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Abstract 
We generalize Biggs Theorem to the case of directed cycles of multi-digraphs 
allowing to compute the dimension of the directed cycle space independently 
of the graph representation with linear runtime complexity. By considering 
two-dimensional CW complex of elementary cycles and deriving formulas for 
the Betti numbers of the associated cellular homology groups, we extend the 
list of representation independent topological inavariants measuring the 
graph structure. We prove the computation of the 2nd Betti number to be 
sharp #P hard in general and present specific representation invariant 
sub-fillings yielding efficiently computable homology groups. Finally, we 
suggest how to use the provided structural measures to shed new light on 
graph theoretical problems as graph embeddings, discrete Morse theory and 
graph clustering. 
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1. Introduction 

Graphs are widely used abstractions to model systems and interactions, e.g., in 
molecular chemistry [1], biochemistry [2], systems biology [3] [4], neuroscience 
[5], and social sciences [6]. Therefore, graph theoretical problems play a pivotal 
role across all disciplines of sciences. However, the combinatorical complexity of 
graph theoretical problems often hampers practical applications. Despite trees, 
planar graphs are a graph class for which most optimization or decision prob-
lems can efficiently be solved or closely be approximated. This is notably the 
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case for the graph isomorphism problem [7], graph-coloring problems [8] and 
detection of Hamilton cycles [9], i.e., solving the traveling salesman problem 
[10]. These facts are reflected in Whitney’s theorem [11] that proves planar em-
beddings of 3-connected graphs to be unique up to isomorphism. However, 
planarity is a very strong condition on the graph G, which often does not match 
to instances occurring in practice. Extending considerations to graphs of higher 
genus allow to relax the conditions on the graph structure, which, by itself, is 
generated by the cycles the graph G contains. However, as counting all elemen-
tary cycles is already a #P-hard [12] problem finding an embedding of minimum 
genus is NP-hard [13]. In addition, the number of possible embeddings increases 
exponentially with the graph genus [13], which in contrast to Whitney’s Theorem 
makes it hard to efficiently represent G independently of its automorphism class. 

Here, we address the question of whether efficiently computable invariants of 
graphs exist and how they can be used to measure the structural complexity of 
graphs independently of their representation. Biggs Theorem [14] is a classic re-
sult in graph theory that, similarly to the Euler characteristic of surfaces [15], 
provides such an invariant for simple digraphs.  

Theorem (Biggs Theorem). The set of connected cycles ( )O G  of a simple 
digraph G generates a free R-module or vector space ( ),G RΛ  of dimension  

( ) 2dim , # , , ,R G R E V G RΛ = − + =                (1) 

where #G denotes the connected components of G.  
However, Biggs Theorem is only known to hold for the space generated by 

connected cycles of a simple digraph. Here we generalize the statement to the 
case of the directed cycle space ( ) R

O G , 2,R =    spanned by all directed 
cycles ( )O G  of a multi-digraph G. 

1.1. Statement of Contribution 

We denote by ( ) ( )el el,O G O G  the set of all directed or connected elementary 
cycles (passing no vertex twice) of a multi-digraph G and by  

( )( ) ( )( )el el,O G O G   the induced subgraphs, respectively. Then we prove the 
following generalization of Biggs Theorem. 

Theorem 1 (Biggs Theorem for directed cycles). Let ( ), , head, tailG V E=  
be a multi-digraph and ( ) ( )el,

R
G R O GΛ =  its connected cycle space with re-

spect to 2,R =   . Then  

( )( ) ( )( )el elO G O G=   if and only if ( ) ( )el elR R
O G O G= .   (2) 

Consequently, in case of equivalence, there holds  

( ) ( )eldim # dim , .R RR
O G E V G G R= − + = Λ            (3) 

Indeed the construction of the induced subgraph ( )( )elO G  is given by the 
union of all strongly connected components, which therefore can be realized in 
( )E  [16]. Consequently, Theorem 1 allows to determine ( )eldimR R

O G  effi-
ciently in ( )E . The efficient computation of ( )eldimR R

O G  potentially 
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addresses many challenging problems in graph theory. In this article, we extend 
the 1-dimensional CW-complex ( )1X G  given by the geometrical realization of 
G given by attaching 2-cells accordingly to a chosen set of elementary cycles 

( )elO O G⊆ . Thereby, much more structural information of G is understood as 
topological structure. Theorem 1 enables us to derive formulas for the Betti num-
bers of the associated homology groups ( )( )el, ,kH G O G R , 0,1,2k = . 

Theorem 2 (Homology of the Elementary Filling). Let ( ), , head, tailG V E=  
be a multi-digraph, 2,R =   , ( )elO O G⊆  and ( ),X G O  the geometrical 
realization induced by the choice of elO O⊆ . The associated cellular homology 
groups ( ), ,kH G O R  are free R-modules of ranks ( ), ,kb G O R , 0,1,2k = . 

i) ( )0 , , #b G O R G=  and can be computed in ( )2V V E+ .  
ii) ( )1 , , # dimR Rb G O R E V G O= − + −  and ( )( )1 el, , 0b G O G R = .  
If ( )elO O G=  then ( )1 , ,b G O R  can be computed in ( )2V V E+ .  
iii) ( )2 , , dimR Rb G O R O O= − . If ( ) ( )el el,O O G O G=  then it is #P-hard 

(sharp P-hard) to compute ( )2 , ,b G O R .  
Using that cellular and singular homology are isomorphic [15] (Theorem 

2.35), Theorem 2 provides a path for computing the singular homology of the 
geometric realization ( ),X G O  of G with respect to the set of cycles  

( ) ( )el el,O O G O G⊆ . To overcome the involvement of a #P-hard counting prob-
lem in iii), we suggest several representation independent sub-fillings  

( ) ( )el el,O O G O G  allowing to compute ( ), ,kH G O R , 0,1,2k = , efficiently. 
Consequently, the graph structure of G can be understood in terms of singular 
homology. In light of this fact, we revisit classic problems in graph theory as 
graph embeddings, discrete Morse theory and graph clustering from this new 
perspective. 

1.2. Preleminaries 

For rendering the introduced concepts of this article and the proof Theorem 1 
consistent we introduce a definition of graphs that yields a notion of multi-digraphs 
without requiring multi-sets. 

Definition 1. Let ( ), , head, tailG V E=  be a 4-tuple, where ,V E  are finite 
sets and head, tail : E V→  are some maps. We call the elements v V∈  vertices 
and the elements e E∈  edges of G, while ( ) ( )head , taile e V∈  are called head 
and tail of the edge e. An edge e with ( ) ( )head taile e=  is called a loop. In gen-
eral, we call G a multi-digraph. The following cases are often relevant: 

i) G is called a digraph iff the map :H E V V→ × , with  
( ) ( ) ( )( )tail , headH e e e=  is injective.  
ii) If there are no loops, i.e., e E∈  with ( ) ( )tail heade e= , then G is called 

simple.  
ii) G is called an undirected graph if G is a digraph and for every e E∈  there 

is { }\f E e∈  with ( ) ( )head taile f= , ( ) ( )tail heade f= . In this case, we 
slightly simplify notation by shortly writing e for the pair ( ): ,e f g E E= ∈ × , 
which is then called an edge. The notion of head, tail  can thereby be replaced 
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by link : E V→  with ( ) ( ) ( )link head taile e e=  .  
iv) In the special case, where E V V⊆ ×  the maps head, tail  are assumed to 

be canonically given by the relation of E, i.e., ( )( )head ,x y y= , ( )( )tail ,x y x=  
for all ( ),x y E∈ .  

One readily observes that our definition coincides with the common under-
standing of graphs. As said, the notion allows to consider multiple edges ,e f  
with ( ) ( )head heade f= , ( ) ( )tail taile f=  by distinguishing ,e f . Thus, no 
considerations of multi-sets E as in [17] are needed. We denote with E , V  
and #G the number of edges, vertices and the number of connected components 
of G, respectively. 

Two edges e and f are called consecutive if ( ) ( )head taile f=  and are called 
connected if ( ) ( ){ } ( ) ( ){ }head , tail head , taile e f f ≠ ∅ . The degree ( )deg v  
of a vertex v V∈  is given by the number of all edges e E∈  that are connected 
with v. A directed path { }1, , np e e E= ⊆  of length n∈  from a vertex u to 
a vertex v is a list of consecutive edges ie E∈ , 1, ,i n=   such that ( )1tailu e=  
and ( )head nv e= . Thereby, repetition is allowed, i.e., i je e= , 1 i j n≤ < ≤  is 
possible. A connected path { }1, , np e e E= ⊆  from a vertex u to a vertex v is a 
list of possible multiple occurring connected edges that become a directed path 
by exchanging a subset { }1

, ,
ki ie e , 1, ,j k=  , k n≤  of edges with their 

converse directed versions. 
A directed (connected) cycle is a directed (connected) path p from some ver-

tex u V∈  to itself, which can also be a loop. A cycle is elementary if every ver-
tex it contains is passed exactly once. A cycle is called simple if each edge it con-
tains occurs exactly once. We denote by ( ) ( ),O G O G  the set of all connected 
or directed cycles and with ( ) ( )el el,O G O G  the set of all directed, connected 
elementary cycles, respectively. In fact, every simple or even non-simple cycle 

( ) ( ),c O G O G∈  is generated by passing through several elementary cycles 
( ) ( )1 el el, , ,nc c O G O G∈ , n∈ . 

Given ( ) ( ) ( )1 1, , , , ,n nc e e d f f O G= = ∈  , n∈  we introduce the equi-
valence relation c d  iff d can be derived from c  by cyclic reordering, i.e., 
there is k ∈  with mod 1i k n k ie f+ + + = , 1, ,i n=  . We denote with ( ) /O G



 
and ( ) /O G



 the quotients of non-equivalent cycles and count ( ) ( ),O G O G  
up to equivalence, i.e., ( ) ( ): /O G O G=



, ( ) ( ): /O G O G=


. While non- 
elementary cycles ,c c′  can coincide in their edge sets but differ in their order-
ings an elementary cycle is uniquely determined up to cyclic reordering of its 
edges. This makes elementary cycles the pivotal choice of our considerations. We 
will slightly abuse notation by making no difference between ( ) ( )el el,O G O G  
and ( ) ( )el el/ , /O G O G

 

, respectively. 
Example 1. For G in Figure 1 the cycle { }0 , , , , , , , ,c e f g h k l m o n=  is a di-

rected, simple and non-elementary cycle, while the directed cycles  
{ }1 , , , , ,c e f g h k n=  and { }2 , ,c o l m=  are elementary. Certainly, 0c  is given 

by passing through 1c  and 2c . Further, the cycle { }3 0, , , , , , , ,c e f g h k n o l m c= /  
while { }0 4, , , , , , , ,c l m o n e f g h k c= . The only reorderings of 1 2,c c  keeping 
the edges consecutive are cyclic reorderings. 
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Figure 1. Elementary and simple cycles. 
 

With \G e , \G v  we denote the graphs obtained by deleting the edge e or 
the vertex v and all its connected edges. Further, ( )⋅ , ( )⋅ , ( )⋅  denote the 
graph, the set of all edges, and the set of all vertices induced by a set of graphs, 
edges and vertices. By ( )A  we denote the power set of a given set A of finite 
cardinality A ∈ . 

1.3. Outline 

In Section 2, we provide all ingredients to generalize Bigss Theorem and give the 
proof in Section 3. In Section 4, the 2-dimensional elementary CW complex of G 
and its homology is studied. Section 5 considers representation invariant 
sub-fillings while Sections 6 and 7 suggest applications and yield a conclusion of 
our results. 

2. The Module of Cycles 

To provide an algebraic notion of cycles we define the characteristic vector 
representing how often and in which direction an edge is passed by a cycle or 
path. 

Definition 2 (Characteristic Vector). Let ( ), , head, tailG V E=  be a mul-
ti-digraph we introduce the free R-modules, 2,R =    

( ) ( ) ( ) ( )2 2: , : / 2
v V v V

G v G G G v
∈ ∈

= = =⊕ ⊕              (4) 

( ) ( ) ( ) ( )2 2: , : / 2 .
e E e E

G e G G G e
∈ ∈

= = =⊕ ⊕              (5) 

Let { }1, , ne eε =  , ie E∈ , 1, ,i n= ∈   be an ordered list of connected 
edges. Then for 1, , 1i n= −  we define  

1

1

1, if , are consecutive
1, if , are connected but not consecutive

i i
i

i i

e e
x

e e
+

+


= −

        (6) 

If ( )O Gε ∈  is a cycle then we set 1nx =  if 1,ne e  are consecutive and 
1nx = −  else. If ( )O Gε ∈/  then we set 0nx = . By considering  
mod 2i iy x=  , 1, ,i n=   the vectors  

[ ] ( ) [ ] ( )22
1, , 1, ,

,i i i i
i n i n

x e G y e Gε ε
= =

= ∈ = ∈∑ ∑
 

          (7) 

are called the characteristic vectors of ε  with respect to  -and 2 -coefficients. 
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Remark 1. We want the following fact to be clear. The characteristic vector 
depends on the ordering of ε . However, if ( )1 2 el,c c O G∈  are connected ele-
mentary cycles such that 1 2c c  are equivalent. Then [ ] [ ]1 2c c= ±  holds. If 

( )1 2 el,c c O G∈  are directed then even [ ] [ ]1 2c c=  holds. Thus, the maps 

( ) ( ) [ ] ( ) ( ) [ ]el 2 el 2 2
: / , , : / ,O G G c c O G G c cχ χ→ → 

 

     (8) 

are well defined. 
Definition 3 (Incidence operator). Let ( ), , head, tailG V E=  be a mul-

ti-digraph. We denote with ( ), :G →   , ( )2 2 2, :G →    the 2, 
-linear incidence operator operators, defined on the generators by  

( )[ ] ( ) ( ), head tail ,G e e e= −                    (9) 

( )[ ] ( ) ( ) ( )2 2
, head tail mod 2 .G e e e G= +               (10) 

By choosing an enumeration { }1, , VV v v≅  , { }1, , EE e e=   we can re- 
present ( ),G   by the classic incidence matrix ( ) ( )1

1
, i Eij

j V
I G θ ≤ ≤

≤ ≤
=  with  

( ) ( )
( ) ( )
( ) ( )
( ) ( )

0, if tail and head ,
0, if tail and head ,

=
1, if tail and head ,

1, if tail and head .

i j i j

i j i j
ij

i j i j

i j i j

e v e v
e v e v
e v e v
e v e v

θ

 = =
 ≠ ≠
 = ≠
− ≠ =

            (11) 

The notion of ( ) ( )12
1

, i Eij
j V

I G µ ≤ ≤
≤ ≤

=  is given by setting mod 2ij ijµ θ=  .  

By Remark 1 the characteristic vector [ ]c , ( )c O G∈  might depend on the 
ordering of c. However, the kernel of ( ),G R  is not sensitive to the possible 
choices of signs. Therefore, we obtain a well defined algebraic notion of cycles as 
follows. 

Lemma 3. Let ( ), , head, tailG V E=  be a multi-digraph and ( )elO O G⊆  be 
a set of elementary cycles. Then we denote with 

[ ] ( ) [ ]{ }| , ,O x G x c c O= ∈ = ∈                  (12) 

[ ] ( ) [ ]{ }22 2
| ,O x G x c c O= ∈ = ∈                 (13) 

the set of all characteristic vectors induced by cycles in O. The free generated 
cycle modules are given by  

( ) ( ) ( ) ( )el, : ker ,G O G O G G   Λ = = =    
   

( ) ( ) ( ) ( )
2 2

2 el 22 2
, : ker , ,G O G O G G   Λ = = =    
   

where ⋅  , 
2

⋅ 
 denotes the span with respect to 2,  . 

Proof. The identities  

( ) ( ) ( ) ( )
2 2

el el2 2
,O G O G O G O G       = =          

 follow directly by 

the definition of ( ) ( )
2

,O G O G       . Further, we verify that for any list  

{ }1, , ne e Eε = ⊆  of connected edges, due to (6), we have  

( )[ ] ( ) ( )1, tail head ,nG e eε± = −  
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( )[ ] ( ) ( ) ( )2 12
, tail head mod 2 .nG e e Gε = +            (14) 

Hence, 

( )[ ] ( ) ( )[ ] ( )2 2
, 0 , , 0G O G G O Gε ε ε ε= ⇔ ∈ = ⇔ ∈       (15) 

proving the claim.                                                  
To characterize the cycle spaces we rephrase Biggs Theorem [14] for con-

nected cycles of simple digraphs matching our setup and notation.  
Theorem 4 (Biggs Theorem). Let ( ), , head, tailG V E=  be a simple digraph 

then the dimension of the connected cycle spaces are given by 

( ) 2dim , # , , ,R G R E V G RΛ = − + =               (16) 

where #G denotes the number of connected components of G.  
Indeed, for simple digraphs the first line of the incidence matrix in (11) is un-

necessary and thereby our definition yields the classic notion of ( ),I G R  for 
any fixed enumeration of ,V E . In fact, the proof of Theorem 4 is based on 
computing the rank of ( ),I G R , which is independent of the chosen enumera-
tion, yielding our reformulation to be genuine. Due to Lemma 3 we obtain the 
following consequence.  

Corollary 1 (Biggs Theorem for connected cycles of multi-digraphs). Let 
( ), , head, tailG V E=  be a multi-digraph. Then the dimension of the connected 

cycle spaces are given by  

( ) 2dim , # , , ,R G R E V G RΛ = − + =               (17) 

where #G denotes the number of connected components of G. 
Proof. Indeed, each loop or multiple edge increases the dimension by 1. More 

precisely: Every loop { } { }
2

,e e        or two cycle { } { }
2

, , ,e f e f       , ,e f E∈  
is R-linear independent, to all other elements in ( ) ( )

2
\ , \O G e O G e       . Thus, 

by removing e we obtain ( ) ( )dim \ , dim , 1R RG e R G RΛ = Λ − . Recursively ap-
plying this procedure ends up with a simple digraph ( ), , head , tailG V E′ ′ ′ ′=  
with # #G G′ = . Thus, due to Theorem 4 we compute  

( ) ( )dim , dim ,

#

# .

R RG R E E G R

E E E V G

E V G

′ ′Λ = − + Λ

′ ′ ′= − + − +

= − +

             (18) 

  
How to generalize the characterisation of cycle spaces in the directed case is 

provided in the next section. 

3. Biggs Theorem for Directed Cycles 

We prove a generalization, we introduce the concept of contracting edges in a 
multi-digraph as follows. 

Definition 4 (Contracted Graph). Let ( ), , head, tailG V E=  be a mul-
ti-digraph and e E∈ . Let ( )headv e= , ( )tailu e= . An equivalence relation 

,u v  on V is defined by 
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{ }, or , , .u vx y x y x y u v⇔ = ∈                (19) 

The equivalence class of x V∈  is denoted by [ ] ,u vx


 and ,/ : / u vV e V=


 
gives the quotient of V with respect to ,u v . Further, we define { }/ : \E e E e=  
and set  

( ) ( ) ( ) ( )/ /, ,
head head , tail tail , / .e eu v u v

f f f f f E e= = ∀ ∈      
 

  (20) 

The multi-digraph ( )/ // : / , / , head , taile eG e V e E e=  is called the contracted 
graph of G with respect to e E∈ . If ,e f E∈  then we observe that  
( ) ( )/ / / /G e f G f e≅ . Thus, if G G′ ⊆  is a subgraph then ( )/ : /G G G G′ ′=   
can be defined by contracting ( )G′  in arbitrary order, yielding a well defined 
notion.  

Remark 2. Let ( ), , head, tailG V E=  be a simple digraph and , ,e f h E∈  
such that ,e f  are consecutive and ( ) ( ) ( ) ( )tail tail , head headh e h f= = . Then 

/G e  becomes a multi-digraph, i.e., h and f become parallel edges in /G e . 
Furthermore, the contraction of a two cycle { },c e f= ,  

( ) ( ) ( ){ }tail tail , heade f f∈ , ( ) ( ) ( ){ }head tail , heade f f∈  results in a loop 
( )/ /c e O G e∈ . These phenomena are the reasons why we consider mul-

ti-digraphs with loops, rendering the notion of contracted graphs consistent 
within our framework. Certainly, contraction preserves connectivity, i.e.,  
# # /G G e= .  

Now we have all ingredients to state the first main theorem of this article. 
Theorem 5 (Biggs Theorem for directed cycles). Let ( ), , head, tailG V E=  

be a multi-digraph and ( ) ( )el,
R

G R O GΛ =  its cycle space with respect to 

2,R =   . Then  

( )( ) ( )( )el elO G O G=   if and only if ( ) ( )el elR R
O G O G= .    (21) 

Consequently, in case of equivalence, there holds  

( ) ( )eldim # dim , .R RR
O G E V G G R= − + = Λ            (22) 

Proof. The proof splits into several steps: 
Step 1: We show ( ) ( ) ( )( ) ( )( )el el el elO G O G O G O G= ⇒ =

 
  . Indeed, 

given [ ] ( )el1
n

i iic x e O G
=

= ∈∑


. Then we can generate [ ] [ ]1
m

k kkc cλ
=

= ∑  by 
characteristic vectors of directed elementary cycles ( )elkc O G∈ , 1, ,k m=  . 
Thus, every ie  hast to be contained in at least one of them proving  

( )( ) ( )( )el elO G O G=  . 
Step 2: We show ( )( ) ( )( ) ( ) ( )el el el elO G O G O G O G= ⇒ =

 
  . Indeed, 

( ) ( )el elO G O G⊆  implies that by Lemma 3 ( ) ( ) ( )el el ,O G O G G⊆ = Λ
 

  
is a free sub-module of ( ),GΛ  . Thus, it suffices to show (22) in order to prove 
the converse inclusion. We argue by induction on #V G− . If # = 0V G−  
then there are only loops. Thus,  

( )eldim = #O G E E V G= − + 
              (23) 

and the claim follows. Now assume that # 1V G− > . Let f E∈  be not a loop; 
then we consider the contracted graph /G f . Let ( )elc O G∈  if ( )f c∉  and 
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( ) ( )c f = ∅   or ( ) ( ) ( ){ }headf c f=  ,  
( ) ( ) ( ){ }tailf c f=   then certainly ( )el/c f O G∈ . If ( )f c∈  then 
/c f  remains elementary. If ( )\f E c∈   and ( ) ( ) ( )f c f=    then 
/c f  consists of two elementary cycles ( )1 2 el, /c c O G f∈  with one of them 

being a loop. Thus, ( )( ) ( )( )el el/ /O G f O G f=  . By induction, we therefore 
compute  

( )
( )

el

el

dim / / / # / #

dim .

O G f E f V f G f E V G

O G

= − + = − +

≥

 

 

     (24) 

Step 2a: We show that ( ) ( )el eldim dim /O G O G f≥  
. Let ( )elc O G∈  

with ( )f c∈ . By choosing an equivalent cycle c , c c
 if necessary w.l.o.g. 

we can assume that c is ordered such that ( ) ( )1 el1, , ,cc e e f O G−= ∈ , ie E∈ , 
1 i c≤ < . Conversely, for every cycle ( )el /d O G f∈  we choose an ordering 

( )1, , cd e e ′=   such that either  ( )1, , ,cd e e f′=   or  ( )1, , cd e e ′=   be-
comes a cycle in ( )elO G . We consider the map  

( )el: /O G fτ ↪ ( ) ( ) 

el , with : .O G d dτ =              (25) 

Given ( )1 el, , /lh h O G f∈ , l∈  such that [ ] [ ] ( )1 , , /lh h G f∈   are a 
basis of ( )el /O G f


. Then τ  induces a  -linear injective lift  

( ) ( ) [ ]( ) ( )* *
el el: / , , 1, , .i i iO G f O G h h h i lτ τ τ   → = = =   





 
  (26) 

Step 2b: We show that ( ) ( )*
elim O Gτ ⊆


. Indeed, if ( )el /d O G f∈  is 

such that d  
  has no negative entries then ( ) ( )eld d O Gτ= ∈  and  

[ ]( ) ( )*
eld d O Gτ  = ∈ 




. If this is not the case then the entry 1

f
d  = − 
  

corresponding to f is the only negative entry. Since ( )( ) ( )( )el elO G O G=   

there is ( )elb O G∈  with ( )f b∈ . 

For any ,x y V∈  we denote by ,x yd  the directed subpath of d  connecting 
x and y. Further, let ( )1, , nx x d∈ 

   be all crossing vertices such that for the 
edges ( ),i ie f b∈  with ( ) ( )head taili i ie x f= =  we have ( )ie d∉   and  

( )if d∈  , 1, ,i n=  . Analogously, we consider all crossing vertices  

( )1, , ny y d∈ 

   such that for the edges ( ),i ih g b∈  with  
( ) ( )head taili i ih y g= =  we have ( )ih d∈   and ( )ig d∉  . Moreover, we as-

sume that ( ) ( )1 1tail , headf x f y= =  and that the ,i ix y  are ordered w.r.t the 
ordering of directed path 

1 1,x yd . We consider two cases. 
Case 1: If 1n =  then setting 0d b= , 

1 1 1 11 , ,y x x yd b d= ∗  yields 
1 1,x yd f= , see 

Figure 2 and thereby  

[ ] [ ]0 1 0d d d  + − = 
                     (27) 

implying [ ]( ) ( )*
eld d O Gτ  = ∈ 




. 

Case 2: If 1n >  then we construct three cycles ( )0 1 2 el, ,d d d O G∈  by  

1 1 1 10 1 , , 2 , ,, , ,
n n n nx y y x y y y yd b d d b d b d= = ∗ = ∗           (28) 

see again Figure 3 for an illustration, where 0d  is indicated by the black lines. 
Since ( )el,b d O G∈  are elementary we have that the connected components of 
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Figure 2. Sketch of the cycle construction for Case 1. 
 

1 1, , ,
1, , 1 1, ,

\ ,
n i i i iy x y x x y

i n i n
b d b b b d d

+
= − =

= =
 

 



 

          (29) 

are pairwisely disjoint paths. Moreover, ( )0 1 2 el, ,d d d O G∈  are elementary. 
Therefore, we verify again that  

[ ] [ ] [ ]0 1 2 0d d d d  + − − = 
                   (30) 

holds and thereby implies that [ ]( ) ( )*
eld d O Gτ  = ∈ 




. Hence,  

( ) ( )*
elim O Gτ ⊆


 and we have proven Step 2. Thus, due to Corollary 1 we 

have proven the theorem for R =  . 
Step 3: For 2R =   the claim follows by using that ( )( ) ( )( )el elO G O G=   

is equivalent to ( ) ( )el elO G O G=


 as proven above. Then the identity  

( ) ( ) ( ) ( ) ( ) ( )
2

2 el el el, / 2 / 2G O G G O G G O GΛ ≅ = ≅
 

       (31) 

proves the theorem with respect to 2 -coefficients.                      
Remark 3. For simplification, the sketch of Case 2 in Figure 3 assumes that 

the paths ,i ix yb  are not nested, which might be not true in general. However, 
this circumstance does not affect (29) nor the fact that 0 1 2, ,d d d  are elementary, 
which were all assumptions we used for the argumentation.  

An immediate consequence of Theorem 5 is the following.  
Corollary 2. Let ( ), , head, tailG V E=  be a multi-digraph. Then 

( ) ( )( )( )el el 2dim dim , , ,R RR
O G O G R R= Λ =            (32) 

can be determined in ( )E . 
Proof. By Theorem 5 we have ( ) ( )( )( )el el ,

R
O G O G R= Λ   and therefore 

( ) ( )( )( )el eldim dim ,R RR
O G O G R= Λ  . Now ( )( )elO G  is given by the un-

ion of all strongly connected components of G which can be computed in linear 
time [16] yielding the claim due to (22).                                

The opportunity of computing the dimension of the directed cycles space 
( )el R

O G  efficiently, potentially addresses many challenging problems in graph 
theory. We use the result to study the structure of G in terms of cellular homol-
ogy groups. 

4. The CW Complex of Elementary Cycles 

An excellent introduction to algebraic topology is given by Allen Hatcher [15].  
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Figure 3. Sketch of the cycle construction for Case 2.  

 
Especially, the notion of CW complexes, geometric realizations and the classic 
theory of simplicial and cellular homology were presented explicitly therein. The 
following notions and results take these concepts for granted.  

Definition 5 (Coherent Orientation). Let ( ), , head, tailG V E=  be a mul-
ti-digraph and ( )elO O G⊆  be a set of elementary connected cycles. A map 

{ }: 1,0,1o E → −  is called a coherent orientation w.r.t. O iff  
i) ( ) 0o e =  for all ( )\e E O∈    
ii) [ ] ( )1 1

n n
i i i ii ic x e o e e

= =
= = ±∑ ∑  for all characteristic vectors [ ]c  with 

c O∈ .  
Lemma 6. Let ( ), , head, tailG V E=  be a multi-digraph and ( )elO O G⊆  be 

a set of elementary connected cycles. Then there exists a coherent orientation 
{ }: 1,0,1o E → − . 

Proof. We argue by induction on O . If 1O =  then we choose an ordering 
( )1, , nc e e O= ∈  and thereby a representative of all equivalent cycles in O. 

Thus, setting ( )i io e x=  with [ ] i ic x e= ∑  defines a coherent orientation. Now 
assume that 1O > . Let ( )1, , nc e e O= ∈  and O O′  be the set of all 
cycles being not equivalent to c. We consider ( )G O′ ′=   and a splitting  

1 KG G G′ =   into elementary connected components. That is  

( ) ( ) ( )el el el
1

and , 1 .
K

i i j
i

O O G O O O G O G i j K
=

′ ′= = ∅ ∀ ≤ < ≤  



   (33) 

By induction there is a coherent orientation o′  w.r.t. O′ . Let [ ] =1
n

i iic x e= ∑  
be the characteristic vector of c. Assume there are 1 ,k l n≤ ≤  with ( )k ko e x′ =  
and ( )l lo e x′ = − . Then ,k le e  belong to different components, i.e., ( )k ie G∈ , 

( )l je G∈ , i j≠ . Observe, that we can change o′  to o′−  on every compo-
nent iG  by keeping the requirements of a coherent orientation preserved. Thus, 
we can change o′  to o  such that ( )i io e x=  for all ( ) ( )ie c O′∈   . Hence, 
setting o o=   on ( )O′  and ( )i io e x=  for all ( )ie O′∉  yields a coherent 
orientation.                                                        

Definition 6 (Elementary CW Complex). Let ( ), , head, tailG V E=  be a 
multi-digraph and ( )1X G  be its geometric realization. Further, let ( )elO O G⊆  
be a set of elementary connected cycles. The geometric realization ( ),X G O  
given by attaching 2-cells to ( )1X G  accordingly to O is called the elementary 
CW complex of G w.r.t. O. Further, 0 1 2, ,X X X  shall denote the set of 0,1,2
-cells of ( ),X G O , and 
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0 0 1 1 2 2: , : , :L X V L X E L X O→ → →              (34) 

the maps yielding the identification of 0,1,2 -cells with vertices, edges and 
cycles, respectively.  

Indeed, for the complexes ( )( )el,X G O G , ( )( )el,X G O G  the cellular ho-
mology can be derived by considering the following chain complexes. 

Definition 7 (Elementary Chain Complex). Let G be a multi-digraph, 
( )elO O G⊆ , be a set of elementary connected cycles, 2,R =    and  
{ }: 1,0,1o E → −  be a coherent orientation w.r.t. O. Let ( ),X G O  be the asso-

ciated CW complex. We consider the free generated R-modules  

( ) ( ) ( )2 1 0
2 1 0

2 1 0
2 1 0

,

, , .
X G O X G X G

C R C R C R
σ σ σ

σ σ σ
∈ ∈ ∈

= = =⊕ ⊕ ⊕       (35) 

For R =  , we define the boundary operators 1:k k kC C −∂ → , 1,2k =  on 
the generators by ( ) ( ) ( )1

1

2 2 1 1
2 ,X G mσσ σ σ σ

∈
∂ = ∑ ,  

( ) ( )( ) ( ) ( )( )1 1 2
1 1 22 1 , if

,
0, else

o L L L
m

σ σ σ
σ σ

 ⊆= 



         (36) 

and ( ) ( )0
0

1 1 0 0
1 ,X nσσ σ σ σ

∈
∂ = ∑ ,  

( )
( )( ) ( )

( )( ) ( )

1 0
1 0

1 0 1 0
1 0

1, if head

, 1, if tail

0, else

L L

n L L

σ σ

σ σ σ σ

 =

= − =




             (37) 

For 2R =   we consider ( )2 1, mod 2m σ σ   and ( )1 0, mod 2n σ σ  , respec-
tively. We enforce k∂  to be R-linear by setting  

( ) ( ) ( )2 2 1 2 0 2 0, : , ,m m mλσ µσ σ λ σ σ µ σ σ+ = + ,  

( ) ( ) ( )1 1 0 1 0 1 0, : , ,n m nλσ µσ σ λ σ σ µ σ σ+ = +  for all ( )2 2
2, ,X G Oσ σ ∈ ,  

( )1 1
1, X Gσ σ ∈ , ( )0

0X Gσ ∈ , , Rλ µ ∈ . Finally, we set 3 1, 0C C− =  and 
0k∂ =  for { }0,3k ∈ .  

Remark 1 asserts why even in case of  -coefficients the maps k∂  yield well 
defined boundary operators. More precisely: 

Theorem 7. Let ( ), , head, tailG V E=  be a multi-digraph, ( )elO O G⊆  be a 
set of connected elementary cycles and { }: 1,0,1o E → −  be a coherent orienta-
tion w.r.t. O. Let ( ),X G O  be the elementary CW complex, 2,R =    and 
( ),k kC ∂  be given due to Definition 7.  

i) The pairs ( ),k kC ∂  define a finite chain complex, i.e., 1 0k k−∂ ∂ =  for all 
0,1,2,3k = .  

ii) The cellular homology groups ( )( ), ,kH X G O R  are free R-modules 
( )( ) ( ) ( )1, , : ker / imk k kH X G O R += ∂ ∂ , 0,1,2k =   

( )( ) ( )2 , ,
2 , , ,b G O RH X G O R R≅                 (38) 

( )( ) ( )1 , ,
1 , , ,b G O RH X G O R R≅                 (39) 

( )( ) ( )0 , ,
0 , , .b G O RH X G O R R≅                 (40) 
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iii) The Betti numbers are given by  

( )2 , , dimR Rb G O R O O= −                 (41) 

( )1 , , # dimR Rb G O R E V G O= − + −             (42) 

( )0 , , # .b G O R G=                       (43) 

Proof. By considering the sequence  
3 02 1

2 1 00 0C C C∂ ∂∂ ∂→ → → →             (44) 

the identities 1 0k k−∂ ∂ = , follow for { }1,3k ∈ . For 1
11

n
k kk Cγ λ σ

=
= ∈∑  and 

0
01

m
k kk Cδ α σ

=
= ∈∑  we consider the induced characteristic vectors  

[ ] ( ) [ ] ( )1 1
1 12 21 1

, , mod 2.
n n

k k k k k k
k k

L Lγ λ σ γ µ σ µ λ
= =

   = = =   ∑ ∑    (45) 

[ ] ( ) [ ] ( )0 0
0 02 21 1

, , mod 2.
m m

k k k k k k
k k

L Lδ α σ δ β σ β α
= =

   = = =   ∑ ∑   (46) 

Then we observe that [ ] ( )[ ]1 ,Gγ γ∂ =  , [ ] ( )[ ]1 22 2
,Gγ γ∂ =  , where 

( ),G R  denotes the incidence operator of G. Thus, 1 0γ∂ =  if and only if γ  
corresponds to a cycle, i.e., [ ] ( ),Gγ ∈Λ  , [ ] ( )22

,Gγ ∈Λ  . By definition of 

2∂  and Lemma 3, this yields ( ) ( ) ( )2 1im ker ker ,G R∂ ⊆ ∂ ≅   and consequent-
ly 1 2 0∂ ∂ = , showing (i). Furthermore, we realize that, ( )3im 0∂ =  and  

( )2im RO∂ ≅ . Thus, ( )2im ∂  is free generated by O, implying that  
( ) dim

2im R ROR∂ ≅ . By using the dimension formula we realize that the quotient 
( )( ) ( )2 2 3, , / imH X G O R C= ∂  is a free R-module of dimension  

( )2 , , dim .R Rb G O R O O= −                 (47) 

Likewise, ( ) ( )1ker ker ,G R∂ ≅   implies that  
( )( ) ( )1 , , , / RH X G O R G R O≅ Λ . Since 

RO  and ( ),G RΛ  are free R-mod- 
ules, there are isomorphisms dim: R RO

RO Rρ → ,  
( ) #: , E V GG R Rτ − +Λ → . Let dim: R ROi R ↪ #E V GR − +  be the natural embedding 

and OB  be a basis of 
RO  then ( )O OB i Bρ′ =   can be extended to a basis 

RB  of | | | | #E V GR − +  and ( )1
RBτ −  yields a basis of ( ),G RΛ  containing OB  as 

a sub-basis of 
RO . Thus,  

( )( ) ( )( ) ( )dim# / , / , / ,R ROE V G
R RR R G R i O G R Oτ ρ− + = Λ ≅ Λ  

showing that the 1-st homology ( )( )1 , ,H X G O R  is a free R-module of dimen-
sion  

( ) ( )( )1 , , dim , / # dim .R RR Rb G O R G R O E V G O= Λ = − + −     (48) 

Since 1C  and ( )1ker ∂  are free R-modules we analogously observe that there 
is a sub-basis of ( )0ker ∂  generating ( )1im ∂ . Hence, ( )( )0 , ,H X G O R  is a 
free R-module of dimension  

( ) ( ) ( )( )
( )( )

0 1 1, , dim im dim ker

dim , # ,
R R

R

b G O R V V E

V E G R G

= − ∂ = − − ∂

= − − Λ =
       (49) 

which proves (iii).                                                 
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Remark 4. Note that the Betti numbers do not depend on the choice of the 
coherent orientation o. Even though, Lemma 6 provides the existence of a cohe-
rent orientation o an explicit construction of o, which might be computational 
expensive, is not necessary to compute the ( ), ,kb G O  , 0,1,2k = . 

Remark 5. The singular homology ( )sing
nH X  of any CW complex X is iso-

morphic to its cellular homology [15] (Theorem 2.35). Thus, Theorem 7 pro-
vides a path for computing the singular homology of the elementary CW com-
plexes ( ),X G O . Further, we obtain the following consequence that yields main 
Theorem 2.  

Corollary 3. Let the assumptions of Theorem 7 be fulfilled and denote with 

kb  the R-rank of the cellular homology group ( )( ),kH X G O , 0,1,2k = . 
i) ( )( ) ( )( )0 el 0 el, , , , #b G O G R b G O G R G= =  can be computed in  

( )2V V E+ . 
ii) ( )( )1 el, , 0b G O G R =  and ( )( )1 el, ,b G O G R  can be computed in  

( )2V V E+ . 
iii) Computing ( )( )2 el, ,b G O G R , ( )( )2 el, ,b G O G R  is #P-hard (sharp P-hard). 
Proof. The number of connected components of any multi-graph can be de-

termined by breadth-first search within ( )2V V E+  [18], yielding i) due to 
Theorem 7. To show ii), recall that by Lemma 3, we have that  

( ) ( )el ,
R

O G G R= Λ  yielding ( )( )1 el, , 0b G O G R = . Due to Corollary 2, com-
puting ( )eldimR R

O G  can be done in ( )E . Thus, by Theorem 7, the bot-
tleneck for computing ( )1 , ,b G O R  is again given by determing #G yielding ii). 
Now iii) is a consequence of Theorem 7 and the fact that, by reduction to the 
Hamiltonian cycle problem, counting the number of all directed (connected) 
elementary cycles of a digraph is #P-hard [12].                          

We recall that two multi-digraphs ( )1 1 1,G V E=  and ( )2 2 2,G V E=  are 
called homeomorphic if there are sets of directed paths 1 2,P P  such that 

( )deg 2u =  for any inner vertex ( )u p∈  of 1p P∈  or 2p P∈ , respectively, 
and the graphs 1 1 2 2/ /G P G P≅  given by contracting 1 2,P P  are isomorphic. 

Corollary 4. Let 1G  and 2G  be two homeomorphic multi-digraphs. We 
denote with ( )eli iO O G= , ( )eli iO O G= , consider the elementary CW com-
plexes ( ),i iX G O , ( ),i iX G O , 1,2i =  and 2,R =   . Then  

( )( ) ( )( )1 1 2 2, , , , ,k kH X G O R H X G O R≅              (50) 

( )( ) ( )( )1 1 2 2, , , , ,k kH X G O R H X G O R≅              (51) 

where 0,1,2k = .  
Proof. As one can readily verify, neither the number of cycles ( )el iO G , 
( )el iO G  nor the dimension ( )eldimR i R

O G , ( )el i R
O G  nor the number of 

connected components of iG  change under the contraction of the paths iP , 
1,2i =  yielding the claim due to Theorem 7.    

Due to Corollary 3 (3) counting ( ) ( )el el,O G O G  is #P-hard. Though there 
are efficient algorithms [19] counting the number of cycles approximately, we, 
here, suggest to consider certain sub-fillings ( ) ( )el el,O O G O G⊆  to yield an 
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suitable setup. 

5. Representation Invariant Sub-Fillings 

In this section we discuss several possibilities of filling the graph G by choosing 
( )elO O G , such that the cellular homology of the resulting CW complexes 

( ),X G O  can be computed efficiently and the filling is invariant under auto-
morphisms, i.e., is independent of the chosen representation of G. The list below 
is by no means complete and just provides some suggestions. 

5.1. Fillings Induced by Cycle Bases 

If the cycles ( )elO O G⊆  are R-linear independent then due to Theorem 7 for 
the CW complex ( ),X G O  the Betti numbers are given by ( )2 , , 0b G O R = , 
( )1 , , #b G O R E V G O= − + −  and ( )0 , , #b G O R G= . Thus, 1b  is given by 

the co-dimension of 
RO  in ( ),G RΛ . Thereby, fillings by R-linear indepen-

dent cycles or basis yield only trivial topological information. 

5.2. Fillings Induced by Shortest Cycles 

Let ( ), , head, tailG V E=  be a multi-digraph. We consider the set of all shortest 
cycles  

( ) ( ) ( ){ }el elmin | .G c O G c c c O G′ ′= ∈ ≤ ∀ ∈             (52) 

Further, ( ) ( ){ }: | headEN v e E e v= ∈ =


, ( ) ( ){ }: | tailEN v e E e v= ∈ =


,  
( ) ( ) ( )E E EN v N v N v=

 

  denote the set of all incoming or outgoing edges of 
v V∈ , and their unions. 

Lemma 8. Let ( ),G V E=  be a multi-digraph and ∆  its maximum degree.  
i) minO E< ∆ .  
ii) minO  can be determined in ( )2E∆ . 
Proof. Note that the all-shortest path problem, which is to find a shortest 

connected path between all pairs of vertices ,u v V∈  is very well studied. In the 
case of integer edge weights, as we consider here, for instance the algorithms of 
[20] [21], solve the problem in much less then ( )2E . We consider all edges 

minE E⊆  with shortest path ep  of minimum length minl  such that { }ep e  
becomes a shortest cycle , ee pc . For any outgoing edge ( )( )tailEf N e∈



 we 
denote with ( )( )tail \f EN N e f=



 and with , , ee f pc  the possibly empty shortest 
cycle w.r.t. \ fG N . Then we observe that  

( )( )
{ }

min

min , ,
, tail

.
e

E

e f p
e E f N e

O c
∈ ∈

=


                 (53) 

Thus, i) follows. Further, due to Edsger W. Dijkstra’s famous shortest path 
algorithm [22] each cycle , , ee f pc  can be computed in ( )E  yielding ii).  

Certainly, ( ) ( )min minO G O G′≅  for all isomorphic graphs G G′≅ . Further, 
the associated Betti numbers ( )( )min, ,kb G O G R , 0,1,2k = , 2,R =    of 

( )( )min,X G O G  can be computed efficiently due to Lemma 8 and Theorem 7. 
Indeed the bottleneck is given by computing ( )mindimR R

O G , which requires 
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at most ( )3E  by applying Gauss elimination or can be done even faster [23]. 
Recursively applying this procedure to the contraction ( )min/G O  provides 

an array of Betti numbers n
kb , 0,1,2,3k = , 1, ,n N= ∈   that decodes the 

structure of G independently of the chosen representation. We expect that this 
efficiently provided information is quite informative for structural analysis. That 
is: multi-digraphs ,G G  with n n

k kb b=  for all 0,1,2; 1, ,k n N= =   are similar 
and ,G G  are not isomorphic whenever ,n n

k kb b  differ for some  
0,1,2; 1, ,k n N= =  . 

5.3. Fillings Induced by Cliques 

Let ( ),n n nK V E= , n∈ , denote the complete undirected graph of n vertices, 
( )eln nC O K= . Then the number of cycles nC , up to cyclic reordering, is given 

by all subsets of vertices larger than 3, i.e., 

2

3
, , 2 ,

2

n
n

n n n
i

n n
V n E C n

i=

   
= = = = −   

   
∑             (54) 

which can be computed in ( )n  [24]. Since ( ),n nRC K R= Λ , computing 
the Betti numbers of ( ),n nX K C  can be done in ( )n . Let ( )n G  be the set 
of all cliques nK G⊆  of size n∈ . Let { }3, , Nα ⊆  , N ∈  with 3 α∈ . 
Then we consider a set of cycles ( )elO O Gα ⊆  such that ( )el kc O K∈  and 

( )k kK G∈ , k α∈ . The geometric realization ( ),X G Oα  is a canonical filling 
in the following sense: 

The number of cycles Oα  can be computed efficiently due to (54). On the 
other hand Oα  contains all triangles of ( ):G Oα α=  , which generate ( ),G RαΛ , 

2,R Z=  . Thus, ( )dim dim ,R RRO G Rα α= Λ . Hence, due to Theorem 7 the 
associated Betti numbers can be computed efficiently once the cliques  

( ) ,k G k α∈  have been determined. 
Note that the general clique problem, i.e., finding a clique of given size n∈  

in a graph G, belongs to the list of classic NP-complete problems [25]. However, 
if the size n is fixed, finding cliques can be done efficiently in ( )2nV n . Even 
better performs the Bron-Kerbosch algorithm, which lists all maximal cliques 
[26]. Many other contributions in regard of clique detecting algorithms were 
made, allowing us to find a non-trivial filling as described above efficiently. 
Consequently, the homology groups ( )( ), ,kH X G O R  yield a method of de-
coding how the cliques are glued with each other. 

6. Applications 

We expect the concept of studying a graph G by computing its cellular homolo-
gy groups with respect to specified fillings ( )elO O G⊆  to open up many possi-
ble applications. A short, non-exclusive list of ideas is presented below. 

6.1. Graph Embeddings 

We strengthen the classic notion of cellular graph embeddings as follows. 
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Figure 4. Embeddings of 3,3K  into 2  (left) and 2  (right). 

 
Definition 8 (Elementary embedding). Let G be a simple undirected graph, 
( )1X G  its 1-dimensional geometric realization, and S a compact, connected 

0C -surface without boundary. Given a continuous embedding  

( )1: X Gρ ↪ S                        (55) 

we set ( ) ( )( )1 1X S X Gρ=  and let ( ) ( )2X S X S=  be the CW complex given 
by attaching the set of disjoint 2-cells ( )1\S X S  in the canonical way. We say 
that ρ  is an elementary embedding of G into S if and only if there is a 
CW-complex embedding  

( ): X Sξ ↪ ( )( ) ( ) ( )1 1el |, , with .X S X GX G O G idξ ρ =           (56) 

Thus, there are no edge crossings in ( )( )1X Gρ , and every 2-cell in ( )X S  
corresponds to some 2-cell in ( )( )el,X G O G . By considering digraphs and re-
placing ( )elO G  with ( )elO G  directed notions can be derived.  

Remark 6. Note that the usual notion of 2-cell embeddings of graphs is given 
by requiring only that  

( )1: X Gρ ↪ S                       (57) 

is an embedding, such that ( )( )1\S X Gρ  is given by the union of 2-cells. 
Hence, an elementary embedding of G into S is a special case of a cellular em-
bedding and therefore a stronger requirement on the embedding ρ . The fol-
lowing example makes this circumstance visible. 

Example 2. Figure 4 illustrates embeddings of 3,3K  into the projective plane 
2  and the torus 2 . We recall that 2  can be understood as the quo-

tient /D


 of a disc 2D ⊆   with the equivalence relation ~ defined on the 
boundary 1 2D S∂ ≅ ⊆   by identifying opposite points x x− , 2x∈ . In 
contrast, the torus 2 2 2/=    is given by identifying opposite sides of a 
square. Consequently, the embedding of 3,3K  into 2  is an elementary em-
bedding, while the boundary of 3F  in 2  is not an elementary cycle. There-
fore, the embedding of 3,3K  into 2  is a 2-cell embedding, but not an ele-
mentary embedding. 

Remark 7. Note furthermore, that in contrast to cellular embeddings an ele-
mentary embedding needs not to exist. For instance consider 2 cubes intersecting  
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in only one vertex. An elementary embedding could only be realized by allowing 
S to consist of two spheres intersecting in one point, requiring a relaxation that 
allows S to be a polyfold. 

Given a simple undirected graph G with ( )( )elG O G=   such that there is a 
surface S and an elementary embedding ( )1: X Gρ ↪ S . Observe that the Euler 
characteristic of S is given by  

( ) ( ) ( ) ( )2 1 0 2, , , , , , , , , .S R b G O R b G O R b G O R Rχ = − + =       (58) 

Since S is a closed surface, we have ( )2 2, , 1b G O = , while ( )2 , , 1b G O =  
when S is orientable and ( )2 , , 0b G O =  if S is non-orientable [15]. 

Thus, if ( )1 , , 0b G O =  then S is given by the unit sphere 2S  or the pro-
jective plane 2  and G is required to be (projective) planar. The detection 
and construction of a (projective) planar cell embedding can be done in ( )V  
[27] [28]. In general, the problem of finding a cellular embedding of G into a 
orientable surface S of minimal genus is NP-complete [29]. However, finding a 
cellular embedding into a surface S of maximal genus is polynomial time solva-
ble [30]. Our strengthened notion of embeddings and the relaxation of S being 
allowed to be non-orientable might provides new insights into embedding 
theory. Note that S is determined if we can find ( )elO O G⊆  such that:  

i) For every ( )( )ele O G∈  there are exactly 2 cycles 1 2,c c  with  
( ) ( )1 2,e c e c∈ ∈  . 

ii) dim 1R RO O= − . 
Thus, due to this simple description, one might finds new methods as integer 

linear programming techniques (ILP), which construct O and thereby S. By 
changing (2) into dimR RO O<  the case of polyfold embeddings is treated, 
see Remark 7. 

6.2. Graph Clustering 

Many applications require comparing graphs or clustering a set of graphs   
into subsets of “similar” graphs. The distance functions :D +× →    used 
to measure similarity between graphs often lead to NP-complete optimization 
problems and can only be approximated. For instance, the graph-edit distance 

edit :D +× →    [31] is a (pseudo) metric measuring the cost of deleting and 
inserting the minimum number of edges and vertices required to modify a graph 

1G  into a graph 2G . Determining this distance in general is an NP-hard prob-
lem, which is why additional assumptions and restrictions to special graph 
classes are usually made. We posit that any feasible clustering 1, , n ⊆    
of a given set of graphs  , i.e., i j = ∅  , i j≠ , and 1

n
ii=
=



  , must 
fulfill the following properties: 

a) Let 1 2,G G ∈  be isomorphic or more generally homeomorphic, then 

1 2,G G  belong to the same cluster, i.e., 1 2, iG G ∈  for some 1 i n≤ ≤ .  
b) Given 1 2,G G ∈ , the problem of deciding whether 1G  and 2G  will 

belong to the same cluster is solvable in polynomial time.  
b) The similarity distance :D +× →    is a (pseudo) metric. 
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As a consequence of (c) we have that if ( )0 ,D G G d≤ , d +∈  for all 

iG∈  and some 0 iG ∈ , then ( )1 2, 2D G G d≤  for all 1 2, iG G ∈ , 1 i n≤ ≤ . 
We propose that the following distance definition based on our work leads to a 
feasible clustering: 

Definition 9. Let { }1, , nG G=   be a given set of multi-digraphs and 
( )1 el, , nO O O G⊆  be sets of elementary cycles of iG , 1, ,i n=  . Then, we 

define the homological distance :HD × →    by 

( ) ( ) ( )1 2 1 1 2 2

2

1 2
0

, : , , , , , 1 , .H i i i i i i i i
i

D G G b G O R b G O R i i n
=

= − ≤ ≤∑      (59) 

Certainly, HD  is a pseudo metric. Further, due to Section 5, we can choose 
fillings iO  that ensure that the Betti numbers, and thereby HD , can be com-
puted efficiently. We denote with ( )3

0 , ,i k i ikB b G O R
=

= ∑  and let  
( )2

1
n

ii Bν µ
=

= −∑ , ( ) 1, ,
mean i i n

Bµ
=

=


 be the variance of the iB . Consider a 
maximum set of graphs 

jiG ∈ , 1 j n≤ <  with ( ), 2
j jH i iD G G ν

′
>  for all 

j j′≠ , then  

( ){ }| ,
jj H iG D G G ν= ∈ ≤                    (60) 

yields a clustering 1

n
ii=

=


   that satisfies (a), (b), and (c) above. Due to the 
fact that the Betti numbers measure the topological complexity of the graphs, we 
expect that such a clustering will be informative in structural data analysis. 

6.3. Discrete Morse Theory 

Let X be a CW complex, K the set of cells of X, and :f K →   a given func-
tion. If the (discrete) gradient flow of f possesses no degenerate critical points or 
singularities f is called a discrete Morse function [32]. In this regard, the strong 
and weak Morse inequalities become important, stating that  

1 0 1 0N N N Nm m m b b b− −− + ± ≥ − + ±                (61) 

for all 1 dim ,n nm b n N X≥ ≤ ≤ =                 (62) 

where nm  denotes the number of critical cells of a Morse function f with Morse 
index n, and ( ),n nb b X K=  are the Betti numbers of X w.r.t. some field e.g. 

2 . Thus, if ( ),X X G O=  is given by a filling of G then we can bound the es-
sential complexity of the dynamics from below. Since the Betti numbers do not 
depend on the Morse function, we can furthermore determine whether there are 
homotopies that reduce the complexity of the system without loosing any of its 
essential dynamics [32]. 

7. Conclusion 

We extended the classic Theorem of Biggs to the case of directed cycles of mul-
ti-digraphs. These findigs were then incorporated to extend the classic interpre-
tation of a graph G being a 1-dimensional CW complex to the 2-dimensional 
case by attaching 2-cells accordingly to an a priori specified set of elementary 
cycles ( )elO O G⊆ . We proved the associated cellular homology groups  
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( ), ,kH G O R , 0,1,2k =  to be free R-modules and derived formulas for compu-
ting their Betti numbers. Of course, one could ask for extending these considera-
tions to even higher dimensions. However, in order to describe a 3-cell, we need 
to know all cycles forming its boundary. Thus, dealing with higher-dimensional 
cells makes computing the Betti numbers combinatorically harder, which made 
us restricting to the presented case. 

7.1. Classic Graph-Theoretical Problems 

It is natural to ask the question how classic graph-theoretical problems behave 
for certain classes of graphs. Here we provided some methods to classify graphs 
with respect to certain aspects of their topology. The fillings presented in Section 
5 might be a good starting point of investigating classic graph theoretical prob-
lems on graphs with bounded topological complexity in terms of the derived 
Betti numbers. For instance the Feedback Arc Set Problem, which is to delete as 
less edges as possible to make G acyclic, could profit from certain obstructions 
on the cycle topology, [33] [34], as derived in Section 5.2. Further, the under-
standing of cliques of a graph is crucial if one wants to determine its chromatic 
numbers [35]. Despite for coloring problems [8], the minimal genus of a graph 
plays an important role within the unresolved Graph Isomorphism Problem [36] 
or extensions of Whitney’s Theorem [11]. 

7.2. Related Complexes and Homology Theories 

In addition to the concepts presented here, there are multiple other possibilities 
of assigning complexes and (co)-homologies to a given graph G [37] [38] [39]. 
Translations of these theories in terms of our contribution are certainly of inter-
est. 
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