4, we present and analyze the experimental results; in Section 5, we sum-
marize the whole work. 

2. Related Works 
2.1. Generative Adversarial Networks 

Generative adversarial networks (GAN) [29] is a generative model used to gen-
erate data subject to the same distribution of the given data, which is made up of 
one generator and one discriminator. The generator tries to generate data that 
looks realistic and the discriminator tries to distinguish between the true and the 
generated data. So, the two modules form an adversarial relationship. By com-
peting with each other, the two modules mutually promote, finally making the 
generator generate ideal data. The process of the two modules’ competition with 
each other is called adversarial learning. Due to the unsupervision property of 
GAN, many unsupervised domain adaptation works [10] [12] [14] [18] use dis-
criminators to align the distributions of two domains.  

Image generation is a common application of GAN, but the generation in-
volves randomness, cannot maintaining the image structure. To this problem, 
Cycle-consistent adversarial networks (CycleGAN) [30] introduces two reversed 
GANs and a cycle consistency constraint, to maintain the image structure. The 
first GAN transforms the images to the ideal style, and the second GAN trans-
forms the images of ideal style back to their original style. Thus, after two reversed 
transformations, the images are reconstructed to their original style. Then, the 
CycleGAN applies a cycle consistency constraint between the original images and 
their reconstructed images, promoting the generators to generate structure-invariant 
images. Many unsupervised domain adaptation works [9] [17] [20] [25] use Cyc-
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leGAN to narrow the appearance gap between two domains. 

2.2. SIFA 

Synergistic Image and Feature Adaptation (SIFA) [20] is an unsupervised do-
main adaptation method which creatively proposes the synergistic alignments of 
image and feature and achieves great performance in cross-modality medical 
image segmentation. 

SIFA first uses CycleGAN to narrow the appearance gap between two do-
mains for image adaptation. Then, by sharing the encoder of CycleGAN and the 
segmentation network, the model has two output spaces, SIFA further aligns the 
outputs of the two spaces for feature adaptation. 

As the CycleGAN and segmentation network share the same encoder, when 
training, the image adaptation and feature adaptation mutual affect, promoting 
the synergistic adaptation of image and feature.  

In this paper, we adopt the synergistic adaptation strategy of SIFA for global 
alignment. 

3. Proposed Method 

Our proposed method considers both global distribution alignment and cate-
gory-wise alignment for unsupervised domain adaptation. Figure 2 shows an 
overview of the proposed method. For global distribution alignment, we use the 
strategy proposed by SIFA [20]; for category-wise alignment, we introduce a new 
module to the semantic prediction space. The introduction of the proposed me-
thod is divided into five sections: image modality transformation, segmentation 
network, global alignment in image generating space, global alignment in se-
mantic prediction space and category-wise alignment in semantic prediction 
space.  

In Figure 2, the blue arrows represent the source domain data flow and the 
red arrows represent the target data flow. The fill color of the rectangle 
represents the modality of images, where blue represents the source domain 
modality, and red represents the target domain modality; in addition, the color  
 

 

Figure 2. Proposed unsupervised domain adaptation segmentation framework. 
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of the text also represents the source of the data, blue represents the data come 
from source domain data sx , and red represents the data come from target do-
main data tx . 

3.1. Image Modality Transformation 

A large distribution difference exists between cross-modality medical images. If 
we directly apply the model trained by the source images to the target images, 
the task performance would be poor. In this section, we use CycleGAN to reduce 
the appearance gap between two domains. 

First, we use a generative adversarial network { },t tG D  to transform the 
modality of the source images to that of the target images. The generator tG  
aims to transform the source images sx  into target-like images ( )t s s tG x x →= , 
the discriminator tD  tries to distinguish between the generated target images 

s tx →  and the real target images tx . tG  and tD  form a mutual competing 
relationship. The corresponding objective function of their adversarial learning 
is:  

( ) ( ) ( )( )~ ~
, log log 1 ,t t s s

t t t t t t s t
adv x X x X

L xG D D xD →  = + −           (1) 

where the discriminator tD  aims to differentiate between tx  and s tx → , 
making ( ) 1t tD x →  and ( ) 0t s tD x → → , so tD  aims to maximize the objec-
tive function t

advL ; the generator tG  aims to transform sx  into target modal-
ity, making ( ) 1t s tD x → → , so tG  aims to minimize the objective function t

advL . 
By the adversarial learning of tG  and tD , source images are transformed to 
target-like images. 

Then, to preserve the original structure in the transformed images, a reverse 
generative adversarial network { }, , sE U D  is introduced to transform the target 
images back to source modality images. Among them, E is an encoder used to 
map images to a high-dimensional feature space, and U is a decoder mapping 
the encoded features back to source modality images. E U  plays the role of 
the generator in GAN. Forwarding target images tx  into the generator, it out-
puts source-like images ( )( )t s txx U E→ = , while the discriminator sD  aims to 
differentiate between the generated source images t sx →  and the real source 
images sx . By the adversarial learning of E U  and sD , the target modality 
images are transformed to source-like images. The objective function of the re-
verse GAN { }, , sE U D  is:  

( ) ( ) ( )( )~ ~
, , log log 1 ,s s t t

s s s s s t s
adv x X x X

L E U xD D D x →  = + −         (2) 

where E and U aim to minimize the objective function s
advL , sD  aims to 

maximize the objective function. 
So the transformations of the two GANs form a cycle, i.e., source images sx  

pass through generator tG  and E U , obtaining reconstructed source modal-
ity images ( )( )( )s t s t sx U E G x→ → = ; target images tx  pass through generator 
E U  and tG , obtaining reconstructed target modality images  
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( )( )( )t s t t tx G U E x→ → = . By imposing the following cycle consistency constraint 
to the reconstructed images, generators tend to generate structure-invariant im-
ages. 

( ) ~ ~
, , .t ts s

t s t s s t s t t
cyc x X x X

L E U x x x xG → → → →= − + −          (3) 

Figure 3 shows the image transformed by the generator tG . The left is the 
source image sx , the medium is the generated image ( )t s s tG x x →= , and the 
right is the target image tx . It can be seen that the generated image is as the 
same style as target image while as the same structure as source image.  

3.2. Segmentation Network 

In Section 3.1, the generator tG  transforms the source images sx  to the target 
modality images s tx → , thus the transformed images s tx →  and target images 

tx  are both of target modality, they can share a common segmentation network. 
As the encoder E learns the features of s tx →  and tx , we introduce a pixel-wise 
classifier C after encoder E, forming a segmentation network E C . 

The training of the segmentation network is supervised by the transformed 
images s tx →  and their labels. As s tx →  and sx  are of the same structure, they 
share the same label sy . Therefore, the objective function of segmentation net-
work is: 

( ) ( ) ( )ˆ ˆ, , , ,s s t s s t
segL E C H y y Dice y yα→ →= + ⋅             (4) 

where ˆ s ty →  is the semantic prediction of s tx → , sy  is the one-hot label of 
s tx → ; H is the cross-entropy, Dice is the dice similarity coefficient, α  is a 

hyperparameter using to balance the cross-entropy and the Dice. In the experi-
ment, α  is set as 1. 

3.3. Global Alignment in Image Generating Space 

Image modality transformation alleviates the domain shift between two do-
mains. But when meeting severe domain shift, image adaptation may not be 
enough to achieve ideal domain adaptation performance. In this section, we 
further align the distributions of features. 

Due to the high dimension of the feature space, aligning features in the feature 
space takes a lot of computation, so we turn to align the outputs in low-dimensional  
 

 

Figure 3. Example of image modality transformation. 
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output space. On the one hand, for domains with the same task, their outputs in 
low-dimensional space should share a lot of similarity, on the other hand, 
through back propagation, the distribution of features can be indirectly aligned.  

As shown in Figure 2, the proposed domain adaptation framework has two 
output spaces. Call the output space of E U  the image generating space, the 
output space of E C  the semantic prediction space. We implement distribu-
tion alignment in both these two output spaces. In this section, we first intro-
duce the alignment in image generating space. 

The blue dotted box in Figure 2 corresponds to the image generating space 
alignment. In image adaptation, discriminator sD  is introduced to differen-
tiate between real and generated source images. For output space alignment, 

sD  is assigned a new task to distinguish the source of data. Forwarding the 
generated source modality images s t sx → →  and t sx →  into discriminator sD , 

sD  aims to distinguish the real source of input images, where images s t sx → →  
come from the source domain, images t sx →  come from the target domain. And 
the corresponding generator E U  tries to generate identically distributed im-
ages for two domains, confusing the discriminator. When discriminator sD  
cannot differentiate the source of two generated images, it demonstrates that the 
distributions of the two images are quite similar. By the adversarial learning be-
tween sD  and E U , the distributions of s t sx → →  and t sx →  are aligned. The 
corresponding objective function of adversarial learning is: 

( ) ( ) ( )( )~ ~
, , log log 1 ,s t s t t t

s s s s t s s t s
adv x X x X

D D DL E U x x− →
→ → →  = + −      (5) 

where E and U aim to minimize the objective function, and sD  aims to max-
imize the objective function. 

3.4. Global Alignment in Semantic Prediction Space 

In this section, we introduce the alignment in the semantic prediction space, 
corresponding to the orange dotted box in Figure 2. Similar to the alignment in 
the image generating space, a discriminator pD  is introduced to the semantic 
prediction space to distinguish the source of input data. Forwarding two do-
mains’ prediction results ˆ s ty →  and ˆ ty  into pD , pD  aims to distinguish that 
ˆ s ty →  comes from the source domain and ˆ ty  comes from the target domain, 

while the segmentation network E C  tries to align the distributions of these 
two predictions, confusing the discriminator. At this point, segmentation net-
work E C  and discriminator pD  respectively correspond to the role of the 
generator and the discriminator in GAN. Through the competition between 
E C  and pD , the two domains’ prediction results are aligned. The corres-
ponding objective function is:  

( ) ( ) ( )( )~ ~
ˆ ˆ, , log log 1 ,s t s t t t

p p p s t p t
adv x X x X

L E C y yD D D→ →
→   = + −       (6) 

where ( )( )ˆ s t s ty C E x→ →=  is the semantic prediction of the source domain, 

( )( )ˆ t ty C E x=  is the semantic prediction of the target domain. E and C aim to 
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minimize the objective function, pD  aims to maximize the objective func-
tion. 

Considering that the output space is far away from the shallow layer of the 
network, the gradient of adversarial learning may not effectively back propagate 
to the shallow features. Therefore, an auxiliary pixel-wise classifier aC  is fur-
ther introduced to the second last feature layer, then there appears an additional 
output space, calling it auxiliary semantic prediction space. Similarly, a discri-
minator apD  is introduced to the auxiliary semantic prediction space. By the 
adversarial learning of aE C  and apD , the distributions of the auxiliary se-
mantic predictions are aligned, indirectly aligning the distributions of the shal-
low features. 

The objective function of auxiliary semantic prediction space alignment is: 

( ) ( ) ( )( )~ ~
ˆ ˆ, , log log 1 .a a a a

s t s t t t
p p p ps t t
adv a a ax X x X

L E C D D y D y→ →
→   = + −      (7) 

The segmentation loss function of auxiliary semantic prediction network 

aE C  is: 

( ) ( ) ( )ˆ ˆ, , , ,s s t s s t
seg a a aL E C H y y Dice y yα→ →= + ⋅             (8) 

where ( )( )ˆ s t s t
a ay C E x→ →=  and ( )( )ˆ t t

a ay C E x=  are the auxiliary semantic 
prediction results of two domains respectively. And differing from the ( )E ⋅  in 
Equation (6), the ( )E ⋅  in Equation (7) and Equation (8) represents the second 
last features.  

3.5. Category-Wise Alignment in Semantic Prediction Space 

The image modality transformation and output space alignment both treat every 
input or output image as a whole sample, aligning the distributions from a global 
perspective, without considering the multiple categories within each image. In 
this section, we introduce category-wise alignment to the proposed framework, 
further optimizing the alignment between each category. 

The proposed category-wise alignment corresponds to the green dotted box in 
Figure 2. Aligning the features of the same category is a commonly used method 
for category-wise alignment. The disadvantages of this kind of method is that it 
requires a large amount of computation due to the high dimension of features 
and the categories of feature vectors need to be inferenced by the segmentation 
results, to some extent inconvenient. Intuitively, we can try to implement cate-
gory-wise alignment directly in the semantic prediction space. On the one hand, 
for medical image, each category of its foreground corresponds to a structure of 
human body, whose segmentation result should share a lot of shape and position 
consistency between domains. On the other hand, the segmentation result di-
rectly gives the probability of each pixel belonging to each category. Meanwhile, 
the dimension of the semantic prediction space is much lower than the feature 
space, saving a considerable amount of computation. Based on the above points, 
in this section, we align the category-wise distribution in the semantic prediction 
space. 
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The output of the semantic prediction space is a multi-channel segmentation 
map, each channel corresponding to a category. The value of each pixel in each 
channel represents the confidence of the pixel belonging to that category. For 
category-wise alignment, we first decompose the output segmentation map by 
channel, obtaining the segmentation prediction of each category, as shown in 
Figure 4. Then, the segmentation maps of the same category are forwarded into 
a category-dependent discriminator p

kD , where k represents the category. The 
discriminator p

kD  aims to differentiate the source of the segmentation maps of 
the kth category, and the generator E C  aims to align the distributions of the 
two maps, confusing the discriminator. By the adversarial learning of E C  
and p

kD , the prediction results of the kth category are aligned. 
For medical segmentation result, each category of the foreground corresponds 

to a specific structure, while the background contains multiple structures. So, we 
only consider the categories of the foreground when aligning the category-wise 
distribution. That means, for segmentation task of K categories, there are 1K −  
discriminators introduced to our category-wise alignment. The objective func-
tion of the adversarial learning between E C  and p

kD  is:  
( ) ( ) ( ) ( )( )~ ~

ˆ ˆ, , log log 1 ,s t s t t t
p k p p s t p t
adv k k k k kx X x X

L E C yD D D y→ →
→  = + − 

 
     (9) 

where { }1,2, , 1k K∈ −  represents the category, ( )( )ˆ s t s t
k k

y C E x→ →=  and 

( )( )ˆ t t
k k

y C E x=  are respectively the segmentation results of the kth category of 
two domains. E and C aim to minimize the objective function, p

kD  aims to 
maximize the objective function. 

Overall, the full objective function of the proposed method is:  

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

( ) ( ) ( )

1

1

2

1

, , , ,

, , , , ,

, , , ,

, , , ,

, , , , ,

, , ,

a

a a a

pt s p p
a k

t t t s t
adv adv adv adv cyc cyc

s s s
seg seg seg seg a adv adv

p p pp p p
adv adv adv adv a

K
p k p k p

adv a

t

t

k

s

dv

s

k

L G D E U D C C D D D

L G D L E U D L G E U

L E C L E C L E U D

L E C D L E C D

L E C D

λ λ λ

λ λ λ

λ λ

λ
−

=

= + +

+ + +

+ +

+ ∑

       (10) 

where all the discriminators aim to maximize the above objective function, other 
modules aim to minimize the objective function. All the modules update in an 
alternative way. The parameters 
 

 

Figure 4. Decomposition of the segmentation map by category. 
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( ){ }21, , , , , , , ,a p kpt s p
adv adv cyc seg seg adv adv adv adv

sλ λ λ λ λ λ λ λ λ   

are used to balance the functions in the full objective function, setting as 

{ }0.1,0.1,10,1,0.1,0.1,0.1,0.01,0.005 . 

3.6. Network Configuration and Training 

This section introduces the configuration and training details of the proposed 
network. 

We divide all the modules into five categories: generator tG , encoder E, de-
coder U, pixel-wise classifier C and Ca, and discriminators , , ,, as pt pp

kD D D D D . 
Following the settings in SIFA [20], the generator contains three convolution 
layers, nine residual blocks, two deconvolution layers and two convolution layers 
in turn; the encoder contains three convolution-pooling operations, eight resi-
dual blocks, two deconvolution layers and two convolution layers; the decoder 
consists of one convolution layer, four residual blocks, three deconvolution lay-
ers and one convolution layer; the classifiers contain a convolution layer and an 
up-sampling operation; and all the discriminators consist of five convolution 
layers. 

When training, the batch size is set as 8, the learning rate is set as 42 10−× , 
and the optimizer is set as Adam optimizer. The alternate update order of mod-
ules is: 

, , apt t s p p t
a kG D DE C D DC U D G→ → → → → → → →  

4. Experimental Results 
4.1. Dataset 

The proposed method is evaluated on the cardiac dataset of Multi-Modality 
Whole Heart Segmentation Challenge 2017 (MMWHS2017) [31]. The dataset 
contains 20 MRI and 20 CT volumes, which are unpair and from different pa-
tients. Four important cardiac substructures not covering each other in 2D co-
ronal view are selected for segmentation, respectively, the ascending aorta (AA), 
the left atrium blood cavity (LAC), the left ventricle blood cavity (LVC) and the 
myocardium of the left ventricle (MYO). The adaptation direction is from MRI 
to CT, which means that MRI is the source, CT is the target.  

For MRI, sixteen volumes are used for training and four for validation. For 
CT, fourteen volumes are used for training, two volumes for validation and oth-
ers for testing. When training, we use the processed coronal slices provided by 
SIFA [20], which are clipped, resampled, standardized and enhanced on the ba-
sis of the original MMWHS2017 dataset. 

4.2. Evaluation Metrics 

We use two commonly used metrics in segmentation for evaluation, which 
are dice similarity coefficient (Dice) and average symmetric surface distance 
(ASSD).  
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Dice measures the volume overlap between the predicted result and the 
ground truth, and ASSD measures the surface distance between this two. The 
higher Dice and lower ASSD represents the better prediction result. The expres-
sions of Dice and ASSD are as follows: 

( )2
Dice

A B
A B

=
+


                     (11) 

( )( ) ( )( )

( ) ( )

min min
ASSD

b aS B S AbS A S Ba
a b b a

S A S B

∈ ∈∈ ∈

− + −

= ⋅
+

∑ ∑
        (12) 

where A and B represent the 3D prediction result and the ground truth respec-
tively, ( )S ⋅  represents the set of voxels in 3D surface. 

4.3. Numerical Results 

Table 1 shows the numerical results of different methods for cardiac CT sub-
structure segmentation. The left column lists the methods for comparison, in 
order: without domain adaptation, SIFA, our proposed method and CT supervi-
sion. Among them, without domain adaptation (w/o adaptation) means directly 
applying the segmentation model trained by MRI images to test CT images 
without using any domain adaptation method. CT supervision means using the 
segmentation model trained by labeled CT images for CT testing. These two 
methods respectively provide the lower and higher bound for unsupervised do-
main adaptation. For fairly comparison, the two methods use the segmentation 
branch E C  in Figure 2 as their segmentation model.  

Comparing the results of w/o adaptation and two domain adaptation me-
thods, in both cases of no labeled images in target domain, the domain adapta-
tion methods increase the Dice from 26.7 to 80.0 and 82.1, and decrease the 
ASSD from 24.5 to 6.0 and 4.6, which greatly improves the numerical perfor-
mance, demonstrating the effectiveness of domain adaptation. 

In addition, comparing our proposed method with SIFA. Our method addi-
tionally considers category-wise alignment than SIFA, which increases Dice by  
 
Table 1. Numerical results of different methods on CT cardiac substructure segmenta-
tion. 

Methods 
Dice ASSD 

AA LAC LVC MYO Mean AA LAC LVC MYO Mean 

W/o 
adaptation 

29.4 
(17.9) 

53.5 
(30.9) 

4.7 
(7.1) 

19.0 
(14.1) 

26.7 
36.2 

(31.5) 
11.8 
(4.5) 

29.7 
(17.1) 

20.5 
(8.1) 

24.5 

SIFA 
[20] 

87.6 
(4.2) 

86.7 
(5.0) 

80.0 
(6.8) 

65.8 
(8.9) 

80.0 
5.6 

(3.0) 
4.1 

(2.3) 
7.0 

(5.6) 
7.3 

(4.0) 
6.0 

Ours 
89.0 
(3.1) 

88.0 
(2.9) 

82.8 
(5.3) 

68.6 
(5.6) 

82.1 
3.1 

(0.7) 
3.8 

(2.5) 
4.1 

(1.3) 
7.2 

(4.3) 
4.6 

CT 
supervision 

81.7 
(24.4) 

90.1 
3.0) 

92.2 
(2.0) 

87.0 
(2.6) 

87.7 
2.7 

(2.2) 
2.8 

(1.7) 
1.6 

(0.3) 
1.9 

(0.5) 
2.2 
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2.1 and decreases ASSD by 1.4, further reducing the numerical difference be-
tween the unsupervised domain adaptation methods and the CT supervision. 
Moreover, it can be seen in Table 1 that, the numerical results for each sub-
structure are all improved, verifying the validity of the category-wise alignment. 

4.4. Visualization Results 

We represent the visualized segmentation results of different methods in Figure 
5. From left to right are respectively: CT test image, w/o adaptation, SIFA, our 
method, CT supervision, and ground truth. The correspondence between color 
and cardiac substructure is shown in the right legend. 

As shown in Figure 5, the segmentation results of w/o adaptation are messy 
and irregular. After using domain adaptation, the segmentation shape of each 
substructure become clear, demonstrating the effectiveness of domain adapta-
tion. Then, comparing the segmentation results between domain adaptation 
methods and CT supervision, it shows that the performance of the domain 
adaptation methods is very close to that of the CT supervision, even in the cases 
of no labeling in the target domain.  

Then, we compare the performance of our proposed method and SIFA row- 
by-row. The first and second rows show that SIFA under segments and over 
segments some substructures, for example, AA is omitted in the first row and 
part of the background is mistakenly divided into AA in the second row. Our 
proposed method improves these deficiencies. In the third row, the segmented 
LAC by SIFA is not completely closed, existing a small hole, and in the fourth 
row, the shape of MYO is discontinuous and the segmentation of LVC is also 
inaccurate. Our method improves the segmentation continuity of substructures 
and the cohesion between substructures. 
 

 

Figure 5. Visualized segmentation results of different methods on CT test data. 
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5. Conclusions 

This paper proposes an improved method for unsupervised domain adaptation 
segmentation. On the basis of domain adaptation algorithm SIFA, the proposed 
method further introduces category-wise alignment to the semantic prediction 
space. Thus, our proposed method both considers global distribution alignment 
and category-wise distribution alignment. The overall work mainly includes 
three parts: image modality transformation, global alignment in two output 
spaces, and category-wise alignment in the semantic prediction space. First, we 
transform the modality of source images into target in a structure-preserve 
manner, reducing the distribution difference between two domains in the image 
level. Then, we respectively introduce discriminators into the image generation 
space and the semantic prediction space, by aligning the distributions of two 
domains’ outputs, the domain shift is further alleviated. Finally, by equipping 
each category a discriminator, we align the semantic prediction results in a cat-
egory-wise manner, further improving the performance of unsupervised domain 
adaptation. The proposed method is evaluated on the MMWHS2017 cardiac da-
taset in a direction of MRI to CT. The experimental results show that the pro-
posed method improves the performance of unsupervised domain adaptation. 

For future research, we consider introducing the category-wise alignment into 
the appearance transformation, as the appearance difference of two domains 
may vary with the region, i.e., for some categories, the difference may be large, 
while the others may be slight. Taking the category information into considera-
tion may further improve the performance of image appearance transformation. 
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