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Abstract 

The nonlinear partial differential equation is solved using the Adomian de-
composition method (ADM) in this article. A number of examples have been 
provided to illustrate the numerical results, which is the comparison of the 
exact and numerical solutions, and it has been discovered through the tables 
that the amount of error between the exact and numerical solutions is very 
small and almost non-existent, and the graph also shows how the exact solu-
tion of absolutely applies to the numerical solution. This demonstrates the 
precision of the Adomian decomposition method (ADM) for solving the 
nonlinear partial differential equation with Maple18. And that in terms of 
obtaining numerical results, this approach is characterized by ease, speed, and 
high accuracy. 
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1. Introduction 

The aim of this study is to use Maple18 to solve the Volterra-Fredholm integral 
equation with the Adomian decomposition process. Integral equations are fun-
damental sciences in our everyday lives; they describe physical, chemical, engi-
neering, and medical phenomena, and they also help us find analytical and nu-
merical solutions to these problems. 
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A reliable Modification of Adomain Decomposition Method [1]. A new Mod-
ification of the Adomain Decomposition Method for Linear and Nonlinear Op-
erators [2]. Lorenz equations are solved using a decomposition method [3]. Us-
ing Adomian’s decomposition method to solve the Riccati differential equation 
[4]. 

Numeric-analytic integration of strongly nonlinear and chaotic oscillators us-
ing Adomian decomposition [5]. For fourth-order boundary value problems, the 
extended Adomian decomposition method [6]. The Adomian decomposition 
approach has been used to solve multipoint boundary value problems [7]. A new 
algorithm for evaluating Adomian polynomials has been developed [8]. An effi-
cient algorithm for the multivariable Adomian polynomials [9]. Convenient 
analytic recurrence algorithms for the Adomian polynomials [10]. A review of 
the Adomian decomposition method and its applications to fractional differen-
tial equations are discussed in this paper [11]. A bibliography of the Adomian 
decomposition method's theory and applications [12]. Nonlinear integral equa-
tion solutions are more difficult to solve than linear integral equation solutions 
[13], and there are several analytical and computational methods for solving 
both linear and nonlinear integral equations [14]-[19]. 

MATLAB and Maple were used to implement the Adomian decomposition 
method for the Fredholm integral equation of the second kind. To solve the 
Fredholm integral equation of the second kind [20], the Adomian decomposi-
tion method was employed. In addition, using Maple, a Modified research ap-
proach for solving the Volterra integral equation of the second kind [21]. The 
Adomian Decomposition Method for Solving Volterra-Fredholm Integral Equa-
tion Using Maple [22]. 

In this article, we used the Maple algorithm to apply the Adomian decomposi-
tion method to various cases, such as finding the approximate solution, com-
paring it to the exact solution, and determining the amount of error between the 
approximate solution and the exact solution. 

2. Adomian Decomposition Method 

Consider the nonlinear partial differential equation given in an operator form 

( ) ( ) ( )( ) ( )( ) ( ), , , , ,x yL u x y L u x y R u x y F u x y g x y+ + + =        (1) 

where Lx is the highest order differential in x, Ly is the highest order differential 
in y, R contains the remaining linear terms of lower derivatives, ( )( ),F u x y  is 
an analytic nonlinear term, and ( ),g x y  is an inhomogeneous or forcing term. 

Assuming that the operator Lx meets the two bases of selection, therefore we 
set 

( ) ( ) ( ) ( )( ) ( )( ), , , , ,x yL u x y g x y L u x y R u x y F u x y= − − −        (2) 

Applying 1
xL−  to both sides of (1) gives 

( ) ( ) ( ) ( )( ) ( )( )1 1 1 1
0, , , , , ,x x y x xu x y L g x y L L u x y L R u x y L R u x y− − − −= ∅ − − − −  (3) 
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We proceed in exactly the same manner by calculating the solution ( ),u x y . 
In a series form 

( ) ( )0, , ,nnu x y u x y∞

=
= ∑                      (4) 

And the nonlinear term 

( )( ) 0, ,nnF u x y A∞

=
= ∑  

where An are Adomian polynomials that can be generated for all forms of nonli-
nearity. Based on these assumptions, Equation (2) becomes 

( ) ( ) ( )( )
( )( ) ( )

1 1
00 0

1 1
0 0

, , ,

, ,

n x x y nn n

x n x nn n

u x y L g x y L L u x y

L R u x y L A

∞ ∞− −
= =

∞ ∞− −
= =

= ∅ − −

− −

∑ ∑

∑ ∑
         (5) 

The components, ( ), , 0nu x y n ≥  of the solution ( ),u x y  can be recursively 
determined by using the relation 

( ) ( )1
0 0, , ,xu x y L g x y−= ∅ −  

( ) ( ) ( )( )1 1 1
1 , , , , 0k x y k x k x ku x y L L u x y L R u x y L A k− − −
+ = − − − ≥  

Using the algorithms described before for calculating An for the nonlinear 
term ( )F u . 

The first few components can be identified by 

( ) ( )1
0 0, , ,xu x y L g x y−= ∅ −  

( ) ( ) ( )( )1 1 1
1 0 0 0, , , ,x y x xu x y L L u x y L R u x y L A− − −= − − −  

( ) ( ) ( )( )1 1 1
2 1 1 1, , , ,x y x xu x y L L u x y L R u x y L A− − −= − − −  

( ) ( ) ( )( )1 1 1
3 2 2 2, , , ,x y x xu x y L L u x y L R u x y L A− − −= − − −  

( ) ( ) ( )( )1 1 1
4 3 3 3, , , ,x y x xu x y L L u x y L R u x y L A− − −= − − −  

where each components can be determined by using the preceding component. 
Having calculated the components ( ),nu x y . 

3. Numerical Examples 

In this section, we solve some examples, and we can compare the numerical re-
sults with the exact solution. 

Example 1. Consider the nonlinear partial differential equation  
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( )0, ,0 , 0,t xu uu u x x t+ = = >                    (6) 

the exact Solution ( ) , 1
1

xu x t
t

= <
+

. 

Applying the Adomian decomposition method using Maple18.  
Example 2. Consider the nonlinear partial differential equation. 

( )1 cos sin cos , ,0 sint xu uu t x x x u x x+ = + ⋅ + =             (7) 

the exact Solution ( ) sinu x t x= + . 
Applying the Adomian Decomposition Method using Maple18. 
Example 3. Consider the nonlinear partial differential equation 

( )2 21 , ,0 0
4t xu x u u x= + =                      (8) 

the exact Solution ( ) 2 tanu x x t= . 
Applying the Adomian Decomposition Method using Maple18. 
Example 4. Consider the nonlinear partial differential equation  

( )2 31 , ,0 0,
36t xxu xu x u x+ = =                    (9) 

the exact Solution ( ) 3, tanhu x t x t= . 
Applying the Adomian Decomposition Method using Maple. 

 

 
Figure 1. Plot of the solutions of nonlinear partial differential equation for example 1. 
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Figure 2. Plot of the solutions of nonlinear partial differential equation for example 2. 
 

 

Figure 3. Plot of the solutions of nonlinear partial differential equation for example 3. 
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Table 1. Approximation solution and exact solution of nonlinear partial differential equa-
tion for example 1. 

x u 2
1

xExact
t

=
+

 1Error Exact u= −  

0.10000 0.0666667 0.0687500 0.0020833 

0.20000 0.1333333 0.1375000 0.0041667 

0.30000 0.2000000 0.2062500 0.0062500 

0.40000 0.2666667 0.2750000 0.0083333 

0.50000 0.3333333 0.3437500 0.0104167 

0.60000 0.4000000 0.4125000 0.0125000 

0.70000 0.4666667 0.4812500 0.0145833 

0.80000 0.5333333 0.5500000 0.0166667 

0.90000 0.6000000 0.6187500 0.0187500 

1.00000 0.6666667 0.6875000 0.0208333 

 
Table 2. Approximation solution and exact solution of nonlinear partial differential equa-
tion for example 2. 

x u ( )2 sinExact x=  2Error Exact u= −  

0.10000 0.5998334 0.5998334 0.0000000 

0.20000 0.6986693 0.6986693 0.0000000 

0.30000 0.7955202 0.7955202 0.0000000 

0.40000 0.8894183 0.8894187 0.0000003 

0.50000 0.9794255 0.9794271 0.0000015 

0.60000 1.0646425 1.0646480 0.0000055 

0.70000 1.1442177 1.1442339 0.0000162 

0.80000 1.2173561 1.2173973 0.0000412 

0.90000 1.2833269 1.2834208 0.0000938 

1.00000 1.3414710 1.3416667 0.0001957 

 
Table 3. Approximation solution and exact solution of Volterra Fredholm integral equa-
tions for example 3. 

x u 23 tan tExact x=  3Error Exact u= −  

0.10000 0.0054630 0.0055459 0.0000829 

0.20000 0.0218521 0.0221835 0.0003314 

0.30000 0.0491672 0.0499129 0.0007457 

0.40000 0.0874084 0.0887341 0.0013257 

0.50000 0.1365756 0.1386471 0.0020715 

0.60000 0.1966689 0.1996518 0.0029829 

0.70000 0.2676882 0.2717483 0.0040600 

0.80000 0.3496336 0.3549365 0.0053029 

0.90000 0.4425050 0.4492165 0.0067115 

1.00000 0.5463025 0.5545883 0.0082858 
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Figure 4. Plot of the solutions of of nonlinear partial differential equation for example 4. 
 
Table 4. Approximation solution and exact solution of nonlinear partial differential 
equation for example 4. 

x u 34 tanhExact x t=  4Error Exact u= −  

0.10000 0.0004621 0.0004704 0.0000083 

0.20000 0.0036969 0.0037633 0.0000664 

0.30000 0.0124772 0.0127011 0.0002240 

0.40000 0.0295755 0.0301063 0.0005309 

0.50000 0.0577646 0.0588015 0.0010368 

0.60000 0.0998173 0.1016089 0.0017916 

0.70000 0.1585062 0.1613512 0.0028450 

0.80000 0.2366040 0.2408508 0.0042468 

0.90000 0.3368834 0.3429301 0.0060467 

1.00000 0.4621172 0.4704117 0.0082945 

4. Conclusion 

In this paper, the Adomian decomposition method is applied to solve the nonli-
near partial differential equation using Maple18 software. Results were obtained 
by tables and drawing with figures. The exact solution and numerical solution 
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are shown in Tables 1-4 and Figures 1-4. By comparing the numerical results, 
we find that the numerical solution is widely applied to the precise solution, 
which proves the efficiency of the method used and the ability to obtain the nu-
merical solution corresponding to the precise solution easily and conveniently 
using Maple 18 software. Moreover, high accuracy of the results obtained. 
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