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Abstract 
In this research we are going to define two new concepts: a) “The Potential of 
Events” (EP) and b) “The Catholic Information” (CI). The term CI derives 
from the ancient Greek language and declares all the Catholic (general) Logi-
cal Propositions ( CLP ) which will true for every element of a set A. We will 
study the Riemann Hypothesis in two stages: a) By using the EP we will prove 
that the distribution of events e (even) and o (odd) of Square Free Numbers 
(SFN) on the axis Ax(N) of naturals is Heads-Tails (H-T) type. b) By using 
the CI we will explain the way that the distribution of prime numbers can be 
correlated with the non-trivial zeros of the function ζ(s) of Riemann. The In-
troduction and the Chapter 2 are necessary for understanding the solution. In 
the Chapter 3 we will present a simple method of forecasting in many very 
useful applications (e.g. financial, technological, medical, social, etc) devel-
oping a generalization of this new, proven here, theory which we finally apply 
to the solution of RH. The following Introduction as well the Results with the 
Discussion at the end shed light about the possibility of the proof of all the 
above. The article consists of 9 chapters that are numbered by 1, 2, …, 9. 
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1. Introduction 

We will be symbolizing the prime natural numbers as: 1 2 32, 3, 5,q q q= = =   
and with e every SFN which is a product from even multitude of primes (e.g. 6, 
10, 14, 15, …., 210, …) and with o every SFN which is a product from odd mul-
titude of primes (e.g. 2, 3, 5, …, 30, …., 154, …).  

We will point out that from bibliography [1] that is much known that if the 
distribution of the events e, o of SFNs (that we also referred in abstract before) is 
of type H-T then the Riemann’s Hypothesis (RH) will be valid. Let symbolize 
[see relation (54) in 6.7 of Chapter 6] this sufficient proposition of RH as bellow: 

( )Type Distr , H-TSFG N f  =                   (1) 

But independent from this knowledge of bibliography in Appendix at the end 
of this article we will give a proof of the sufficiency of (1) for the validity RH. 

Suppose one common box (e.g. in shape of cube) is divided in a finite number 
of small and equal between them sub-cubes , 1, 2,3,i iω =   inside of which 
( iω ) and after of an experiment EX can occur only two types of events H, T, e.g. 
throwing inside of some of these sub-cubes a non ideal special coin and suppos-
ing every time this special coin interacts in differed way relating by the positions 
of sub-cubes. We also gave to this experiment the name EX. Then we come to 
calculate the probabilities of H, T in a chosen sub-cube ( ), ,m m m mx y zω =  in 
which we haven’t yet thrown our specific coin or generally we may have thrown 
the coin but we don’t know this specific result. If in a 1st case we have as infor-
mation only the numbers μ, ν from the two types of results H, T in the total box, 
then at position mω  we know that the two probabilities for these events H, T 
correspondingly will be: ( ) ( )Hp ν ν µ= +  and ( ) ( )Tp µ ν µ= + . Where 

,ν µ  are the multitudes of H, T from EX. The question which now arises is how 
these two probabilities change if in a 2nd case we additionally take into account 
all the information coming of those positions in which took place the experi-
ment EX in relation to the special position of this specific sub-cube  

( ), ,m m m mx y zω =  under forecast, i.e. additionally putting the question “how we 
could calculate them”? For example, if the position of reference sub-cube mω  is 
near sub-cubes with more results H type than T type then we wait to have great-
er probability for H type than for T type in the sub-cube mω . This is a three di-
mensional problem because the volume, let be Ω , of the box Ω has three di-
mensions. Below, generalizing we will examine this problem in spaces of arbi-
trary number of dimensions and finally we will work on the simplest of one di-
mension problem concern the distribution of e, o events of SFNs on the one di-
mension axis Ax(N) of natural numbers.  

Below in Chapter 2 we will see a new idea proving how we can accumulate 
information onto some particular position m through the counting of the fre-
quency of fractional events [of some type e (or o etc)] which are appeared onto 
the position m but always according to the axioms of the classical theory of 
probability. At the end of the part 2.3.2 we will give a prototype (different) ex-
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ample for this etc. 
In the following, in part 2.3, we will assume that under each natural number 

there is one of two different types of magnets E, O. We hypothesize that these E, 
O interact differently with a special coin C. Then, we corresponding the e, o of 
SFNs to Η, Τ of C we will assume that throwing the coin C once only over each 
SFN position we paradoxically record that the results form the real, known, dis-
tribution of e, o on the SFNs. In the part 2.3 and in the chapters 4, 5 and on the 
basis of singular and precise definition of probability we will conclude that if on 
basis of e, o distribution exclusively onto SFNs, we have calculated the probabili-
ties for the possible results e, o of C onto the position any natural number m 
[accumulating every time onto the m the information from all e, o onto the 
SFNs], then on the basis of definitions (or the rigorous axioms) of probability’s 
theory we will find that these 2 probabilities are equal, so by definition the dis-
tribution of events e, o on SFNs will be H-T. And also the same type of H-T dis-
tribution will be expanding (obviously now hypothetically only) throughout the 
total axis Ax(N) of natural numbers.  

But what about the distribution I of even (2, 4, 6, 8, …) and odd (1, 3, 5, 7, 
9, …) natural numbers on the Ax (N) axis? The answer is that it is as well an 
H-T distribution that obeys relation (70) of the Appendix at the end of this pa-
per (which is also used and at the end of Chapter 7) but now by replacing the 
first member of relation (70) with the function that now measures the difference 
between the 2 sums of even and of odd natural numbers. The inequality of this 
new relationship will be valid again but obviously will be stronger, because now 
the first member will be exactly zero, which means that the distribution is H-T. 
But what will be the difference of H-T distribution I from the H-T distribution II 
(of e, o onto the SFNs) if we prove below that the distribution II of e, o of the 
SFNs is also H-T? The answer is that the I distribution encloses finite informa-
tion until to infinity as opposed to II which we can show that encloses infinite 
information until to infinity. Really: Firstly we observe that every natural num-
ber written in the binary system (0, 1) demands at least one additional bit of in-
formation compared to any other natural number, from the infinite natural 
numbers, so that this natural number can differentiate its binary code from 
every one of the natural numbers separately. Because now the binary codes of 
natural numbers per two represent independent codes (i.e. combinations of 0, 1), 
we conclude that infinite bits of information will be accumulated. However, we 
will prove in Chapter 7 (on basis of what we will prove in Chapter 5) that the 
same is true of the distribution of prime numbers. That is, we will prove that the 
prime numbers have an impartial distribution, which as an impartial series until 
to infinity encodes infinite information. This proof will be depended on my ini-
tial and basic proof in Chapter 5 that the distribution II of e, o onto SFNs in-
cludes infinite information because this is an infinite but simultaneously this is 
and one H-T distribution. And here the above of I, II imply the next difference: 
That is, if we know that an unknown natural number is an even natural number 
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we will be sure that its next natural number is odd, but we cannot do the same 
for an unknown e-SFN, i.e. to can say by certainty (on the basis exclusively of the 
knowledge of what type is the previous) that its next SFN will be one o-SFN. 

At this critical point we can define an infinite H-T distribution with infinite 
information as a Random Distribution relative to the e, o. Therefore the above 
distribution II will be Random but the same thing must not be valid with the 
other simple distribution I. But the two parts (components) of even and odd dis-
tributions, comparing each other, as in I as well in II, will be equivalent. It 
should be noted that it is known in bibliography that in order to prove RH it is 
sufficient to simply prove that the II distribution of e, o onto the SFNs is H-T, 
and not that this II distribution has infinite information. This is also evident 
from the use of relation (70) in Appendix where the infinite information of dis-
tribution II is not required for proving RH on the basis of (70). On the contrary 
in this research we first prove in Chapter 5 that the distribution II of events e, o 
onto the SFNs is H-T (independently of if the information of II is infinite or not) 
and next we conclude that this II distribution includes infinite information in 
Ax(N) as an H-T infinite series. 

2. The Theory of the Problem and Definitions 

2.1) In the below we will symbolize with ( )ip e  the probability (or frequen-
cy) of appearance of an event ie  into set A. Also with ( )||i jp e e  we will 
symbolize the probability of appearance of ie  provided that during the ap-
pearance of ie  there is also the appearance of another event je .  

2.2) General Definitions 
2.2.1) In the classical theory of probability we know: a) The probability 
( )p eλ  οf an event eλ  is function of mathematical propositions produced as 

information of an experiment that in the next we will call EX experiment and 
which counts the events of all types, so to we can find the relative multitude of 
eλ  type to the multitude of the all other types of events which are competition 
to eλ . b) The probability ( )p eλ  changes if, and only if, are changed the above 
prosthetic information in from the counting the events, that is, if, and only if, the 
information of counting changes. So Shannon expressed the information Ι [2] in 
the units of bits and as a function of its corresponding probability which is the 
reduction of system entropy ΔS after a measurement: 

( )2log 1I p e Sλ = = ∆                       (2) 

2.2.2) Let be { }1 2, , , kG e e e=   a set in which the 1 2, , , ke e e  represent a 
number k of repeatable phenomenons or events defined by k distinct per two 
mathematical propositions. Let be { }1 2, , , Mω ω ωΩ =   another set with com-
ponents representing other events defined by a multitude of M distinct per two 
propositions which are also distinct by all the elements of previous G set. We de-
fine here the events of G as competitive (per two) to the set Ω if, and only if, for 
set Ω happens that in every its element iω  can be mapped (or take place) ex-
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clusively only one element of G. In other words the element je  is a function of 
the element iω : ( )j ie F ω= . For example iω  could represent the cubes of the 
box that we described at the beginning in Introduction, and so the je  will 
represent one of the two (k = 2) events H, T, that is, in this example is  

{ }H,TG =  and Ω is the above box.  
Generally, for our case here of natural numbers, we will define as space Ω 

with n dimensions an Euclidian manifold by a set with a multitude of elements 
or points, where every one of them “i” is an arrangement of n natural numbers 
( )1, , n i
x x  that defines an elementary area iω  around it in connection with 

neighboring points. Next defining the function ( )iF ω  on to some of these 
elements of space Ω according to the definition of probability we can define as 
“Density of Frequency of Appearance from an event ej in this space Ω” or 
AFD (for sort) the density of its frequency for its appearance in referring to an 
observer Ob(m) sitting inside someone mω  of the position ( )1, , n m

x x  or 
“m” for short. This AFD in relation to the AFDs of all the other competitive 
events in set G easily drives to the probability of the event je  after normaliza-
tion. We will name the definition of AFD as:  

Proposition of AFD                     (3) 

2.2.3) Let be the special case where Ω is a manifold of number n (multitude) 
of dimensions. Let we divided Ω in a number of M areas iω  without common 
points (per two) in every one of which can take place only one of the events je  
of previous G set. a) If Ω is Euclidian in to all its area and is divided into a mul-
titude M of n-cubes iω  [which not they crossest between them (per two)], then 
we define the Ω as “space of events” and its iω  n-cubes as “positions of events” 
or positions iω  for short. Below we will refer only in such Euclidian space. b) 
In such space Ω every position mω  in which we ignore what event took place, 
we can be choose it as a the position of an observer who we will symbolize as 
Ob(ωm) or Ob(m). Thus the observer with every other position jω  will define 
a self-area ( ),m e jΩ  which includes all the positions of events (e.g. of all n-cubes) 
which either are crossed and either are included inside to a spherical (n − 
1)-surface [or n-sphere] that has as center the position jω  of some happened 
event and as radius R the distance between the centers of the positions mω  and 

jω . Let be ( ),m e jΩ  the volume of this self-area ( ),m e jΩ  of the event at jω . 
Therefore for a 3-dimensional space, if 1 1 1jω = × ×  is elementary (small)  

j∀ , we will approximately have: ( ) ( ) 3
, 4 3m e j RΩ π .  

2.2.4) Main proof: We will first refer to one-dimensional problem of e, o of 
SFNs on Ax(N), where the proof is simple and is the only one we are interested 
in below for RH. So we will symbolize the one-dimensional region with ( ),m e jL  
instead of ( ),m e jΩ  and we will put i∆  instead of iω  because here the space 
of the events LΩ =  has only one dimension and so i iω = ∆ . This position 

[ ), 1i i i∆ = +  with length 1 referring to the natural number i we can call below 
simply as i position for short. The , 1, 2,i i i+ +   represent successive natural 
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numbers on their axis AX(N). Let us choose the symbol ( )e jλ  for the set of n 
coordinates coding the event eλ , and therefore for the Ax(N) with n = 1 in all 
the next we will agree that the symbol ( )e jλ  is an natural number (a code of 
number-event) which carrying rigorously only one specific and temporary in-
formation telling simply us that an eλ  type event has been counted (from the 
Ex experiment) exclusively and only at the position ( )x e jλ= . The j is the serial 
number of type eλ  events in an interval [ ] ( ), AX Na b ∈ . For example if 
[ ] [ ], 4,10a b =  then the e SFNs in it will be ( ) ( )1 6, 2 10e e= =  and for o SFNs 
in it will be ( ) ( )1 5, 2 7o o= = . In the following we will keep this symbolism. 
And without harm to the generality let be e eλ = . Based on the previous propo-
sition (2.2.3, b) the change in the information +1 that initially added to Ob(m) 
[who is sitting just on the natural number m] from the code position ( )e jλ  for 
its existence (as a particular event e), will be coming in this 2nd case only from 
the new extra information of his new knowledge of the distance ( )R m e jλ= − .  

In order to now calculate this new quantity that he will add to his position m 
inclusively from the code ( )e jλ  alone, instead of the quantity +1, the observer 
will work as follows: He will start from the position ( )e jλ  where he will be 
symbolized as ( )Ob e jλ    and will move to its initial position m. He knows 
that only one event from the k = 2 competitive e, o can occur within each inter-
mediate position of interval [ ), 1i i i∆ = +  (or simply i) of its unique path as he 
moves on a straight line along R. We know that the probability by its very defi-
nition express a relative frequency of iterations with respect to the competitive 
events. So as the observer passing through the next point ( ) 1e jλ −  he is forced 
axiomatically by these 2 basic previous propositions to estimate that for a possi-
ble EX (of his special coin) in future at ( ) 1e jλ −  will have as information 
[which as we said is coming exclusively and only from the code ( )e jλ ] the 
probability: ( ) ( )( )1 1 1 1 1e j e jλ λ− − = =  for this specific type e eλ =  only 
at ( )x e jλ= . Because the eλ  happened once in the area ( ) ( )1,e j e jλ λ−    
which refers to two positions (of events) from which only in one he ignores the 
result of Ex experiment, because in his specific course of connection m and 

( )e jλ  he continuously refers (exclusively and only) to one given event of EX 
which is the code ( )e jλ . Similarly he passing from the next natural number 

( ) 2e jλ −  the information coming (exclusively and only) from the known 
( )e jλ  will be the probability: ( ) ( )( )1 2 1 2e j e jλ λ− − =  for the type e eλ = , 

because eλ  happened once but now in an area of three positions which refer to 
the new region ( ) ( )2,e j e jλ λ−    and in two of them he ignore the results of 
Ex experiment, because he refer again exclusively and only to the same event 
which is this code ( )e jλ . Therefore, reaching its initial position m, the observer 
based exclusively on the classical probability definition and according to pre-
vious part 2.2.2 he will estimate a self-AFD: ( ) ( ), 1m e j e j m

λ λρ = −  that refers 
exclusively and only to the type eλ  event and on the given position ( )x e jλ= , 
i.e. to the particular code or number-event ( )e jλ  and so this AD is the self 
probability of number-event ( )e jλ  projected on m or simpler the Appearance 
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Density (AD) on m. We will name this definition as:  

Proposition of AD                      (4) 

Therefore the quantity ( ),m e jλ
ρ  represents the AD as a self-density of code 

event ( )e jλ  that it appears on the position Ob(m). In other words depending 
on the basic axioms of information theory and on the definition of probability 
we proved in the 2nd case that every one code ( )e jλ  of the event eλ  appears 
at the position m as fractional event ( ),m e jλ

ρ  smaller than +1. We observe that 
in the special 1st case of a space Ω with zero dimensions, and with e.g. two events 
H, T, the observer (Ob) standing at singularity point of space, with “multitude of 
events ν µ+ ” he add one by one the equal ADs of the event of the same type 

Heλ = : ( ) ( )1 1ν µ ν µ+ + + + , so to find for H its AFD:  
( ) ( ) ( )1 1 1 1 ν µ ν ν µ+ + + + + = + . In the 2nd case there is no reason to be 
changed this prosthetic property that characterized the densities in the 1st case 
with Ω with 1 dimension, because the AD ( ),m e jλ

ρ  in 2nd case is the same mag-
nitude with the AD equal to ( )1 ν µ+  of the 1st case. In other words at the po-
sition x m=  the observer Ob(m) simply percept the events e, o as fractional 
events in contrary to the case where he had no information of their positions 
and so he added the events e, o as units, that is, 1 1 1+ + +  Therefore this dif-
ference in 2nd case changes only the quantities and so from all definitions and 
axioms of information theory do not implies modification of the prosthetic 
property between fractional and not fractional events. So the observer Ob(m) 
adds the fractional events ( ),m e jλ

ρ  to find the ratio between the two populations 
(the two multitudes) of the types e, o, knowing that this ratio, exclusively alone, 
define the probabilities of e, o. The normalization is given every time exclusively 
and only from this ratio and nothing more, [3]. Therefore the observer Ob(m) 
maintains the same rule (the same statistical law) to sum fractional events e, o as 
have also happened with the classical observer for the 1st case of non fractional 
events H, T of the 1st case. So the Ob(m) in 2nd case adds the fractional events e, o 
just as in the 1st case of non fractional events, having again the same right, as we 
proved, and so finding the new ratio that depends now and from the relative to 
him positions of axis Ax(N) [where the events e, o have been coded from the EX 
experiment] the Ob(m) finally after a classical normalization he easily arrives to 
the Equation (23) of the below Chapter 4”.  

2.2.5) From the basic knowledge of probability theory we know that the three 
dimensions ix  (with i = 1, 2, 3) of a cube Ω (that we refer before as a box) will 
can correspond to three random variables that represent any magnitudes, but 
now here these can refer not only to one event for every type that can be meas-
ured by EX experiment in the total Ω, as we know happen in spaces from ran-
dom variables in probability theory, but now this space Ω has the strange prop-
erty to refer to many Nλ  number of events eλ  type which all measured by Ex 
in the Ω. Evidently, space Ω can be made from an arbitrary n number of dimen-
sions and not only from three. Generalizing the above, we can define the density 

( ),m e jλ
ρ  of the specific event eλ  that measured by EX experiment at position 
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( ) ( ) ( )1 2 3, ,j x j x j x jω = ∆ ∆ ∆    of the previous box (e.g.) relative to the observ-
er ( )Ob mω , that is, now we define at the mω  position of space Ω:  

( ) ( ), ,1m e j m e j p
λ λρ = Ω = ∆ . The self-area ( ),m e jΩ  (which have been defined in 

the section 2.2.3 before) has a volume ( ),m e jΩ  which obviously is defined as a 
function of these random variables ix . If we divide the space Ω of the box in a 
number of elementary (small) cubes and this number tends to infinity then the 
quantity ( ),m e jλ

ρ  will tend to the elementary probability: d dp fλ λ= Ω  of the 
theory of probability. Where the function ( )1, , nf F x xλ λ=   referring to the 
position ( )1, ,m n m

x xω =   corresponds to the much known density of proba-
bility. The only difference here (with the infinitely small parts where in every 
which of them only one event occurs) in contrary to the previous case is that the 
normalization may needs handle infinite quantities. It is also known that the 
elementary quantity dpλ  as function of 1, , nx x  coordinates will remain 
unchanged when we transform the 1, , nx x  coordinates of event space Ω in to 
some new 1, , nx x′ ′

 : d d dp f fλ λ λ′ ′= Ω = Ω  using the known Jacobian. 
2.3) Special analysis for SFNs  
2.3.1) It has been shown that if the distribution of events e, o of the SFNs on 

the axis Ax(N) of the set N of natural numbers is Heads-Tails (H-T) type then 
the Riemann hypothesis will be valid. In this article we will prove that this dis-
tribution of e, o events onto the SFNs is indeed H-T type.  

Let us imagine that we have a specific special coin C with a homogeneous dis-
tribution of the density of its metal, but endowed with the property that its two 
sides interact magnetically in a different way in two types of magnets E, O. Sup-
pose that on the axis Ax(N) and below from the position of each SFN we have 
placed one of the two magnets E, O. Additionally we correspond to the two re-
sults H, T the events e, o of the SFNs. Suppose that starting from the first SFN, 
which is the natural number 2, we reach the infinity by dropping this coin C on 
the position of each SFN, under which we said someone has placed one of the 
two magnets E, O. It is obvious that the distribution of results will be H-T type if, 
and only if, the placement of the E, O magnets was done in a completely random 
way. In other words, the distribution of the results will be H-T type if, and only 
if, the result of the spins of the specific coin C statistically is not affected by the 
respective positions of the SFNs where we toss this special coin. And that is ex-
actly what we will prove. Suppose that in the above experiment, throwing this 
special coin until to infinity, comes (paradoxically) the real arrangement of e, o 
of SFNs (known from number theory on axis of N) which is dictated by the 
property e (even) or o (odd) of the every time respective SFN. Let call this dis-
tribution e-o-SFN. So how could we know if this distribution of e, o on the SFN 
positions is random, that is, if is it H-T type? It is a fundamental question.  

We will go deeper into the definition of probability. If an observer Ob(m) at a 
specific position m within an area [α, β] of Ax(N), with mα β< < , notices that 
within this interval [α, β] there is a number (multitude) ν of events of the type e, 
and also a number μ of events of the type ο, then the information that this (finite 
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or tending to the infinity) area gives to the observer Ob(m) is that the probabili-
ty that have every of the events e, o to occur again on his position m (after 
throwing the special coin on m) are respectively: ( ) ( )p e ν ν µ= +  and  
( ) ( )p o µ ν µ= + . The position m in [α, β] as well may be a SFN position where 

e.g. the observer ignores the result (on m) and calculates it as a function from 
the results of EX experiment in the area [α, β] where the position m also belongs, 
but the m in [α, β] obviously can also be generally any position of a natural 
number, which can may not correspond to some SFN, assuming that the mag-
nets E, O are placed below any natural number and every magnet affect every 
time only to the special coin C that is tossed over this number. In this 1st case we 
suppose that the Ob(m) at his position m has no information for the distribution 
of e, o in the range [α, β] and therefore expresses the probability p(e) simply as a 
relative frequency of repetition of e with respect to the total repetitions of e, o in 
the range [α, β]. As we know, the AFD (that we defined in 2.2.2 before for an 
event, e.g. of e onto position m) as prosthetic part of probability changes when 
the information changes about the existing iterations of the event e in the range 
[α, β]. For example when in addition, in a general 2nd case now, we take in ac-
count and the distances of all events of type e (in the [α, β]) from the position m 
of the observer. Of course, equivalence between the distribution of magnets E, O 
below of all natural numbers and the distribution of the magnets E, O below the 
SFNs subset is exactly the generalization of the distribution that is defined from 
the specific total magnet distribution of the SFNs alone. In other words the hy-
pothetical equivalence between the results e = H, o = T of special coin C from 
the EX experiment onto the SFNs and on the subset of all the other natural 
numbers, by definition implies that the magnets E, O below all the natural 
numbers must follow the same distribution as they have over the subset of SFNs 
alone, e.g. an H-T distribution or not. Because we are interested to find what ex-
actly is the distribution of these specific two types from the relative perception of 
the Ob(m) who can be sitting at the position of any natural number m Nκ= ∈ . 
Obviously if we choose as m = κ any SFN then we must neglect from EX data the 
knowledge of the specific type (e or o) of this specific SFN. As we said the EX 
experiment is the set of all data (results) from the previous throwing that have 
been realized by the specific coin C only over all SFNs. We must point that any κ 
= m which is non SFN number has no type e, o, but here we are interested for 
the relative perception from Ob(m) about e, o events exclusively and only of all 
SFNs, because if this perception of e-SFNs distribution is the same with the 
o-SFNs distribution from the position Ob(m), and from every one natural num-
ber m, then we conclude that the perception of e-o-SFNs distribution from the 
position Ob(m) and from every one natural number m is finally H-T, then we 
conclude that the distribution e, o of SFNs alone which is investigated from 
every position m N∈  [i.e. the distribution e-o-SFN into the axis Ax(N)] by de-
finition will be H-T also, because this is the definition of H-T distribution taking 
in account and all the distances of events e, o from the every time position κ = m 
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of any natural number. 
We discussed the previous because here we obligate to take into account all 

the existing information of infinite SFN’s (resulting of specific coin C of EX, 
previously described, only onto the SFNs) for the calculation of probabilities 
p(e), p(o) on the position m where the EX don’t yet don’t yet been executed, 
supposing as well that the distribution of e, o onto the SFNs expanded in some 
hypothetical way (useful only for our calculations) over all Ax(N). So to know 
how the C coin results affect the forecast of e, o (or H, T) on position m. That is, 
we ask their probabilities on point m, where we don’t yet have tossing the coin C, 
supposing that the magnets E, O under the set of all natural numbers (including 
m) have the same distribution with the subset of magnets E, O of SFNs that as 
we said gave paradoxically the absolutely same arrangement of H, T with the ex-
isting (real) arrangement of the e, o of SFNs. Therefore we must take into ac-
count additionally the positions of e, o in N (generalizing the [α, β]) and in ref-
erence to m. However, the positions of e, o with respect to m are by definition 
the distances of each event e, o on Ax(N) from this position m of the observer. 
How, then, would the previous simple definitions of probabilities p(e), p(o) must 
now change as relative repetition frequencies in the infinite region N taking in 
account the positions, (that is, taking in to account all the existing information 
in N) so to finally we answer the initial question of whether the distribution of e, 
o appears to be the same type  from the observer position m or not? We will 
call it typically as “H-T type” from m, (enclosing the phrase in the symbols) be-
cause the H-T distribution refers on to all positions m and not to one m. In oth-
er words, utilizing all the available information in the infinite range N for the 
distribution of the events e, o we must define their probabilities on the observer’s 
position m. If we achieve this then after this it suffices to show that the two 
probabilities of e, o are equal at each point m of N, because this is by itself an 
exact definition of the H-T type distribution of events e, o onto the SFNs. Thus 
we result to the next Main Proposition: 

2.3.2) Main Proposition: “According to the section 2.2 and the part 2.3.1 be-
fore, having any interval [ ],α βΩ =  of Ax(N) with M multitude of natural 
numbers accompanied all by hypothetical magnets E, O under them, and by 
presupposition that the experiment EX took place in to some of them which 
have multitude N < M, then we conclude that the distribution of results of H, T 
on these M numbers, will be of type H-T if, and only if, the reception of all in-
formation about the all results (data) of experiment EX, and from any place 

[ ],m a b∈ , gives to its observer Ob(m) the information of equal probabilities. 
That is, if, and only if, this distribution of N results of EX relative to their dis-
tances of Ob(m) seems as ‘H-T type’, i.e. if, and only if, is: ( ) ( )H Tp m p m=  

[ ],m a b∀ ∈ . These 2 probabilities are defined below [I.e. the relations (23), (24) 
in Chapter 4] and for every m in event’s space [ ],α βΩ = ”. 

In order now to generalize the definition of the two probabilities p(e), p(o) 
using at the same time all the spatial information of the distribution of events e, 
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o within a range [α, β] and with respect to a selected position [ ],m α β∈  of 
observer Ob(m), we first observe that in the previous definitions of 1st case 
( ) ( )p e ν ν µ= + , ( ) ( )p o µ ν µ= +  the repetitions of the events e, o that took 

place in [α, β] are simply added: 1 1 1 1ν = + + + +  and 1 1 1 1µ = + + + + . 
Then we observe that each of the events e takes place in a special position (with 
respect to the position m of the observer) which as we said we will initially cod-
ing here with ( )e i , and so the distance from the m will be ( )m e i− . Where i 
is an index that runs over the events e of [α, β], so that the serial number for i = 
1 gives us the first event e of [α, β], the serial number i = 2 gives the second event 
e of [a, b] etc. Therefore in this symbolism the positions of all natural numbers 
in general, regardless of whether they are SFN or not, are numbered inside of [α, 
β] in order with 1 2 3, , ,κ κ κ   which represent consecutive natural numbers and 
so simply the serial number i in the code e(i) or o(i) locates the events e or o at 

( )j e iκ =  or ( )j o iκ =  respectively. For example, the [3, 9] contains 7 natural 
numbers and only four of them are of type SFN where in order they are of type 
o, o, e, o with values 3, 5, 6, 7, therefore we conclude that ( ) 11 3o κ= = ,  
( ) 32 5o κ= = , ( ) 41 6e κ= = , ( ) 53 7o κ= = . Also for the populations of the 

events e, o in [α, β] will we define the symbols ,e oN N  respectively. So in this 
example will be 1eN =  and 3oN =  for [3, 9]. Also the position m can be any 
natural number from these seven natural numbers of [α, β]. In the case where 
the position m is an SFN position, e.g. the 5th number ( 5 7mκ = = ), then in this 
special case obviously this position should be excluded from EX data and put 

2oN =  in the following sums that we will mention immediately. 
In the 2nd case of generalization we proved in (2.2.4) that in the previous sums 

1 1 1 1ν = + + + +  and 1 1 1 1µ = + + + +  each such added unit (+1) must be 
replaced from the corresponding self-AFD ( ),m iτρ  of the event ( )iτ  [which is 
the ( )e j  for the sum of ν and the ( )o i  for the sum of μ] that obviously 
transports the position information (to the observer of the location m) that the 
occurrence of the event ( )iτ  happens at a distance ( )m iτ−  from him. We 
clarify the Main Proof of (2.2.4). Suppose that [ ] [ ], 4,10α β =  with only two 
events 6, 10 of type e and that the observer is in position m = 8, and as we said 
we will symbolize him at this location as Ob(8). A specific event now, e.g. the e 
type of special e SFN code ( )1 6e =  is displayed at a distance 8 6 2− =  from 
him. If the observer Ob(8) at m = 8 takes into account and the distance, he now 
cannot claim for e(1) that it is simply an event of type e occurred on unknown 
position in [4, 10] and thus to add it as a new unit to the calculation of ν. But he 
realizes that e(1) in position 6 gives to him a probability smaller than 1 that an 
event of type e may occurs in his m position when he will throw the specific coin 
C at his position. And in this sense the event e(1) now behaves as a fractional 
event on m where is standing the Ob(m), i.e. smaller than 1 event or in other 
words as a new term in the sum of ν which is smaller than unit. 

The reason is that the observer Ob(8) forced by the classic definition of prob-
ability itself to work as follows: “If I start from my initial position Ob(8) and 
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goes to position 6 of e(1) I will pass successively through intermediate positions, 
which here is obviously only one and it is my intermediate position 7. Therefore 
he claims that taking only one step toward e(1) he don’t meet e(1). But continu-
ing to the same direction, finally he finds that he meets, this specific code e(1), 
after from 2 consecutive steps. That is, he prove that achieves the number-event 
e(1) in two consecutive attempts in a measurement of classical theory of possi-
bility”. Every such measurement gathers prosthetic information. E.g. here pros-
thetic information to other measurements will be on the same type num-
ber-event ( )2 10e =  in the same interval [4, 10]. 

Therefore the observer Ob(8) calculates that the code e(1) from itself appears 
on him (onto m = 8) as a virtual fractional event of the same type equal to its 
corresponding probability onto m: 1 8 6 1 2− = . The obvious reason is that ex-
clusively, and only, the code number-event e(1) contributes (by itself) to the ob-
server Ob(8) this probability 1/2 as a component of information which next he 
can use to calculate the sum (including the ρ for ( )2 10e =  for [4, 10]) on m 
(little below) of the final probability ( )ep m  which has the result e to appear at 
m [after throwing the specific coin C of EX at his place m = 8 e.g. in the future]. 
According to the all above symbolizations of [ ],m α β∈ , for the numerated ob-
server’s position m and for this fractional (or virtual) event as component prob-
ability corresponding only to one code e(j) of [ ],α β , generally for the AD he 
must put: 

( ) ( ),
1

m e i e j m
ρ =

−
, and similarly for the event o: ( ) ( ),

1
m o i o i m

ρ =
−

 (5) 

Now for the Ob(8), and similarly with the calculation in 1st case of p(e) of par-
tial information, we can prove that the generalized probability ( )ep m  of an 
event of type e to occurring at position m = 8 (based on the total information 
now of all the events e(j) that occurred in space [4, 10]), will be proportional to 
the sum of all the fractional events ( ),m e jρ  (of type e) which transfer all together 
their respective real number-events e(j) to Ob(8). Actually. Each fractional vir-
tual event ( ),m e jρ  is the event density of the corresponding real e(j) in the 
one-dimensional self-space ( ) ( ),m e jL m e j= − , because we said according to the 
definition itself the probability is always proportional to the occurrence density 
AD [here it is ( ),1 m e jL ] of the event γ which refers to a space of its potentially 
repetitions, where as well the density ρ of γ is defined. And is well understand 
from the axioms of the theory of probability. 

On the other hand the equivalent problem with the special coin C we have 
described clearly shows that the actions of the virtual magnets below the posi-
tions of the SFNs are independent of each other, because each coin tossed over 
any particular SFN is affected solely from the magnet located below that SFN 
and not by the infinite others. The reason is that this modeling with magnets, in-
cluding the condition of this independent action of the magnets between them, 
leaves the total action of the magnets to be determined by the distribution of the 
magnets, i.e. by their positions relative to the observer and not by hidden inte-
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ractions between them, because by definition this is exactly what the problem we 
are looking at requires, that is, the problem of checking whether the distribution 
is “H-T type” with respect to the random m position of the observer. 

Considering in the previous the AD [of (4) in 2.2.4] as a part of the AFD [of 
relation (3) mentioned in 2.2.2] for any event, e.g. the e, and for some position m 
of Ob(m) we essentially used the definition of the probability as the process of 
counting this events e as waiting partial probability on m, that is, a fractional 
event, onto the position m. And then based on axiom of prosthetic property of 
appeared e (from all space Ω of events) on m we are resulted to the formation of 
AFD for e onto the m as a sum (Σ) from all its ADs for e on to Ob(m), i.e.: 

( ) ( ) ( )AFD , AD ,e m e m e mρ = = Σ     and similarly for the o:  
( ) ( ) ( )AFD , AD ,o m o m o mρ = = Σ    . Therefore, similar to the previous, we will 

have the next relations (23), (24) of the following Chapter 4, setting: 

( ) ( ) ( ) ( ), ,1e em e j m e jm L V mρ ρ  = Σ = Σ =                 (6) 

( ) ( ) ( ) ( ), ,1o om o i m o im L V mρ ρ  = Σ = Σ =                 (7) 

And then, for the normalization of probabilities according to the previous 
analysis we get: 

( ) ( ) ( )( )e e e op m m m mρ ρ ρ= +    and ( ) ( ) ( ) ( )o o e op m m m mρ ρ ρ= +    

In the following (and similar to the known Potentials of Fields in Physics) we 
will agree to name the quantities ( )ρe m , ( )ρo m  of two competitive AFDs 
(that we defined at the end of part 2.2.2) as Potential of Events e, o at m posi-
tion respectively. 

Example: To show the prosthetic property of the density of events from a dif-
ferent point of view we will give an example. Suppose we throw a coin in three 
experiments 5, 10 and 21 times respectively, with corresponding results for H, T: 
(2, 3), (7, 3), (9, 12). We observe that the densities of events in the three experi-
ments are proportional to the numbers 2 + 3 = 5, 7 + 3 = 10 and 9 +12 = 21. This 
means that the corresponding 30 ADs for H, T will be: ( ), 5ρ =m H j : j = 1 to 2, 10: 
j = 3 to 9, 21: j = 10 to 18 for H, and ( ), 5ρ =m T i : i = 1 to 3, 10: i = 4 to 6, 21: i = 7 
to 18 for T, in the 3 experiments correspondingly. So if we place these 18 + 18 
ADs of H, T on an axis with the observer in a position m then obviously the 18 + 
18 distances from position m will be respectively: ( ) ( ), ,1m H j m H jL ρ= ,  

( ) ( ), ,1m T i m T iL ρ= . And applying the relations (6), (7) and the normalization that 
we quote after them we find the correct probabilities in Ob(m):  

( ) 269 566 0.475 0.5= ≈ ≠Hp m  and ( ) 297 566 0.524 0.5= ≈ ≠Tp m . 
We observe that the distribution of H, T events here differentiates from the 

distribution H-T where ( ) ( ) 0.5= =H Tp m p m  onto the position of Ob(m). 
This verifies the previous analysis here, because according to it we expected the 
two above inequalities because we made the choices of the 3 distances 1/5, 1/10, 
1/21 without any special care that drives to the special target H-T. And indeed 
that is how the data of our Example were chosen, randomly. But as well we see 
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that we have an almost H-T distribution due to the random but finite number of 
selections. The small differences (about 0.025) show the different affects from 
the distances themselves with respect to Ob(m). This seems more clearly if we 
choose equal distances, e.g. 5, 5, 5 and therefore with equal affects so that now 
the distribution will be the ideal H-T one. The small differences will be now 0. 
But as such distribution H-T we expect a distribution [with respect to the Ob(m)] 
if we randomly choose a very large number from lengths of distances (instead of 
3 random here) so that their multitude to tend to infinity, while the equality be-
tween the multitudes of results H, T of tosses will be ensured by the “ideal of the 
coin”, as it is and the coin of the above Example, thing that here by definition is 
born exclusively from the equality between the multitude of events (18 + 18). 
This special definition (through the equality of multitudes between only two 
competitive events) of “ideal coin” is unique for any case of finite data, as here 
(18 + 18). 

2.3.3) Application: And so finally we can calculate and then analyze these 
two probabilities for the case of observer Ob(8) on the position m = 8 of range 
[ ] [ ], 4,10α β =  with codes ( )1 6e = , ( )2 10e = , ( )1 5o = , ( )2 7o = . Thus ap-
plying the above we easily find: 

( ) ( ) ( )8, 1 8, 28e e eρ ρ ρ= +  or ( ) 1 18 1
8 6 8 10eρ = + =
− −

          (8) 

And similarly ( ) ( ) ( )8, 1 8, 28o o oρ ρ ρ= +  

An therefore 

( ) 1 1 1 1 48
8 5 8 7 3 1 3oρ = + = + =
− −

                   (9) 

And after these we conclude: 

( ) ( )
( ) ( )

8 1 38
4 78 8 1
3

e
e

e o

p
ρ

ρ ρ
= = =

+     +  

               (10) 

( ) ( )
( ) ( )

8 48
78 8

o
o

e o

p
ρ

ρ ρ
= =

+  
                    (11) 

This is an application for the above and for the Main Proposition, useful be-
low. First we verified that ( )(8) 8 1e op p+ = . We before called the two quantities 

( ) ( ) ( )5 8 8e e eV Vκ ρ= =  and ( ) ( )8 8o oV ρ=  as Potentials of the Events e, o on 
the observer’s position m = 8. Additionally we observe that these are not equal in 
this simple example and for this we have ( )(8) 8e op p≠ . Also for this reason in 
interval [4, 10] substituting the event e by the electric charge +1 nC and substi-
tuting the event o by the electric charge −1 nC we conclude that the total elec-
trical potential on the position m = 8 doesn’t be zero as will happen e.g. in the 
special case where will be ( ) ( )e op m p m= . Another observation here is that al-
though the average distances of number 8 from points of events e and o respec-
tively are both equal to 2 [because ( ) ( )2 2 2 3 1 2+ = + ] in the 1st situation the 

( )8ep  is smaller than the ( )8op  of the 2nd situation. The reason must be 
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found on the entropy, because the 1st situation of “2, 2” distances of distribution 
is more symmetrical than the 2nd situation of “3, 1” distances of distribution, that 
is, the entropy of the 1st more symmetrical situation is smaller than the entropy 
of 2nd situation, i.e. 1 2S S∆ < ∆ . But that is known [(relation (2) of 2.2.1] that the 
entropy is the hidden (non measured) average information. So, after measuring 
of the entropy, the receiver Ob(8) gains smaller average information or entropy 
(for the e distribution relative to its position m = 8) in 1st situation than the en-
tropy of the 2nd situation. Therefore, the observer Ob(8) by gathering these two 
values 1 2,S S∆ ∆  of information causes the known collapsing of this entropy (in 
his system making these zero, like in quantum mechanics and everywhere) just 
after from his two pairs of measurements onto the ( ) ( )1 6, 2 10e e= =  and 
( ) ( )1 5, 2 7ο ο= =  concluding that the event e of the 1st situation is less probable 

than the other event o of the 2nd situation: ( ) ( )8 8e op p< , because these two 
values of the information, just he gained at m = 8, will be: 

( ) ( ) ( )1 28 3 7 l 7 Bitsog 3ep S= ∆ =                 (12) 

( ) ( ) ( )2 28 4 7 l 7 Bitsog 4op S= ∆ =                 (13) 

3. Financial and Other Applications 

In this expansion we will suggest to apply the method only for finite number of 
data from partial (not absolute) action of the values of these n dimensions of the 
space Ω, and therefore this application will be a new approximation method of 
forecasting in contrary to the application in main article on infinite SFNs that 
according to the theory of probability includes the absolutely action of distances 
of SFNs from the Ob(m) until to infinity and therefore with absolutely sure re-
sult with probability 1 (i.e. 100%). starsee@outlook.com.gr. 

Similarly to the box we mentioned in the Introduction we will refer here to a 
multi-dimensional event space (with Euclidian properties as we defined it be-
fore). Suppose a space of events { }1 2, , , Mω ω ωΩ =   with n number of dimen-
sions and volume Ω  is divided in to M number of distinct elementary equal 
regions of n-cubes iω  within each of which these n-cubes can occur only one of 
the competitive events of set { }1 2, , , kG e e e=  , as we said before in section 3 of 
the “General Definitions”. The n multitude of dimensions of this space corres-
pond to n number of economic or other physical quantities that let have been 
statistically proved to affect the distribution of G inside the space Ω. E.g. The set 
G could include 10 regions of possible percentage changes of values of a product 
P1 relative to some previous value at defined distance Δt of time in stock market, 
and the Ω could have three dimensions corresponding a) to the value and b) to 
the volume of sales for the P1 that both refer to the past at Δt distance before and 
c) to someone Moving Average of this value of product P1 related with this time 
distance Δt. Generalizing all the above, the AFD eλ

ρ  of probability (under 
forecast) of any event eλ  of the set G on to some observer Ob(m) sitting at the 
position mω  of the Ω (according to all the above in the General Definitions) 
will now be generalized as a function ,m eλ

ρ  of mω  as follows: 
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( ) ( )
( )

( ),1 1
,

1j N j N
e em e jj j

m e j

m V mλ λ

λ λλ
ρ ρ= =

= =
= = =

Ω
∑ ∑           (14) 

where ( ),m e jΩ  will be the volume of self-area ( ),m e jΩ  with a number mjN  of 
n-cubes jω  defined before in part 2.2.3 of General Definitions. So, similarly to 
the one dimension problem of relations (23), (24) in Chapter 4 bellow, now for 
the forecasting on the position mω , where obviously we ignore what financial or 
other type of event eλ  is going to happen, we result to the probability: 

( )
( )
( )1 i

e
e i k

ei

V m
p m

V m
λ

λ =

=

=
∑

                     (15) 

4. Potential of Events 

An observer counts the glowing meteors in an area of the celestial sphere from a 
position m on Earth for the duration of one hour and finds that on average 4 
meteors per minute fall. If that is due to in a specific phenomenon that forces 
this rate to be dependent from its time and place, then it is absolutely logical for 
the observer to presume that in the next minute the most possible number that 
he is going to count is 4. But if the last 15 minutes the average was 8 per minute 
and there is a dependency of the rate from time and place (from the observers 
position), then it is also logical for him to presume that for the next minute on 
average being expected more events from 4 and less than 8. So, this observer is 
tempted to find a mathematical function of dependency of this rate to the time 
for this celestial phenomenon of this specific spacetime position.  

We will here remind the “potential of events” that was defined at the end of 
2.3.2. We will start from one case where the events are two e = +1, o = −1 and 
are realized on the positions of SFNs. The SFNs (as generally every number) 
have various properties such as e.g. are a) the e, o and b) their numerical values 
that from now on we will symbolize νµ . We can imagine next, two distinct 
events { },n e oτ ∈  (or something more general) which were repeated over a fi-
nite multitude N of positions of a straight line x (e.g. over the SFN) and so will 
be distributed on the distinct positions 1 2, , , Nn n n n=   (which now not de-
fined as successive) of an EX experiment (that counting by observation) and 
which are all enclosed in an area ΑΒ = Δx of x. These positions of n are not 
mandatory to be successive. We will also symbolize any two successive positions 
as , 1κ κ + , with Nκ ∈ . Let be the m a specific position on the line x for which 
we do not know which event from e, o corresponds. The m could be also one of 
the additional positions sn n= , e.g. for 1Nn n +=  where the event nτ  has al-
ready been realized but it happens to be unknown to us or that in general case it 
simply is another position of natural number that the event nτ  is not yet meas-
ured by the EX experiment. 

Let’s consider that the start x = 0 is in the position A. An observer Ob traces 
all the positions of the area ΑΒ = Δx and tries to gather information from the 
events with a multitude N, in order to, based on this information, calculate the 
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probabilities ( ) ( ),e op m p m  on the position m, as we have proved through the 
relations (6), (7) in the part 2.3.2 of Chapter 2. How this observer Ob will now be 
working? His initial thought could be to estimate for these values:  

( ) ( ),e e o op m N N p m N N= = , where the values ,e oN N  are the multitudes of 
appearance of e, o respectively on Δx. But that way Ob ignores the position of 
appearance of every event that obviously constitutes very important information. 
Let Μ be the midpoint of ΑΒ = Δx and let e.g. the m position to belong into the 
area ΜΒ = Δx/2 where e.g. the e is happened to come up more times than the 
event o in comparison to the other area AM. Then it is reasonable that the ob-
server Ob(m) will think to correct the previous values with new ones as follow: 

( ) ( ) ( )
3

4 4

e e
e m

N MB N MA
p x D

x xm m

 
 
 = +

∆ ∆ − − 
 

                 (16) 

( ) ( ) ( )
3

4 4

o o
o m

N MB N MA
p x D

x xm m

 
 
 = +

∆ ∆ − − 
 

                 (17) 

And where 

( ) ( ) ( ) ( )
3 3

4 4 4 4

e e o oN MB N MA N MB N MA
D

x x x xm m m m
= + + +

∆ ∆ ∆ ∆
− − − −

           (18) 

The observer Ob considered that the events e, o of the areas ΑΜ, ΜΒ are con-
centrated over the centers of ΑΜ, ΜΒ respectively. The value D concerns the 
known requirement of normalization: ( ) ( ) 1e op m p m+ = . And where  

( ) ( ),e eN MB N MA  are obviously the populations of the e event in the intervals 
ΜΒ and ΜΑ with their respective centers 3Δx/4, Δx/4 and similarly with the 
symbols for the event o. But again Ob doesn’t have the complete utilization of 
the total information of distribution. So until where will he continue to subdi-
vide the interval ΑΒ = Δx? In 4 parts instead of 2, in 8, or more? The method of 
utilization of all of the information demands until to infinite. But because in our 
specific case the positions that the events are being realized are discrete, this can 
happen more simply. Continuing this process we can understand that we will 
come to the following relations (23), (24), which also have been referred in 
Chapter 2 before.  

Based on the definition of AD for the event of (4) in 2.2.4 of the Chapter 2 we 
have: ( ), 1m e j xρ = ∆ , because it is referred to the enumeration of only one event 
from distance Δx of Ob(m), who is sitting at the position m. In the part 2.3.2 of 
Chapter 2 we defined ( ),m e jx L∆ =  and according to the definition of AD of the 
event e we will have: ( ) ( ), ,1m e j m e jLρ =  with ( ) ( ),m e jL m e j= − . However be-
cause (as we have already said) this density is proportional to the partial (com-
ponent) probability ( ),m e jp  we must write: 
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( ) ( )
( )

, ,
,

1~m e j m e j
m e j

p
L

ρ =                     (19) 

where “~” is the known symbol of proportionality. And we found ourselves now 
in a crucial point: “When a value v of a magnitude A is proportional as to a set of 
values of the same magnitude A it must be that value v will be proportional also 
to the sum of values of the set”. This proposition [as we said with the relations 
(6), (7)] defines necessarily also the AFD of the e event in the position m because 
of all the occurred events of e type in an interval [α, β], that is: 

( ) ( )
( )

( ),
1 1 ,

1e eN N

e em e j
j j m e j

m V m
L

ρ ρ
= =

= = =∑ ∑                (20) 

Let consider as an example the distribution of only two events e on the axis 
Ax(N): electing m = 0, ( )1 2e = , ( )2 3e = . Based on the relations (19), (20) it 
comes that ( )0 5 6eρ = . Lets continue considering also a second example, of a 
different distribution for e with new 2 positions: m=0, ( )1 1e = , ( )2 3e = , where 
it results: ( )0 4 3eρ = . If now we use their average density into the common 
area of these two examples we will find ( )0 2 3e eN xρ = ∆ = . We observe that 
the definitions (19), (20) give us the specific total information of the distribution, 
because they utilize the density in relation to the distance, as it should. I.e. it is 
5/6 < 4/3 because in the second case we moved one of the two events e closer to 
the constant receiver (observer) Ob(0) at m = 0. However this distinction would 
be lost in the definition based on the average density in this area [0, 3], where we 
saw that it results to ( ) [ ]0 2 3 0 2 3eρ = − =  that also represents together these 
two cases (that correspond to the results 5/6 and 4/3) and which don’t include 
the total information of distribution of the event e relative to the Ob(0). 

Also, the transport of the information to Ob(m) equivalents to the transport-
ing of a messenger from the source, at the position e(j), to the receiver Ob(m) at 
the position m. Due to the importance of this subject we are going to analyze it 
little further. Based on the definition of probability in Chapter 2 we proved the 
fact that the AD of an event e occurring at some position on the Ax(N) axis, 
solely due to the measurement by EX of the same event e but at another position 

( )n e j=  on the Ax(N), will be inversely proportional of the distance  

( ),m e jx L∆ =  between them. We will analyze this basic proposition here again, 
but little differently and briefly. 

Let the messenger begins from some initial position ( )sn n e j= =  where it 
has already occurred e.g. the e and then let him to move toward the position 

sm n> . Based on the definition of the probability of appearance of an event he is 
obligated to claim that “on his new successive position 1 snκ = +  the event of 
type e has probability 1/1, an information which (from the above supposition) 
comes exclusively from the selected source sn ”. The reason, as we said in 2.2.4 
of Chapter 2, is that the event e occurred only one time into the step [ ],1s sn n+  
with length ( )1 1s sn n+ − =  in regards (as we said many times) exclusively just 
the position sn . Obviously, the (κ + i) in not necessary to be identified every 
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time with some of the values of n, because, contrary to (κ + i), i N∈  where we 
consider that for 1,2,3,i =   will take successive values of natural numbers, 
the natural number n concerns only the positions where the events {e, o} already 
have been occurred, and as we said this n not obligatory to has successive values. 
Continuing, the messenger as he is passing over the next distinct position 

2 snκ = +  will claim that “in his now new position relative to e, (which again 
due exclusively to the executed event e on sn ) will have probability of appear-
ance equal to 1/2, because the e appeared again 1 time (on the source e sn ) but 
now into this new interval [ ], 2s sn n+  with length ( )2 2s sn n+ − = ”, and so 
on. So, reaching finally on the final position of the receiver Ob(m) the messenger 
[of the event ( ),sn e ] will claim that “the probability of appearance of e, on this 
special position m of the observer and which due only to the event e of the 
source the sn  obviously will be: ( ), 1 sm e j m nρ = − , because the event e that 
due to what happened exclusively on the position sn  occurred again one time 
but finally now into the special length sm n− ”. Assuming that every event nτ  
can depend exclusively from the corresponding position of its occurrence, that is 
to say the n, this calculation will take into consideration only the positions n, as 
we already have started to do. Therefore, summing all these probabilities com-
ponents ( ) ( ), ,m e j m e jp ρ=  for all the positions ( )n e j=  of events, where the e 
appeared, it follows that all the messengers together that equivalent with an ob-
server Ob(m), find the probability of e in the position m due to all of the posi-
tions ( )n e j= , if of course in addition this total result was also normalized. 
Similarly the observer Ob(m) locked on position m will use again his virtual 
messengers for the values ( )n o i=  that concern the other event o. So the AD 
is:  

( ) ( ), 1m e j m e jρ = −                      (21) 

And similarly for the other event o we get:  

( ) ( ), 1m o i m o iρ = −                       (22) 

Considering finally also the normalization, as we referred in Chapter 2, and 
then summing for all the values of j, i we end up easily in the relations:  

( )
( )

( )
( )1 1

1 1 1 1,
e oN N

e o
j i

p m p m
D Dm e j m o i= =

= =
− −∑ ∑         (23) 

( ) ( )1 1

1 1e oN N

j i
D

m e j m o i= =

= +
− −∑ ∑  

As we said in Chapter 2 the D = Ω  is defined for the normalization and as 
we said the natural numbers ( ) ( ),e i o j  correspond to the events e, o with seri-
al numbers j, i in [ ],α β . We define the two quantities: 

( )
( )

( )
( )1 1

1 1,
e oN N

e o
j i

V m V m
m e j m o i= =

= =
− −∑ ∑             (24) 

These two quantities we have named in Chapter 2 at the end of 2.3.2 (and we 
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used in Application 2.3.3) respectively “Potential of Events e, o” onto the posi-
tion m. 

If the relation (23) gives on a random position of the straight line x equal 
probabilities, then the distribution of events e, o by definition will be Heads- 
Tails (H-T). The general definition of the probability of the relation (23) for a 
random position is a representative property of the distribution and according to 
our definitions (in part 6.3 below in Chapter 6) this property will belong to the 
CI of the set of this distribution. In the case where is valid that  
( ) ( ) ( ) 0e oV m V m V m= − =  we see that the «informational trace on the position 

m, (which we defined to stem from the projection of the total information of 
the distribution on the position m) will be “H-T type”, that is, we will have the 
“equality of the two probabilities at position m”. That is the equating of the 
two probabilities at some position m that refer at Main Proposition in part 
2.3.2 of Chapter 2. We work here by definition (as in the classical theory of 
statistical variables of probability with the known probability density in these 
Euclidean spaces) with Euclidean spaces [4] [5]. The reason is that the axis 
Ax(N) has in its every position as basis of vectors only a constant vector with 
measure 1 and constant direction. [We point out that if we defined the 
length of the self-area of m, e(j) as ( ), 2m e jL , instead of previous ( ),m e jL , i.e. 
considering that the “information source” e(j) “acts” from the middle of area of 
its two arguments m, e(j), then, because the division will be made by a new D’ of 
normalization we see that the relation (23) will remain the same, i.e. un-
changed]. 

(*) In the next chapter 5 we will use an observer at a position Nµ ∈  that 
corresponds to the position m of Ob(m) using normally all the above. 

5. The Proof of H-T Distribution of e, o on SFNs 

We will prove here the proposition (1) referred in Introduction which (as we 
said there) it is the sufficient proposition for the validity of RH. We will start 
here reminding the “Main Proposition” in the part 2.3.2 and the “Main Proof” in 
part 2.2.4 of chapter 2 and as well the main relations (23), (24) in Chapter 4, 
pointing out that the position m of the observer here can be the position of any 
natural number μ (as we will see at the end of this Chapter it can be also and the 
position of a SFN) on its axis Ax(M) in an effort to we prove (according to our 
method here) that the distribution of all infinite SFNs appears on Ob(m) as 
“H-T type” (as we called it in 2.3.1) from every μ = m in N. I.e. the two probabil-
ities of e, o are equal on the position Nµ ∈ . So, the distribution of e, o by defi-
nition will be H-T type on the total Ax(N). 

From the theory of Riemann’s ζ function we know the proven relation: 

( )
1

0
ν

µ ν
ν

∞

=

=∑                           (25) 

where μ(ν) is the known Möbius function [1]: 
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( ) ( ) ( ) ( )1 1, 2 1, 3 1, 4 0,µ µ µ µ= = − = − =   

and where Nν ∈  
Here ignoring the non SFN (natural numbers), we will modify the symbols 

and from now on will agree to represent the above relation as: 

1 1
1ν ν

ν νν ν

λ λ
µ µ

∞ ∞

= =

′ ′′
+ = −

′ ′′∑ ∑                        (26) 

where νµ′  will represent the numerical values of successive terms of the se-
quence SFN(e): 1 26, 10,µ µ′ ′= =   with *1, Nνλ ν′ = + ∀ ∈  and where νµ′′  are 
the successive terms of the sequence SFN(o): 1 22, 3,µ µ′′ ′′= =   with  

*1, Nνλ ν′′ = − ∀ ∈ .  
However according to the definitions in Chapter 4 [relation (24)] we can ob-

serve that if we include in the relation (26) the pseudo-SFM 0 01, 1µ λ′ ′= = + , 
then this new relation that would come up, would tell us specifically that the 
sum of the potentials of events 1, 1e o= + = −  on the position 0mµ = =  of 
the axis Ax(SFN) is zero: ( ) ( )* *0 0 0e oV V+ = . 

The total information that the observer gathers on the zero, from the distribu-
tion of all the events e, o over the events νµ  of Ax(SFN), shows that on  

0mµ = =  the two events e, o are equally probable, that is: 
( ) ( ) ( ) ( )* * *0 0 0 0 1 2e e e op V V V = + =  , and ( )0 1 2op = . That is to say, the 

point 0 is a “position H-T type”. The observer in position 0µ =  (as well as in 
any other position μ) is indifferent to the way that the positions νµ  were se-
lected on the Ax (N). Because this way of selection does not enter itself in the 
calculation of ( ) ( )0 , 0e op p , but only the positions νµ , thing that comes here 
from the application of chapter 4 in (25) (26). What enters directly in these 
calculations is the information of distribution of e, o of Ax(N) as to the posi-
tion μ, so that based on the typical definition of the probability the  

( ) ( )0 , 0e op p  to be calculated. While the way of selection of νµ  is based ex-
clusively on the fact that the events e, o are defined only on the positions νµ . In 
other words this way of calculation is indifferent to the method of selection of 
events because exactly this way can calculate exactly the requested probabili-
ties and for any other event we define on whatever other subset A of the set 
N. For the two absolute potentials ( ) ( )* *,0 0e oV V  (which are formed by the 
sum of all the corresponding probability components) we observe that on the 
basis of (25), (26) each one of them takes infinite value. However, their difference 
is exactly zero. That is to say the infinite number of counts of the observer even-
tually gives equal probabilities. As the classic theory of probabilities demands, to 
be absolutely accurate the values of probabilities when the counts (tests) are infi-
nite. This is not a coincidence. This is an amazing phenomenon of numbers. 

Continuing, we are interested to examine if, due to the total information that 
collects the observer from the total distribution { }( )1Distr , ,SFe o N f  on every 
position μ of the axis Ax(Ν), it comes that the position μ is “H-T type”. In other 
words we interested of the relation (1) in Introduction. That is to say if the e, o 
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on every position Nµ ∈  are equally probable. If the answer to this question is 
positive then according to the analysis that we made in the Chapter 4 we will 
have: 

{ }( )1Type Distr , ,SFe o N f H T  = −  , that is to say then we will have proven 
the requested for the validity of the Riemann Hypothesis, because as we said this 
is the relation (1). For this, we will try to compare the potentials of e, o on a 
whichever position of natural number μ (initially except of SFNs and next at the 
end of this Chapter we will examine the case where µ ∈ SFNs ), due to the total 
information which is accumulated on this position μ from the total distribution 
of events { },e oτ ∈  over all the infinite νµ  of Ax(Ν):  

( ) ( )
1 1

,e oV Vν ν

ν νν ν

λ λ
µ µ

µ µ µ µ

∞ ∞

= =

′ ′′
= =

′ ′′− −∑ ∑  

Obviously the μ in the sums above is selected each time so that the denomi-
nators wouldn’t be zero. Finally for these potentials and their related probabili-
ties etc, we will agree to state with ,ν νµ µ′ ′′  respectively the positions of e, o, SFN 
that are located on the left of the position μ on the Ax(Ν), that is to say 

,ν νµ µ µ µ′ ′′< < . And alike, with ,ν νµ µ′ ′′  respectively the positions of e, o, SFN 
that are located right of the position μ, that is to say ,ν νµ µ µ µ′ ′′> > . Based on 
these we will have for the uses of (26) that ( )ν νµ µ µ µ′ ′− = − − ,  

( )ν νµ µ µ µ′′ ′′− = − −  and similarly also ( )ν νµ µ µ µ′ ′− = + − ,  

( )ν νµ µ µ µ′′ ′′− = + − .  
That is, we adopt the use of single and double accents as well as single and 

double hyphens over the symbols to have reference correspondingly in functions 
of e, o and of the SFN that are left, right of the position μ, respectively. With the 
help of the Taylor expansion we can easily get these four results, noting however 
that from these are valid (at first glance) those for which the series will converge, 
that is if 1x < : 

2 3 41 1
1

x x x x
x
= + + + + +

−
                     (27) 

For the rest of the cases there will be an error, but as we will see this error will 
be finite amount for a finite position of μ and so this finite amount of error can 
be ignored in relation to other infinite quantities. Let firstly consider that μ be a 
finite position of a natural number (including also the natural 0µ = ) on the 
axis of natural numbers Ax(N). We will also set 1νλ λ′ ′= = , 1νλ λ′′ ′′= = − , 

*Nν∀ ∈ . 
Using the (27) with 1yν νµ µ′ ′= <  for the events e in the positions νµ′ , 

which are on the right of μ, we will have: 

( )

( )

1
0

1
0 0

1 1 1
1

1

eR eR eR

eR eR

s

N N N s

s s

s
N s s N

y
y

ν
ν

ν ν νν ν νν

ν νν ν ν

λ
λ λ λ

µ µµ µ

µ µλ λ
µ µ µ

∞ ∞ ∞ ∞

= = = =

∞ ∞ ∞ ∞

+
= = = =

′
′ ′ ′ ′ ′Σ = = =

′ ′ ′′ −−

 
′ ′= = ′ ′ ′ 

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
      (28) 
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The relation of 1λ′′ ′′Σ  with double accents for the events of type o, which are 
again on the right of μ, will be, relatively to the rest, the same, by putting oRN  
instead of eRN  and λ′′  instead of λ′ . The natural numbers eRN , oRN  are 
e, o SFN which are respectively the two immediate larger numbers than μ. 
However if we try to take also and the another piece 0′Σ  in the first equation 
(28) that refers on the left of μ, then, because for the 0′Σ  is valid that  

1yν νµ µ′ ′= > , it follows that now we cannot expand the 0′Σ  according to (27), 
but symbolizing with eLN  the immediate next smaller e-SFN of μ, we can 
simply write for the 0′Σ  its function: 

0
1 1

1 1
1

eL eLN N

y

ν ν
ν

ν νν ν ν

λ
λ λ

µ µ µ

= =

= =

′ −′ ′ ′Σ = =
′ ′ ′− −∑ ∑                 (29) 

However if, by bypassing this restriction and we expand the series of the 
second member in the last equality of (28) [of the 5 equalities of (28)] then we 
will introduce an error. That is to say instead of 0λ′ ′Σ  we will expand the (28) 
by the respective wrong expression: 

( )2 1
0 1

eLN s

s
s

ν

ν ν

µλ λ
µ

=∞

+
= =

′ ′ ′Σ =
′

∑ ∑                      (30) 

Obviously, if there was not such error the 0′Σ  and 2′Σ  would be equal. The 
important thing here is, that because the position μ is a finite natural number, it 
follows that the two results 0 2,′ ′Σ Σ  of the relations (29), (30) respectively will 
also be finite numbers, and as finite they will introduce simply a finite error that 
derives from the relations (29), (30). Also, obviously it is:  

1 2 0 1 2 0, , , , , 0′ ′ ′ ′′ ′′ ′′Σ Σ Σ Σ Σ Σ > . Therefore for the potentials in the position μ, which 
correlate with the first two terms of the first part of (26), we will have: 

( ) ( ) ( ) ( )1 0 1 2 2 0eV µ λ λ λ′ ′ ′ ′ ′ ′ ′ ′ ′= Σ + Σ = Σ + Σ − Σ −Σ , 

and 

( ) ( ) ( ) ( )1 0 1 2 2 0oV µ λ λ λ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′= Σ + Σ = Σ + Σ − Σ −Σ .  

As we previously said, due to the finite position of μ, it follows that the two 
quantities 2 0 2 0,′ ′ ′′ ′′Σ −Σ Σ −Σ  will be finite. Therefore finally, either the other two 
quantities 1 2′ ′ ′Σ = Σ + Σ , 1 2′′ ′′ ′′Σ = Σ + Σ  are infinite or they are finite [as we are 
going to see by proving bellow the relation (35) they will be infinite], it follows 
that the two absolute potentials will be written: 

( )e eV Cµ ′= Σ − , ( )o oV Cµ ′′= Σ − . 

where ,e oC C  are two finite quantities that are stem from the finite terms  

2 0 2 0,′ ′ ′′ ′′Σ −Σ Σ −Σ . Therefore the absolute potentials, which as we said accumulate 
the exact statistical information from the distinct actions, without exception, of 
all of the events e, o of the infinite distribution of SFN on the position μ, will be 
written: 

( )
( ) 1

0 1

s

e e s
s

V C
ν ν

µµ
µ

∞ ∞

+
= =

= − +
′

∑∑                   (31) 
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( )
( ) 1

0 1

s

o o s
s

V C
ν ν

µµ
µ

∞ ∞

+
= =

= − +
′′

∑∑                   (32) 

In the relations (31), (32) we nullified the hyphens over the ,ν νµ µ′ ′′ , because 
now we extended the interval in all of the range of the axis of the natural num-
bers: [ )0,+∞ . Next, if we observe the two absolute potentials of events of the 
relations (31), (32), we will find out that each one is consisted from one “prin-
cipal part” of zero order power of μ, that is, with exponent s = 0 and also a series 
of sequential terms for 1, 2,s s= =   that correlate with the function ( )sζ  of 
Riemann. That is to say: 

( ) ( )
2 3

2

1 1 1

1 1 1
e eA V C

ν ν νν ν ν

µ µ µ
µ µ µ

∞ ∞ ∞

= = =

   
∞ = = − + + + +   ′ ′ ′   

∑ ∑ ∑   

( ) ( )
2 3

2

1 1 1

1 1 1
o oB V C

ν ν νν ν ν

µ µ µ
µ µ µ

∞ ∞ ∞

= = =

   
∞ = = − + + + +   ′′ ′′ ′′   

∑ ∑ ∑   

And by symbolizing in abbreviation the terms of the sums above with  
( ) ( )ss M Nτµ  and replacing the ∞ (symbolically here) with N →∞  we will get: 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 22
e e e eA N C M N M N M Nµ µ= − + + + +         (33) 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 22
o o o oB N C M N M N M Nµ µ= − + + + +         (34) 

The key question now is if the absolute potentials of (33), (34) tend to become 
equal when N →∞ . Continuing let’s first remember the known property: 

( ) ( )( ) ( )( )
( ) ( )

( ) ( ) ( )

1 2 1

1 1

2 1

1 1

2

1 1 1

1 1

1 2 6

q q q

q q

ν ν νν ν

ν νν ν

ζ ζ ε π

− − −∞ ∞

= =

− −∞ ∞

= =

 + = − −  
 = − − 

=

 
 

 


= ∞ + = ∞



∏ ∏

∏ ∏  

From this result and the relation (26) we will now prove that the “principal 
parts” (zero order as to μ) will satisfy the relations: 

( ) ( ) ( ) ( )0 0lim limN e N oM N M N→∞ →∞= = ∞              (35) 

For the proof of (35) we observe that firstly the two terms 0χ > , 0ψ <  in 
the first part of (26) have 1νλ′ = + , 1νλ′′ = − , *Nν∀ ∈  and they define two 
new positive terms 0α χ= > , 0β ψ= − >  which correspond to the first two 
parts of the relation (35), and obviously equivalently in (26) the terms α, β are 
subtracted. If however, instead of subtracting them we add them, then, based on 
(25), (26) and the analysis that was just previously made they will give the result:  

( ) ( ) ( )1

1 1 1 1 2 1qνν
ζ ζ−∞

=
 + − = −   ∏ , that we saw that it is infinite. The proof, 

that the first term of this last relation coincides with the α β+ , is obtained im-

mediately by developing its product ( ) 1

1 1 qνν

−∞

=
 
 +∏ , where so all the  

numerical values νµ  of SFNs together with the unit “1” are produced. On the 
other hand however, these two terms α, β are differing by “−1”. Therefore be-
cause they are positive and have infinite sum and finite difference “−1” they will 
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tend to become two equal and infinitely large positive numbers as the multitude 
N of terms, as well of this series α as also of the β, tends to infinity. 

A more detailed proof is the following: Writing the terms α, β as functions of 
N based on the previous result ( ) ( )1 2 1ζ ζ −    for the sum and also the (26) 
for the difference, we will have for N →∞  respectively  
( ) ( ) ( )I N N Nα β+= →∞  and ( ) ( ) ( ) 1J N N Nα β− → −= . Therefore 

0ε∀ >  whatever large, there will be two natural numbers 01 02,ν ν  so that: 
( ) ( ) 011 2 1 ,I N ε ε ν ν> + + ∀ >  and simultaneously  

( ) ( ) ( ) 021 1 1 1 ,J Nε ε ν ν− − < < − + ∀ > . These two relations however will be va-
lid simultaneously ( )0 01 02max ,ν ν ν ν∀ > = . Therefore from these three above 
inequalities of ( ) ( ),I N J N  with a simple addition by members of the two in-
equalities with the same direction, we easily we get: ( )Nα ε> , 0ν ν∀ > . Re-
peating this procedure again for the ( )I N →∞  but electing  
( ) ( ) 011 2 1 ,I N ε ε ν ν> − + + ∀ >  and also  
( ) ( ) ( ) 021 1 1 1 ,J Nε ε ν ν+ > − > + − ∀ >  for the equivalent relation  
( ) 1J N− → , we get: ( )Nβ ε> , 0ν ν∀ > . Therefore according to the defini-

tions of limits we will have ( )α ∞ = ∞ , ( )β ∞ = ∞ . However we said before, 
that for N →∞  we get ( ) ( ) 1N Nα β− → − , so finally for N →∞ :  

( ) ( ) ( ) ( )1N N N Nα β α α− → −    and therefore because we have just shown 
that ( )α ∞ = ∞ , we result to the relation: ( ) ( )1 0N Nβ α− →   . That is to say 
( ) ( )α β∞ = ∞ .  
Now based on the definitions of limits, the relation ( ) ( )α β∞ = ∞ = ∞ , that 

we just showed, states that with ε whatever small positive real number there will 
always be three natural numbers 1 2 3, ,ν ν ν  so that for 1 2 3, ,N N Nν ν ν> > >  
will stand respectively:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 01 , 1 , 1e o o eM N M N M N M Nε ε ε> > − <  

And so for ( )0 1 2 3max , ,ν ν ν ν=  these three relations will be valid simulta-
neously. This complex proposition means that as the N tends to infinity the per-
centage difference (and this is important) of the two “principal parts”  

( ) ( ) ( ) ( )0 0,e oM N M N  of the relation (35) will become more and more smaller, 
while simultaneously these two “principal parts” will grow infinitely. Based on 
all this we want to check if the same applies also for the absolute potentials 

( ) ( ),e oV Vµ µ .  
What is entered to the calculation of probabilities on the finite position μ, for 

check if this position is of “H-T type”, is (as we said in Chapter 4) the limit 
( ) ( )limN o eV Vµ µ→∞    . So based on (33), (34), by symbolizing the absolute 

potentials with ( ) ( )eA N V µ=  and with ( ) ( )oB N V µ=  we will try for  

N →∞  to check if is valid the next:   

( ) ( ) 1B N A N →                       (36) 

For checking the (36) it is enough to prove that for N →∞  it is valid: 

( )
( )

1o

e

V
V

µ

µ
→  or 

( ) ( ) ( )
( ) ( ) ( )

0

0

1
1

o e

e e

V M N

V M N

µ

µ
→  
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The analytical expression 1/1 above and not simply 1 has the obvious meaning 
here that the numerator and denominator, each separately, must be 1. But be-
cause we have shown before that for N →∞  is ( ) ( ) ( ) ( )0 0 1e eM N M N →  and 

( ) ( )0
eM N →∞  and on the other hand we said that eC− , oC−  are two finite 

numbers, we conclude that the requested sufficient condition of (36) is evolving  

into the relation: 
( ) ( )
( ) ( )

0

0

1 1 1
1 11

o e

e e

M N

M N

 + Σ +  →
+ + Σ 

 where here the analytical expres-

sion ( ) ( )1 1 1 1+ +  and not simply 1 has the obvious meaning as we explain just 

before, and where additionally we symbolize ( ) ( ) ( ) ( )1 22
o o oM N M Nµ µΣ = + +  

and ( ) ( ) ( ) ( )1 22
e e eM N M Nµ µΣ = + + , using also (33), (34). Therefore, the 

equivalent sufficient condition for (36) ends up being the relation: 

( ) ( )0
0o e

eM N
Σ −Σ

→  

or in more detail the relation: 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 2 22

0
0

o e o e

e

M N M N M N M N

M N

µ µ   − + − +    →


       (37) 

The “→” becomes “=”, when N = ∞ , and this will be defined through the 
known method by electing ε > 0 that we used previously. But there is a known 
property of SFNs, that comes directly from the expansion 

( ) ( )11 1 ss qνν
ζ −∞

=
 
 = −∏ : 

( ) ( ) ( ) ( ) ( )1 1 1 , 1,2,3,4,s s
o eM M s sζ∞ − ∞ = − + =            (38) 

So by setting: ( ) ( ) ( ) ( ) ( ) ( )
11
, 1

s s
s o eN M N M N

Z N s
ε

 
= − = − 

+  
, for N →∞  

the (37) will be equivalent to the relation: 

( ) ( ) ( )
( )0

1
0

s

s
s e

G N N
M N

µ ε
∞

=

= →∑                   (39) 

The function G(N) is expanding into infinite terms of the (39). Here is the 
crucial point. In order to be born the limit G(N) the index N must have run to 
infinity for all, without exception, the terms of G(N). But based on the properties 
of the function ( )sζ  and of the (38) the sequence ( )sε ∞ , as to s, will be 
bounded: ( )1 0sε< ∞ <  and furthermore will have as a limit the zero when 
s →∞ . So the ( ) ( )0

eM N  will be complete as to N in the sense that N arrived in 
infinity before the index s began to run. We could justify this in more analytical 
as follows: “To run the index s, the relations that the index s describes must have 
their required completed structure. And this specific completed structure is 
achieved with the necessary precondition that all the SFNs of the axis Ax(N) 
participate in this structure. That is to say, the structure of these relations is 
complete when the other index N encloses all his infinite values in these rela-
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tions of reference of indexs”. It is about a deterministic, therefore logical, series 
of running of indexes. Therefore in the next calculations we must take into con-
sideration the observation that the (39) is completed by running first the index 
N →∞  and then by running the index s →∞ . That is to say we consider 

Ns∀ ∈ , as it is obviously needed, that ( ) ( ) ( ) ( ) { }, ,s sM N M e oτ τ τ→ ∞ ∈ , and 
likewise for the same reason with N →∞  will be  

( ) ( )( ) ( )( ) ( )1 1 , 1 1 1 1s sN Z N s sε ζ ε   = − + → − + = ∞    . And because, based 

on the relation (38), in the (39) will be valid that:  

( ) ( )lim , 1 1N Z N s sζ→∞ + = +   .  

Let’s examine first by supervising the (39). From the properties of the function 
( )sζ  we conclude that the factors ( )sε ∞  are positive numbers smaller to 1, 

which all tend to the 0 as the s →∞ . They are factors ( )sε ∞  which are 
bounded from 1 and they are multiplied by the corresponding factors  

( ) ( )0s
eMµ ∞  to form like this the expansion of (39). But the factors  
( ) ( )0s
eMµ ∞  are all zero for every finite s. The reason is that the N first has 

completed already its course to infinity in the denominator ( ) ( )0
eM N  (as we 

explain before) and then the index s runs to infinity. Therefore as the index 
s →∞  the finite terms of the sequence sµ  as they simultaneously are devel-
oping and tending to an infinite quantity, they are divided over each position of 
their development (where they have finite value) by the already infinite quantity

( ) ( )s
eM ∞ , because this last quantity is already completed as to N, while as well 

simultaneously they are multiplied by the positive factors ( )sε ∞ , which have 
been also completed as to N and therefore they will have been bounded from 1. 
So all the terms (of every finite position) of the expansion of the limit of the rela-
tion (39) will be of the form ( ) ( )s

sµ ε→∞ ∞ × ∞ , with ( )0 1sε< ∞ <  and so 
therefore, like this, finally all these terms of the limit of the relation (39) will be 
equal to zero. 

We checked the terms of the first part of (39) for finite values of s. Lets now 
see what happens in limit L of these terms of the relation (39) as the s will tend 
to infinity. We will examine this firstly supervisory. So we observe that 

( ) ( )0 1s
eMµ →∞ ∞ ≤  , because in this the denominator, due to the “action of all 

the SFNs together”, will be constantly larger of the numerator sµ →∞ . That is, 
the numerator run to reach the result of the denominator but without to can the 
numerator overcome this result, because by definition of the limits nothing is 
greater from this infinite result. Also, as we said, as well will be ( ) 0sε →∞ ∞ → . 
Therefore the action of the total distribution of all the SFNs will give us L = 0. 
We worked here with the quotients because these are exactly the ones we will 
need for the calculation of probabilities below. Lets now see the same limit in 
detail based on the definition of limits: 

α) Because we have shown that ( ) ( )0limN eM N→∞ = ∞  we conclude that we 

have for every 0su µ= > , and therefore also ( ) ( )ln lns u µ∀ = , that there is 

sN N∈ : ( ) ( )0 s
eM N µ> , sN N∀ > . β) But because we said the ( )sε ∞  is a 
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null sequence of the index s we conclude that 1 , Nξ ν ν∀ = ∈  there will be 
indexes ( )0 0,s s N Nν νν= ∈ , where ( )s ν  is a function of ν, so that:  

( ) 0 0, ,s N s s N Nν νε ξ< ∀ > ∀ > . We define Nν∀ ∈  the indexes:  

( )( )*
0 0max , sN N Nν ν ν= , ( )*

0s sν ν= . From all the above we see that the u in (α) is 

an increasing function of the index s, and on the other hand in (β) we observe 
that the index ( )0s s sν ν> =  is an increasing function of ν. Therefore the u will 
be an increasing function of the index ν also. Based on all this, and setting finally 

( ) ( ) ( ) ( )0, s
s eD N s N M Nµ ε =   , from the two last cases (α) και (β) we conclude 

that ( ), 1D N s ξ ν< = , *
0N N ν∀ >  and *

0s s ν∀ >  and Nν∀ ∈ , with ν any 

large natural number. Taking in to account that ( ) ( ) ( ) ( )0 0lime N eM M N→∞∞ = , 

( ) ( )lims N s Nε ε→∞∞ =  we conclude that:  

( ) ( )
( ) ( ) ( )

( )0 0
lim lim lim 0

s s

s ss N s
e e

N
M N M

µ µε ε
→∞ →∞ →∞

 
= ∞ = 

∞  
          (40) 

We proved in that way that all the terms of the first part of (39) till infinity 
will be zero. We conclude that the relation (39) is valid, and because it is equiva-
lent N∀ →∞  to the relation (37) which is a sufficient condition of the validity 
of the relation (36), we reach to the conclusion that the (36) is valid.  

The fact that first the index N runs to infinity, and just then the s runs to in-
finity expresses here the introduction of the total distribution of SFNs in the 
logical propositions which we operate here, because just all these propositions 
are consequences of the distribution of all SFNs together.  

After all these, we can show in detail that the series in the first part of (39) be-
comes null for Nν = →∞ . Indeed, for this to happen all it takes is to show that: 

0ε∀ >  there is a 0s N∈  so that because the ν ran all the values till infinity 
this proposition is true: 0k s∀ >  there can be found always an index *

0 Nν ∈ , 
so that 0ν ν∀ >  is valid:  

( ) ( )
( )0

1

1 s k
s

s
seM
µ ε ν ε

ν

=

=

<∑                      (41) 

The fact that the index ν ran all the values until infinity means that in the 
formation of following propositions will contribute all the distribution from the 

SFNs. The proof for (41) is as follows: “The sequence ( ) ( )01 ex Mν ν=  we said 

that is zero, therefore 0E∀ >  will exist *
0n N∈ : x Eν < , 0nν∀ > . Also, the 

sequences ( )sε ν  have as limits ( )1 1 1sL sζ= − +    which we already said 

that they are all bounded from 1. Therefore by selecting a sξ : 1 0s sL ξ> + > , 

will exist the corresponding *
sn N∈  so that: ( ) 1s s sLε ν ξ≤ + ≤ , snν∀ > . 

Therefore ( )1 2max , , , kn n n nν∀ > =   will be valid:  

( ) ( ) ( )1 1 1
s k s k s ks s s

s ss s s F kµ ε ν µ ε ν µ= = =

= = =
≤ ≤ =∑ ∑ ∑ . 

Continuing, setting ( )0 0max ,n nν =  we have that 0ε∀ >  and 00k s∀ > =  
there will be ( )E F kε=  so that: “The inequality (41), which comes from the 
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multiplication by members of the two previously mentioned inequalities, will be 
true ( )0 ,f kν ν ε∀ > = ”. The F(k) is a function of the index k, because based on 
the previous the F(k) is defined by the running k. While 0ν  is a function of k, ε, 
because 0n  is a function of Ε and therefore also of k, ε, due to the definition 

( )E F kε= , and because the n is a function of k (since is a function of the limit 

kL  of sL ) and of sξ  selected to be smaller than 1 sL− , s < k. We conclude 
that 0ε∀ >  any small real number and simultaneously also 0k∀ > , any large 
natural number independent of ε, there will be the index 0 0s =  as well as the 
index ( )0 ,f kν ε=  so that the relation (41) to be valid”.  

Based on what we mentioned for (39), (41) and the properties of the limits of 
the series ( ) ( ) ( ) ( )0 0,o eM N M N  that we showed before, in total we will have: 

0k∀ > , that defines a random front of sµ  from any multitude of terms for 
1,2,3, ,s k=  , and 0ε∀ > , any small, there will be three natural numbers 

( )1 2 3, , ,N N N f k ε= , where ( ),f k ε  function of ,k ε , so that 1N N∀ > ,  

2N N∀ > , 3N N∀ >  to be valid respectively the relations:  

( )
( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )

0 0
10 0

max ,
, 1 ,

s
s ke o s

o e s
e e

C C N
M N M N

M N M N
µ ε

ε ε ε=

=

 
< − < < 

  
∑  

Therefore 0k∀ >  there will be also a ( )0 1 2 3max , ,N N N N=  for which there 
will be valid simultaneously these last three relations 0N N∀ > . This states di-
rectly that the relation (39) not only will be verified for whatever large multitude 
k of its terms, and also with any desired accuracy, but will simultaneously be suf-
ficient condition of the relation (36). Therefore the relation (39) really is true for 
the running of the indexes N →∞ , s →∞ . We also saw before, in the rela-
tion (40), that all the terms of the series in the relation (39) are null for k →∞ , 
thing compatible with the convergence of this series. 

The previous cumulative formulation using 1 2 3, ,N N N  generally as func-
tions of ε, k, is valid obviously also for every logical connection of implication 
among (36), (37), (38), (39), formulated as relations with arbitrarily large N. Be-
cause the indexes 1 2 3, ,N N N  as well as the ε, k refer always to arbitrarily small 
or large numerical quantities, but based on the standard logical properties of in-
finitesimal calculus will be referred always to finite quantities. Therefore the cru-
cial percent differences of these two absolute potentials ( ) ( ),A N B N  will be 
null finally for N →∞ , exactly as we agreed to state through the relation (36). 
This numerically can be expressed as: “Any multitude of terms we select for 

1,2, ,s k=   and whatever small percent difference Δx of ( ) ( ),A N B N  we 
select as a limit of their ‘equation’, we can find always a N0 beyond which all 
these selections will be satisfied from the relation (36), formulated of course by 
functions of N (instead of ∞)”.  

Finally, due to the importance of this point, let’s study the validity of the rela-
tion (36) also from another point of view. Let be ( ) ( ) ( )0

s eMνω ε ν ν=  the se-
quence of positive terms. Because as we said ( )sε ν  is bounded from 0, 1 and 

( ) ( )0
eM ν  is becoming infinite for ν →∞ , we conclude that νω  is null se-
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quence. From the two previous levels of analysis and replacing in the absolute 
potentials of events of (33), (34) the N with ν, easily we find that is valid the 
next: 

( ) ( )
( ) ( )0

1
lim lim lim

s k
o e s

k se

V V

M νν ν

µ µ
µ ω

ν

=

→∞ →∞ →∞ =

−  
=  

 
∑                (42) 

Because νω  is null and the μ is finite, it follows that *k N∀ ∈  and 1ε∀ < , 
0ε > , there will be every time also a corresponding *

k Nν ∈ , so that is valid 
that: [ ]1 1k

νµ ω ε< < , kν ν∀ > . Therefore, *
k Nν ν∀ > ∈  we will have:  

( ) ( )
( )

( )

11

1 1
1

1 1 1

1
1

1

k

k
s k s k s ks ss ks

s s s k

ν

ν ν ν

ν

µ ω
µ ω µ ω µ ω

µ ω

+

= = =

= = =

  −     = ≤ = −   
−

∑ ∑ ∑    (43) 

The relation (43) tells us that the first part of (42) is also zero, because the last 
part of (43) for every value of k is a null sequence of ν. From the relation (33) we 
observe that by Nν =  we have ( ) ( ) ( )0

e e e eV C Mµ ν= − + + Σ . And because e.g. 
for 6µ >  is 1 6 1µ µ µ′ = > , we will have in (33) that, at least for 6µ > , the 
sequences ( ) 1

1
ssµ µ +′  will be increasing and therefore the eΣ  will tend to the 

infinity. Therefore now, because the eC−  as we previously said is finite, and for 
ν →∞  the eΣ  tends to infinity, we come to the conclusion that at least for in-
finite positions of 6µ >  will be valid that: 0eCδ∀ + > , with δ any suitable 
positive number, there will be index 1 Nν ∈  so that:  

0e e e eC Cδ δΣ > + ⇒ Σ − > > , 1ν ν∀ > , while obviously simultaneously will be 

valid that ( ) ( )0
10,eM ν ν ν> ∀ > . From these last two inequalities we get now 

that ( ) ( ) ( ) ( ) ( )0 0
1,e e e e eV C M Mµ ν ν ν ν= Σ − + ≥ ∀ >  and regardless if the amount  

eC−  is a positive or negative number. Finally, from the last relation is produced 
the following inequality (44), defining however in it that the comparison of its 
two pure fractions (that is to say without the existence of two executers “lim” in 
front of them) to being happening ( )1max , εν ν ν∀ > . Because these two pure 
fractions are been led like this simultaneously in the definition of their limits in 
the next relation (44). That is to say it happens Nεν ν∀ > ∈  to be these two 
pure fractions smaller from any given (and whatever small) 0ε >  and fur-
thermore to be simultaneously valid for them, our last inequality:  

( ) ( ) ( )0
e eV Mµ ν≥ , 1ν ν∀ > . Thus finally, will be valid the next inequality:  

( ) ( )
( ) ( )

( ) ( )
( )0

lim limo e o e

ee

V V V V

VMν ν

µ µ µ µ

µν→∞ →∞

− −
≥             (44) 

Therefore, we conclude that because it is zero the first part of (42), it follows 
that also the second part of (44) will also be zero, thing that implies the (36). 
Moreover, and completely independent from all that, if the second part of (44) 
was not zero then, because the denominator in the second part of (44) is be-
coming infinite for ν →∞ , we would have come to the paradox conclusion that 
the limit ( ) ( )lim o eV Vν µ µ→∞  −   necessarily would not have been finite, but 
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it would have diverged in +∞ or in −∞, thing that is obviously invalid. Because 
in such case (based as well on our analysis in the below Chapter 7) we would 
soon have come to the illogical conclusions that it is either ( ) ( )0, 1e op pµ µ= =  
or ( ) ( )1, 0e op pµ µ= = , thing that implies that finally either e-SFNs or o-SFNs 
will have been disappeared from the axis Ax(N) and that finally into their infi-
nite multitude their analogy would not have been 50:50. This last observation 
leads us to the conclusion that necessarily the relation (36) is valid. At this point 
this last observation tells us that the ( ) ( )lim o eV Vν µ µ→∞ −  will be finite even 
though we subtract two infinite quantities, just as that is to say, happens with the 
limit ( ) ( ) ( ) ( )0 0lim 1e oM Mν ν ν→∞

 − = −   based on the relations (26), (35). The 
importance of this observation comes from the definition of the absolute poten-
tials of the Chapter 4, thing that took advantage the properties of the distribu-
tion of the numerical values of all of the SFNs on Ax(N) in a way that the typical 
definition of the probabilities e, o through the infinitation of the limit  

( )lim eVν µ→∞  forces every logically consistent result to lead us to an “H-T 
type” distribution of e, o. We concluded that the only case is the one that we 
showed before in another way, that is to say that the first part of (42) is zero due 
to the fact that the second part of the relation (42) became zero, thing that as we 
said implies that eventually through the (44) the relation (36) is valid. So now 
the requested probabilities at any finite position of a natural number μ, and 
based on the normalization that we refer in Chapter 4 and with the relation (36), 
finally we will have: 

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( )

lim

lim

1 1 2
1 1

e N

N

A N
p

A N B N

A N A N
A N A N B N A N

µ →∞

→∞

=
+

=
+      

= =
+

 

Similarly we find ( ) 1 2op µ = . Therefore the distribution, on every finite po-
sition Nµ ∈  του Ax(N) and due to the total information of e, o of all the SFNs 
of Ax(N), will be of “H-T type”. Therefore, the basic relation (1) of the Introduc-
tion, that we wanted to show, has been proven for all finite positions of μ.  

The question that now remains to be answered is if the movable finite position 
μ “H-T type” can be as well considered that defines also a position in infinity 
µ →∞ . If yes, then the previous proof covers all the cases. If not, we must check 
the case µ →∞  based on the sole definition that remains: νµ µ> , *Nν∀ ∈ . 
So now we will examine this last case. 

Based on this last definition of µ →∞ , the complex potential ( )V µ  at “in-
finitely distant” μ position from zero can be written: 

( ) ( ) ( )
1 1 1

1
1e oV V V

y
ν ν ν

ν ν νν ν ν

λ λ λ
µ µ µ

µ µ µ µ µ

∞ ∞ ∞

= = =

′ ′′
= + = + =

′ ′′− − −∑ ∑ ∑     (45) 

With 1νλ =  for the types e and 1νλ = −  for the types o of  
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2,3,5,6,νµ =  , with 1,2,3,4,ν =   and 1yν νµ µ= < , *Nν∀ ∈ . Making 
again Taylor expansion on the (45) from s = 0 until infinity, as before, easily we 
conclude in the relation:  

( )2
2 3

1 1 1 1

1 1 1 1
1 y

ν
ν ν ν ν ν

ν ν ν νν

λ
λ λ µ λ µ

µ µ µ µ

∞ ∞ ∞ ∞

= = = =

= + + +
−∑ ∑ ∑ ∑         (46) 

Putting again Ν instead of ∞ as before, we would want to check if the first part 
is infinite for N →∞ : 

( ) ( )1 2
2 3

1 1 1 1

1 1 1 1
1

N N N N

y

ν ν ν ν
ν

ν ν ν ν ν
ν ν ν νν

λ
λ λ µ λ µ

µ µ µ µ

= = = =

= = = =

= + + +
−∑ ∑ ∑ ∑     (47) 

So based on our assertion that the μ represents infinity, we assumed before 
that the μ will be larger than all the values νµ , that is to say it will be larger than 

νµ  *Nν∀ ∈ . In other words the μ will be a natural number larger than the 
front Nµ  of every interval ( ]1, Nµ  in every use of this interval. But, on the 
other hand, because 1νλ =  , for the relation (47) we conclude that *N N∀ ∈  
is valid:  

( ) ( ) ( )1 1
s s sN N

NNν ν
ν ν νν νλ µ µ µ= =

= =
< <∑ ∑              (48) 

According to the definition of μ before, the μ can be considered variable posi-
tion larger than every value νµ . Therefore by defining also the null sequence of 
positive terms ( ) 1 νξ ν µ= , on the basis of the previous definition of μ we can 
conclude that ( )1 0µ ξ= ∞ =  or equivalently:  

( ) *1 , Nµ ξ ν ν< ∀ ∈                      (49) 

That is to say just like before, the index ν of νµ  has completed for the 1/μ 
[through the sequence ( )ξ ν  of SFN] its path till infinity for every value of the 
index Ν of the relation (48). Putting 1 Nε µ= , then on the basis of the relations 
(48), (49) we conclude that 0s N∀ ∈ , which defines as before a front in the 
terms of (47), and 0s s∀ <  and *N N∀ ∈  that:  

( )( ) 1 1
1

1 s s
s ξ ε

µ
+ +

+ < Ν =  

Because the sequence ( )ξ ν  has all the terms 1 νµ  until infinity, which as 
we said, by definition, they have been ran by the indeterminate μ. Therefore thus 
due to the relations (48), (49), we will finally have:  

( ) ( )( )* 1
0 1

1

1

1, :
N ss s

s

s s
N

s s N N N N

N N N

ν

ν ν
ν

λ µ ε ξ
µ

ε ε ε µ

= −+
+

=

+ −

 
∀ < ∀ ∈ < 

 
= = =

∑        (50) 

The relation (50) implies that as N →∞  will stand that: [ ] 0NN µ → , and 

therefore we will have: ( ) ( )1
11 0sNs ν

ν ννµ λ µ=+
=
 
  →∑ , s N∀ ∈ . That is to say all  

the terms of the relation (47) will tend to zero as N →∞ , and therefore all of 
them will be exactly equal to zero. Therefore onto the µ = ∞  the potential of 
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events ( )V µ  of the relation (45) will be zero, thing that implies that onto the 
µ = ∞  the two probabilities for e, o will be equal between them, equal to 1/2 
each of them. The proof “that µ = ∞  is ‘H-T type’” is a result of the annihila-
tion of the terms of the relation (45) based on the sole definition that remained 
for the utmost case: µ = ∞ . But we must not ignore that the inequality (48) 
hides a very favorable inequality for this particular proof, because we ignored the 
decreasing of the sum of (48) from the total statistical which enforce decreasing 
in this sum from νλ  with the opposite signs.  

We have shown that whether the μ is finite or infinite (or zero) the informa-
tion of the observer from the distribution of all e, o projected on his position μ, 
will imply mathematically that the μ will always be a position of “H-T type”. In 
other words we have shown that the informational trace in every position of μ of 
Ax(N) is “H-T type”. Therefore the relation (1) which we wanted to show, have 
been proven. 

We can also note that because in the proof of the distribution “H-T type” did 
not use as a fact that the μ is a natural number, we conclude that this distribution 
will be “H-T type” also for every rational number μ. This last one though, is not 
necessary in our problem, where we work with the set Ν of natural numbers, but 
simply we observe that also the points (positions) of rational numbers of Ax(Ν) 
will be “H-T type”. Also, if we abstract from the axis Ax(N) some SFN with nu-
merical value κµ , then the following will happen: α) In the relation (39) the two 
limits of the sequences ( ) ( ) ( ) ( )0 0,e oM N M N  for N →∞  will be subjected to 
small and finite alterations and therefore these will continue to be infinite with 
zero percent difference. β) The limit of the square bracket for N →∞  will be 
subjected also just one finite alteration and therefore will continue to be finite 
and bounded but this time from some other bound that is defined from the value 

κµ . Therefore, the proving process leads again to the same conclusion, that the 
relation (36) will continue to be valid, as much for the position κµ µ=  as also 
for every other position of natural νµ µ≠ , { }Nν κ∈ − . This specific κµ µ=  
SFN obviously was previously evacuated by its SFN counterpart [as we said be-
fore and also in (2.2.3, b) of Chapter 2 etc.] so to calculate on it the potential of 
events and so the two probabilities of e, o (on this empty μ position of SFN) be-
cause of the action from all the other SFNs will be equal again each other. We 
considered here the Ax(N) as Euclidean axis, because the observer studies the 
distribution of e, o as a classical traveler of the axis Ax(N) where the events 
preexist over him along with the Euclidean properties of all its distances. There-
fore, the total information of the distribution projected on the position κµ  will 
make this position, as well as the positions μ of all non SFNS that we mentioned, 
to be of “H-T type”. We finally conclude that the observer which runs the Ax(N) 
(as sole and exclusive representative of the system of information) using the typ-
ical definition of probability in any positions μ, finds that the distribution will be 
of “H-T type”. Therefore the total distribution of SFNs will be H-T, and that we 
want to prove has been proved 
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6. Catholic Information 

6.1) In this Chapter we will give the main definitions concern the introduc-
tion of term “Catholic Information” that is useful firstly for the bellow Chapter 7 
of connection between RH and prime’s distribution. But this definition of Cath-
olic Information might be proven useful and in a variety of other mathematics 
themes. 

6.2) We will symbolize with ( ),N NF  every function :F N N→ . In the sym-
bols of all the maps that we define here, the N inside of the parenthesis of the 
symbols ( ),N NF  etc, states the maps of N or of subset of N. So the F selects a 
multitude of the elements of N that are its maps. E.g. the function of selection of 
Prime Numbers from N by using the “Sieve of Eratosthenes”. But, we can also 
define functions symbolized here as ( ): aF N S n→  type, where the set ( )aS n  
will be consisted by a multitude ( )K f n=  of subsets (where every one of them 
consists from elements ia A∈ ) that has a multitude of n elements. E.g. 2nK = . 
We will symbolize these functions as ( )( ),N S AF . The counting of the elements of 
A defines a counting of “magnitude” A from an observer, with a unit M equal 
to a multitude of ν elements of A, provided that the multitude of all of the 
elements of A was selected to be a multiple of ν. Last, we will symbolize with 

( ) ( )( ),S A S BF  every function that has the form ( ) ( ): a bF S n S k→ , that is to say, 
maps of subsets of A in subsets of B. Thus we can, generalizing these defini-
tions, to even more composite ones, to construct complex sets X which will 
generally be ( )xS n , using exclusively the N or generally the set Z of the Integer 
Numbers.  

For that reason, we will from now on consider that every element ma  of 
{ } { }1 2 : 1, 2,, ,, , n mA a a a ma n= = =  , will also be by itself a set which in final 

analysis will have as elements an arrangement multitude of n true logical propo-
sitions (special properties): ( )LP , 1,2,3, ,mi A m n=   which were born, and 
therefore proven, generally from the previous maps which were in-between till 
the last formation (that is to say definition) of A. Where 01, 2, ,i m=   is the 
index of numeration of a multitude 0m  of LP  for every element ma . The 

0m  generally will be different between different ma .  
The dash over the symbols LP, CLP of a logical proposition we will agree that 

states that it is a true logical proposition while LP, CLP without a dash over them 
will state that a logical proposition may be true or false. LP, CLP will be con-
structed as is well known with the logical links OR, NOT, AND, IF, THEN, etc 
that will connect final elements of sets to suitable maps. If the sub-elements of 
every element of the set ( )xS n  are ordered in relation to the properties of de-
finition, then we can define spaces (manifolds) of multiple dimensions, consi-
dering an order of κ sub-elements inside every element of ( )xS n  which will 
define κ multitude of coordinates. Every good definition must be based after all 
on to the general properties of set Z and its subsets and not on to perceptions of 
senses. We know that every measurable magnitude has as its fundamental defi-
nition that it can be divided and as well expanded to other parts with the same 
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properties, as happens with the sets we refer here. 
6.3) By saying below that the logical proposition LP2 derives “exclusively” 

from another logical proposition LP1, we will strictly mean a) that the truth of 
LP1 entail the truth of LP2 using Mathematical Logic and furthermore b) that 
the truth of LP2 is impossible to derive (be proven) by only using Mathematical 
Logic without using the truth of the proposition LP1.Therefore, for this defini-
tion the necessary precondition is that every one of the LP1, LP2 cannot be 
proven just by the use of Mathematical Logic but the system of LP1 and LP2 en-
closes new information that is not included in the rules of the Mathematical 
Logic itself.  

6.4) We said that every element ma  of a set A will be considered as a set of 
true propositions ( )LPmi A . The propositions that are common for all the ele-
ments of A will be named Catholic true Logical propositions  

( )CLP , 1,2,j A j =  . These logical propositions will be valid therefore for the 
random element of A, that will also be called catholically chosen element (CC) of 
A. The minimum necessary multitude from the common ( )CLPj A  that are 
needed for the definition of A, and so these will constitute a particular basic set 
( ) ( ){ }CLP : 1,2,3, ,qQ A A q N= =   and obviously these propositions will de-

rive from the general propositions that were used by an observer Ob for the 
progressive formation of A, e.g. the previous method of using some of the three 
types of maps F. The Q(A) will be named quantum of A. But every one element 

ma  of A will include in-between the ( )LPmi A  also true propositions which 
don’t belong to quantum of A and which differentiate its corresponding element 

ma  from all the other elements of A. E.g. two molecules of water belong in a set 
A of molecules of a drop of water that each one of them differentiates by the 
propositions of its unique position in space, because each one has a different 
position in space from all the other molecules of this drop. But all the mole-
cules have the same set Q(A) of the specific properties of water. We will also 
agree that the elements of Q(A) that define the A will be named properties of 
A. It is logical that for the observer Ob to gathering all the elements of A by 
using the set of definition of Q(A), but simultaneously he differentiates these 
elements also each from another (e.g. during their counting) based this time 
on their non common properties symbolized as ( )DLPmj A . Therefore, we con-
clude the obvious relationships: ( ) mQ A a∈  and ( )DLPmj mA a∈ . But any such 
set A, because it has measurable elements, it can also define measurable mag-
nitude via the map F: ( )aN S n→  that we previously mentioned, with unit of 
measurement equal to a multitude ν of its elements, selecting the n to be a 
multiple of the multitude ν and where ( )aS n  generally includes all the possi-
ble subsets of A with a multitude ν of different elements each one subset of them. 
The set of all of the true propositions ( )CLPj A , that derive (proven) exclusive-
ly from the properties (that is to say the true propositions) of quantum Q(A) 
will be named Catholic Information (CI) of A and will be symbolized with 
CI(A), [6] PDF pages 794, 797, 815, 816, etc, [7] PDF pages 562, 563 etc, [8]. 
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Based on this previous definition for the Quantum of a set, evidently will be va-
lid the next two properties: a) ( ) ( ) ( )Q A B Q A Q B=   and b)  
( ) ( ) ( )Q A B Q A Q B=  .  
6.5) a) Let be the A one set with finite number of n elements. As a “random 

selection of an element” from the set A we define a set of CLP of which the truth 
construct a function of the set of Natural numbers N in the A which selects every 
time (by map 1, 2,3, 4,ν =  ) only one element of A in an impartial way. Im-
partial way will be that, that by definition, into a multitude of M selections 
tending to infinity, every element of A will tend to be selected as much times, as 
in the meantime any other element of A was selected from this map of selections. 
If the A has infinite elements, then getting a part of set A with n finite and then 
letting the n to tend progressively to infinity and repeating the definition for 
every value of n, then this definition is generalized also for the set A with infinite 
elements. It is understandable that the selection every time does not remove the 
selected element from A but it is repositioned in its position, so that it is present 
also in the next selection. 

b) Let be A one set generally with infinite number of elements and let be a 
function :f A B→ . Where { }1 2 , ,, nB β β β=   is a set with a finite multitude 
of n elements. As “random or impartial distribution of B over A” we define the 
function of distribution f, if, and only if, the function f was defined in a way so 
that in every its map, it maps every selected element of A on a randomly selected 
element of B. In the special case where the set B contains only two elements 

1 2,β β , then this “random distribution of set B over the set A” will be named 
distribution Head-Tails (H-T) type, symbolized: 

( )Type Distr , H-TB A f =   . 

Let also be ( )CLP ,A B  the set of true catholic propositions of the sets Q(A), 
Q(B) that are absolutely necessary in the definition of function f. We will name 
catholic information ( ), ,CI A B f  of f, the set of all of true catholic proposi-
tions, that we will symbolize with ( )CLP , ,i A B f  and will be those that result 
“exclusively” from the set of propositions ( )CLP ,A B W . Where W is the set 
that contains only all the absolutely necessary propositions of the definition of f. 
Therefore, every true proposition ( )CLP , ,i A B f  will result from the map of 
the randomly selected element from the domain of f. The term result “exclusive-
ly” was defined previously on 6.3.  

6.6) Because “in Mathematics nothing happens without a cause” we will for-
mulate a proposition that is a direct consequence (paraphrase) of this quote. We 
will name it Proposition of Mathematical Consequence (PCM): Let two func-
tions 1 :f A B→  και { }2 1 2: , , , nf A γ γ γ→ Γ =   where A, B have infinite mul-
titude of measurable elements, while Γ has finite number of elements and 1f  is 
a function 1-1. On every element of B is mapping only one element from the set 
Γ through ( ) 1

1 2o :f f f B−= → Γ . Now if we prove that the set of Catholic In-
formation ( ) ( ) ( )1 2CI , , CI , , CI , ,B f A B f A fΓ = Γ  of 1 2,f f  does not contain 
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CLP  proposition that dictate through the function f one specific distribution 
(that is to say by definition one “non random” distribution) of the set Γ on the 
set B (i.e. of the set Γ on the set of maps of 1f  that belong to B), then the dis-
tribution of Γ on B will be by definition “a random distribution as to the map of 
the function f”, and then 1 2,f f  will be called independent between each other, 
symbolized as 1 2f f<> .  

6.7) As an application we will make an introductory reference to the two fun-
damental maps of the main article, where it will be better shown the meaning of 
this reference. Let , NS S  the two sets of all the subsets of the set of the Prime 
numbers { }2,3,5,7,qN =   and all of the subsets of the set N of the natural 
numbers respectively. We will be using from now on these symbols below and 
we will also be symbolizing the prime natural numbers as:  

1 2 32, 3, 5,q q q= = =  . 

Now, according to the definitions in 6.2 part before, we define the functions: 
( ),

1 1 :N N
qF F N N N= →   and ( )( ),

2 2 :N S N
NF F N S= →       (51) 

( )( ) ( ) ( )( )1, ,,
1 2o :N S N N S NN N

q NF F F F N S
−

 = = →            (52) 

1 : SFf S N N→   and { }2 : ,f S G e o→ =             (53) 

For the ( ),
1

N NF  and all the rest similar functions the symbols were explained 
in 6.2. The first map of (51) is the known sieve of Eratosthenes that selects from 
the set of Natural numbers the Prime numbers, while the second map constructs 
the set SN of all of the subsets of N. The composition (52) constructs the set S of 
all the subsets of the set of Prime numbers Nq replacing every one of the natural 
numbers ν of the set SN with the corresponding prime number qν . The relations 
(51), (52) can be presented with an association diagram of the , ,q NN N S  sets 
with connections by 3 vectors of the these 3 maps, so will be formed the triangle 

q NNN S : 1 2FF F
q NN N S N→ → ← . The other triangle SFSN G  of the re-

lations (53) similarly will be the next: 1 2f ff
SFS N f G S→ ←→  that can 

also be placed in the same diagram with the first triangle by the connection map 
F

NS S→  where the SN being transformed into S by the map F. The first func-
tion of the relations (53) constructs the set NSF of Square Free Numbers (SFN) 
and the composition ( ) 1

1 2of f f−=  distributes over the NSF the two events 
even (e) and odd (o) of the two subsets ( ) [ ]- FN SFN 6,10,14,e S e= =  ,  

( ) [ ]-SFN SFN 2,3,5, ,30,o o= =   .  
Previously, in the Chapter 5, we proved that the distribution of e, o on the 

SFN  is of Heads-Tails type relative to the function f, that is, the relation referred 
in Introduction as (1) by form:  

( )Type Distr , H-TSFG N f  =                     (54) 

Evidently, the (54) will be equivalent to the Catholic Proposition (CLP): 

( ) ( ) ( ) ( )p e o p e oν ν ν νµ µ µ µ> = <                     (55) 
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The ( )eνµ  and ( )oνµ  state numerical values of SFN (of e, o type) selected 
nevertheless randomly respectively from the sets SFN(e), SFN(o) of  

( ) ( )SFN SFNSFN e o=  . To clear the meaning of this impartial distribution of 
e, o onto the arithmetical values νµ  of SFN (i.e. independently of great or 
small values of νµ ) we’ll give another inverse example, i.e. where now (in con-
trary to the previous distribution of e, o on values of νµ ) will not be satisfied 
the corresponding Catholic Proposition  

( ) ( ) ( ) ( )p E O p E Oν ν ν να α α α> = <       , i.e. will be not valid the counterpart 
of (54). By the symbol E we declare the classically even (2κ) natural numbers 

( ) { }4,80,100,112Eνα ∈  and with O we declare the classically odd (2κ + 1) num-
bers ( ) { }5,9,15,21Oνα ∈  with  
( ) { }4,80,100,112A E = , ( ) { }5,9,15,21A O = . I.e. with ( )Eνα , ( )Oνα  we 

symbolize two elements of types E, O for which we suppose that these selected 
randomly from the set ( ) ( )A A E A O=  , with the presupposition that we al-
ready did the reposition of the first element when we selected (randomly) the 
second from the set { }4,5,9,15,21,80,100,112A = .  

We observe that for this selection of set A is valid that  
( ) ( ) ( ) ( )3 4 1 4p E O p E Oν ν ν να α α α> = > < =       . That is to say the classi-

cally even numbers here have the tendency to be distributed in the large nu-
merical values of the set A and therefore the distribution of the two events O, 
E over the elements of A is not numerically impartial, although (as we said) 
our selection of O, E (which we suppose that came randomly as O, E and not E, 
E or O, O) by repositioning was impartial as randomly one. But according to 
(55) the same will be not happening with the e, o distribution over the νµ  val-
ues of SFNs in a finite but randomly selected interval of natural numbers from 
axis Ax(N).  

We will define as “impartial logarithmic distribution” of prime numbers in 
set N one of those distributions of prime numbers where the set of prime num-
bers will be dictated by a mental roulette that selects them in a way that in a 
random interval ( ) ( ) )2 2

1,n n nq qδ +=   the prime numbers will have the statis-
tical property [1] [2] [3] [6] to be neither concentrate nor dilute, but simply the 
primes follow the distribution which is dictated by the relation  
( ) ( ) 1

1 1n
n kp q qνν

ν δ ν −

=
 ⇒  ∈ = −∏ , with all the others true CLP of its cor-

rection into this randomly selected (CC) interval nδ . The known theorem of 
logarithmic distribution of prime numbers is necessary consistency of the 1st 
theorem of prime numbers but not sufficient proposition for it, and so not 
equivalent. This equivalency as we prove in the next Chapter 7 demands the va-
lidity of RH, which according to the conclusion of previous Chapter 5 is valid. 
Based on the above probability we can conclude that only by the transition from 
one interval nδ  on to its next 1nδ +  the value of the probability of appearance 
of prime numbers changes according to the above relation: 

( ) ( ) 1

1 1n
n kp q qνν

ν δ ν −

=
 ⇒  ∈ = −∏              (56) 

This proof for the (56) catholic relation is simple [6], PDF Chapter 2 pages 
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798-801. The almost equal “≃” and not “=” here, is due to the fact that the fron-
tiers (limits) of all of the multiples of prime numbers 2,3, , nq  into the nδ  
don’t coincide with the limits of the interval nδ  that the perfect calculations 
demand, that is, for the exact equality etc. [1] [2] [3]. The previously mentioned 
impartiality demands for another information not to be introduced except from 
this that is introduced by completely general CLP (e.g., inequalities) that correct 
the “≃” and transform it to equality and that will stand in a random nδ  of N. 
The theorem therefore of the logarithmic dilation of prime numbers we expect 
to be valid statistically in a large multitude of intervals nδ  for n →∞ . As we 
will examine in the next Chapter 7, the impartial distribution of prime numbers 
preconditions that the Riemann hypothesis is valid. In that case the question that 
is raised is if we can have special relations of forecasting of prime numbers. E.g. 
if a relation of the form 2 1κν = −  could forecast with accuracy 100% the posi-
tions ν of a group of infinite prime numbers ( N κ →∞ ). For, just like in the 
impartial roulette, where none one of these particular relations can’t keep indefi-
nitely their absolute validity into an infinite distribution, so and here we also 
wonder if the same happens. And according to the proof of RH in Chapter 5 the 
answer is no. 

7. Connection between RH and Prime’s Distribution 

In this Chapter using the results of Chapters 5, 6 we will prove that the “loga-
rithmic distribution” that dictated from 1st theorem of prime numbers will be 
additionally and “impartial”, a problem that has been discussed in Chapter 6. 

We will present here a method of progressive construction of the set SFM 
(Square Free Numbers). We will define the set ( )qS n  with elements to be sets 
sν  of 2n  multitude: 

( ) { } ( ){ } ( ){ }{ }1 21 , 1 , 2, 1qS s s= =  

( ) ( ) { }{ }
12

1
1 , , 2,

n

q q nS n S n s q n N nνν
ν

−

=
 
 

=


− ∈ ≥ 



       (57) 

{ }1
1

2 2
, , , 2, 0,1, 2, , 2 1n n

n
ns s q n N n

ν ν
ν ν−

−
− −
= ∈ ≥ = −       (58) 

Based on the above we define the set ( )limn qS S n→∞  =   .  
Every collection ( )qS n  defines a topological structure. Finally, Table 1 of 

creation of ( )qS n  is formed. 
The S that comes from Table 1 is therefore the set:  

( ){ } ( ){ } ( ){ } ( ){ }{ }1 , 1 ,2 , 1 ,3 , 1 , 2,3 ,S =              (59) 

We note that if we construct another set S1 of all of the subsets of SFNs and 
we map its elements on N [again with a corresponding 1f  function of the mul-
tiplications of relation (53) of 6.7 in the previous Chapter 6] we must cover the 
entire N, that is, we expect to emerge the set N, but this last hypothesis is need a 
proof which is useless in our present research.  

Every element of S is a set and will be symbolized as we said with sν , 
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1, 2,3,ν =  . Τhe products of the elements of the sets sν  produce progressively 
the set SFN  of the SFNs. Because the number 1 in multiplication is a neutral 
element the {(1)} will correspond the null set with multitude of elements equal to 
zero, so the set {(1)} will be considered with “even” multitude of elements con-
sidering the 0 as even 2κ with κ = 0, while {(1), 2} that has one element (the 
number 2) will be considered with “odd” multitude of elements and so on. In 
every step n, the elements of ( )qS n  are duplicated. The set ( )qS n  will be 
named from here on as phase n of S. In the part 6.7 the function 

1 : SFf S N N→   of relation (53) defines by the act of multiplication the nu-
merical values νµ  of SFNs. In a random phase n if we place the maps of 

( )1f sν νµ =  on an axis Ax(SFN) of SFNs, we will observe that there are SFNs of 
the phase n with numerical values κµ  where, from inside the interval ( ]1, κµ   
(that defines each one of them) they are missing other SFNs with smaller nu-
merical values which will be found in a next phase N > n as Table 1 will be 
enriched with more and more “new” SFNs. Every SFN of the phase n with nu-
merical value νµ  of Ax(SFN) that will have this property will be named non 
completed SFN of the phase n, and contrariwise every one which does not have 
that property will be named completed SFN of the phase n. The subsequent 
now phase ( ),N n nκµ >  where the SFN with value κµ  would be completed 
for the first time (that was found not completed in the previous phase n) will be 
called Front ( ),N n κµ  of this specific κµ  of the phase n. We’ll now define 
two kinds of distribution of prime numbers in Table 1. 

A) The distribution where the events " "
ii mm q=  are behaving to their dis-

tribution into the elements ( ){ }1 1
1 , , , ,m m ms q q q

ρ ρν −
=   of the S “as codes of 

discrete events , 1, 2, ,im i Nρ= ∈ , defining here by term ‘code of discrete 
event’ an event without hidden numerical properties”, of the function (52) of 6.7 
in previous Chapter 6.  

B) The distribution of the “numerical events” 
imq ×  that come from the re-

placement of 
imq  of sν  of S with their corresponding 

imq × . The symbols 

imq ×  state not only their correlation based on their distribution in S (that is if 
they are independent events of codes as to the e, o or between them), but simul-
taneously also state if they are independent as to the numerical results νµ  
which come from them in SFN .  

So with ( )" " ||
nmp q e  we will represent the probability p for the prime 

nmq  
 
Table 1. Creation of set S. 

Step n = 1, ( ){ } ( ){ }1 2 : 1 : , 2, 1 :q e o=  

Step n = 2, ( ){ } ( ){ }2 3 : 3, 1 : , 3, 2, 1 :q o e=  

Step n = 3, ( ){ } ( ){ }3 5 : 5, 1) : , 5, 2, 1 :q o e=  

( ){ } ( ){ }5,3, 1 : , 5,3, 2, 1 :o e
 

And so on. 
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to belong, as a code of a discrete event (that we defined at A previously) of ap-
pearance in someone randomly selected element s Sν ∈  obviously with the 
precondition that this set sν  to be of e type. And the ( )" " || " "

n jm mp q q  will be 
the probability p the prime number 

nmq  to be enclosed, as a code of a discrete 
event, into a randomly selected sν  with the precondition that the 

jmq  will be 
enclosed also, also as a code of a discrete event, into this same sν .  

Next, the two events e, o will correspond to 2ρ κ= , 2 1ρ κ= +  (with  
Nκ ∈ ) in the formula ( ){ }1 1

1 , , , ,m m ms q q q
ρ ρν −

=   of S.  
Easily we can now find that in S stand the four relations (60), (61), (62), (63): 

( ) ( )" " || " " || 1 2
n nm mp q e p q o= =                  (60) 

( ) ( )" " || " " " " || " " 1 4, , ,
n j n km m m mp q q p q q n j j k n k= = ≠ ≠ ≠       (61) 

Also, by naming ρ(e), ρ(ο) the populations of prime numbers in two random-
ly selected sν  from the subsets SFN(e), SFN(o) [or e-SFN, o-SFN] of SFN’s set 

SFN  respectively, it will be valid:  

( ) ( ) ( ) ( )p e o p e oρ ρ ρ ρ> = <                       (62) 

Finally, we will include also the fact that because no prime number is a prod-
uct that has a factor another prime number it follows that: 

“By erasing all the symbols: ‘" ’ in relations (60), (61), that is,  
( ) ( )|| || 1 2

n nm mp q e p q o= =  etc we see that the arithmetical values of corres-
ponding primes (considering them as possible products of primes) will be di-
rectly (i.e. consider them as codes of discrete events) independent from any 
other prime number, but not additionally and indirectly (i.e. considering them 
not now as codes of discrete events but with possible special hidden relations 
acting in next multiplications each other for formation of values SFNνµ ∈ ) in-
dependent through of other hidden arithmetical properties between the prime 
numbers”. Proposition: (63). 

The relation (60) states that the events e, o are independent to the codes of 
discrete events " "

imq  in the set S. The relation (61) states the independence of 
the codes of discreet events " "

imq , by each other, considering them as quanta 
i.e. without hidden arithmetical relation between them, in the set S. Based on the 
propositions (60), (61), (62), (63) now we will prove that the relation (54) or (1): 

( )Type Distr , H-TSFG N f  =   will be equivalent to the “impartial logarithmic 
distribution” of primes in N, as we defined the last in the part 6.7. 

Proof: “According to what we said in the parts 6.5, 6.6 let we symbolize with 
( ){ }CLP , , : 1, 2, ,i SFN G f i NΩ = ∆ =   the set of all of the supposed “secret 

(hidden) numerical propositions” of prime numbers (if they do really exist) that 
define to prime’s distribution into the set N (of natural numbers) not be an 
“impartial logarithmic distribution” of the prime numbers. Respectively now of 
the two cases A, B that we mentioned previously, the events e, o will be mapped 
in SFN  with two ways: 

{ } A1 A2, SFG e o S N→ →= , supposing that in A2 step is: Ω =∅  (64) 
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{ } B1 B2, SFG e o S N→ →= , supposing that in B2 step is: Ω ≠ ∅  (65) 

In these 2 maps (64), (65) the first steps A1, B1 include only the propositions 
(60), (61) where the events e, o are distributed in S “randomly”, according to the 
definition of the “random distribution” in 6.5. In the relation (64) we assume in 
the step A2 that the Ω =∅  and that additionally are valid the (62), (63) which 
together with the relations (60), (61) of A1 before, apart from the statements of 
independence that they define, they will also “determine” the numerical values 

νµ . Because in this case of the relations (64) these are the only four conditions 
that determine the numerical values νµ , because we consider impartial the dis-
tribution of the prime numbers in Ν (because we supposed that Ω =∅ ) and so 
the numerical acts of the multiplications in the determination of values νµ  will 
as well be impartial. Therefore, in this first steps A1, B1, due just to this impar-
tial “determination” of the arithmetical values νµ , necessarily the proposition 

( )Type Distr , H-TSFG N f  =   of the relation (1) will be valid. Because ac-
cording to the PMC that we mentioned in 6.6 there is absolutely no reason for 
the distribution H-T not to be valid. However the case (65) differentiates from 
the (64) exclusively and only between the second steps A2, B2 where is Ω ≠ ∅  
only for the B2 of (65). In this case the Ω can define whichever non “random 
distribution”, that is to say a “non impartial logarithmic distribution” of prime 
numbers 

imq  in N. E.g. it could define in the random interval nδ  (that was 
defined in the part 6.7) for the prime numbers to condense (these primes) 
around the center of the random nδ . But this kind of Catholic Statistical Prop-
erty of the prime numbers, again based on PMC, deterministically would be im-
printed also on the distribution values νµ  as products of non impartial distri-
buted prime numbers. This result would cause a unique differentiation between 
the two steps (64), (65). Based on again the proposition of causality PMC this 
change deterministically would upset the distribution H-T of e, o of the case (64) 
because this change is the only differentiation of the case (64) from the numeri-
cal version of (65). It would therefore be imprinted necessarily (that is to say de-
terministically) as a “mathematical x-ray” of the relation (65) over the distribu-
tion νµ . This is an important observation. 

Therefore our question is if the e, o are independent between them, not only 
in S, but also if the e, o are independent between them also in their distribution 
in the set SFN  of SFNs. However the map of S in SFN  comes via the 1f  of 
the relations (53) with multiplications of prime numbers 

imq  between them, 
thing that requires extra propositions except of the independences of (60), (61) 
to expand their validity also and for the numerical acts of multiplications. Be-
cause we do not know if the independences that are stated by (60), (61) continue 
to be valid for the SFN , that is when, as we defined in cases (Α), (Β) previously, 
the distinctive events “

imq ” of the prime numbers are replaced by their corres-
ponding numerical events 

imq ×  which progressively map the S in SFN . E.g. 
there is a chance that after these replacements the resulting events 

imq ×  in (60) 
to have “hidden” numerical relations between them, which concern directly also 
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the distribution of prime numbers in set N, so that the initially hypothetical in-
dependence relation ( ) ( )5 || 5 || 1 2p e p o× = × =  for the prime number 5 to en-
close “hidden” numerical information for another relation, e.g. for the  
( ) ( )3 || 3 || 1 2p e p o× = × =  of 3, if for example the prime numbers 3, 5 have 

special relations so that when they are multiplied then to introduce, from each 
one of the above two relations, some additional information into the other rela-
tion, via new true CLP which are born by the multiplications. In this case the 3×, 
5× are not independent and the new (60), that comes from the addition of “×”, 
will not be now valid for the numerical results of the events of multiplications. 
But in this way will eventually be influenced, in an unknown way, also the not 
yet proven independence between e, o in their distribution on the numerical 
events νµ  of SFNs and therefore the propositions (60), (61), (62), (63) by 
themselves cannot guarantee anymore the H-T distribution of distinct events e, 
o on νµ . That is, we must prove this distribution to be H-T with another way, 
thing we did successfully previously in Chapter 5.  

Also the relation (63), e.g. for the prime numbers 3
nmq = , 7

jmq = ,  
101

kmq = , states that the truth of (61) doesn’t give “directly” information for 
other prime numbers, because they are not directly hidden in the form of factors 
of the products of other prime numbers inside these three prime numbers. But 
evidently this doesn’t mean that it is excluded “hidden indirect numerical rela-
tions” to exist e.g. between 3, 7, 101 and other prime numbers which can dictate 
as we explained indirect dependence via multiplications. If this last question has 
a negative answer for all the prime numbers, then the distribution of e, o of the 

νµ  on the axis Ax(SFN) of SFNs will be H-T type:  
( )Type Distr , H-TSFG N f  =  , which is the relation (1) of Introduction 1 

that we proved in Chapter 5.  
Therefore because in Chapter 5 we proved the relation (1), we conclude that 

the properties (60), (61), (62), (63) that (as we said) initially consist the impartial 
distribution e, o in S will also expand their validity into the semantic proposition 
of “impartial logarithmic distribution” of the prime numbers, because as we 
showed previously, in this case only this one is missing for the validity of the re-
lation (1). However on the other hand, because the same relation (1) which im-
plies the impartial distribution of e, o is as well equivalent with the Riemann 
Hypothesis (see Appendix at the end), we verify like this that indeed Riemann 
was right in his claim that the hypothesis (RH), for the real part of the 
non-trivial zeros of the function ζ, leads to the “impartial logarithmic distribu-
tion” of the prime numbers in the axis Ax(N) of the natural numbers. But be-
cause we proved the crucial relation (1) by using the definition of potential of 
events that we gave in the Chapters 2, 4 we will make briefly some useful notes. 
We observe that in every phase of n, as we previously defined this, the distribu-
tion of e, o on the corresponding νµ  of ( )qS n  are Heads or Tails. The proof 
for this is the following:  

“Let’s calculate only for the values νµ  of the phase n of the set ( )qS n , the 
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function ( )qM n  that corresponds (but this not coincides) to the known Mer-
tens function: ( ) 2

0

n

qM n κκ λ
=

= ∑ . Where natural number κλ  have the values 
+1, −1 respectively for the e, o, that is, ( )0 01, 1µ λ= = + , ( )1 12, 1µ λ= = − ,  . 
This function will have absolute value: 

( ) ( )( ) ( )1 2 20 2 2n n
qM n O O= < = , n N∀ ∈ , O is Landau’s symbol”.  

It is known in bibliography (e.g. [1]) that a sufficient condition for the validity 
of Riemann Hypothesis is also this relation ( ) ( )1 2lim M Oν ν ν→∞

 <  , by the 
exclusive precondition that this relation is referred to a random selected interval 
( ]1, νµ  which necessarily defines a completed SFN (as we defined it before), 
with the value νµ . But we know that the larger νµ  of the phase n of Table 1 
generally will not be a completed SFN, and therefore we do not know if the pre-
vious relation of “the sufficient condition” is valid for the front ( ),N n νµ , as we 
defined it before. We also observe, that the distribution of e, o of every phase n, 
let be symbolized it ( )Distr , :e o n , comes from the mix of the corresponding 
distribution of the previous phase ( )Distr , : 1e o n −  with the transitional dis-
tribution { } ( )Distr , : 1nq e o n× − , which comes from the numerical values νµ  
of SFNs of ( )Distr , : 1e o n −  multiplied by nq . In this case the events e, o are 
reversed into { } ( )Distr , : 1nq e o n× −  in relation to ( )Distr , : 1e o n −  thing that 
tends to correct to infinity the deviations of the directly previous distribution 
from the ideal form of H-T, mixing it with its directly “reverse”, so that it tends 
infinitely to H-T, as if it tries to mimic the tosses of an ideal coin. This procedure 
of infinite tendency to correct is compatible with the previous ascertainment 
that every random phase n with numerical value νµ  has distribution of e, o 
H-T type. But we don’t know from this if the same is valid also for ( ]1, νµ  in 
front ( ),N n νµ  in which, as we previously defined, would be completed the 

νµ  for the first time. So, if we select a random and non completed SFN of a 
random phase n with numerical value νµ  we can contemplate if the interval of 
( ]1, νµ  inside front ( ),N n νµ  has distribution H-T for νµ → ∞ . If we prove 
this directly and independent of (1), then, as we said before will be valid not only 
the relation (1) but additionally as its result and the “impartial logarithmic dis-
tribution” of the prime numbers in N will be as well truth, thing that is equiva-
lent to RH. We point out the “logarithmic distribution” which is given from the 
theorem of prime numbers is not equivalent to RH, but is demanded for the RH 
and the proof of term “impartial” as we analyzed here. 

However the torturous question that comes again is: “Are there hidden nu-
merical relations of prime numbers that make the distribution of SFN of the 
front ( ),N n νµ  such so that the e, o they do not have H-T distribution in 
( ]1, νµ ”? As much as our intuition wants a negative answer, nothing can guar-
antee that the special phase of front ( ),N n νµ  is a random phase and so it does 
not correlate the e, o between them in their distribution in ( ]1, νµ  based on 
hidden properties of prime numbers. Because there may be valid that ( ]1, νµ  is 
not random, because e.g. it has the property “this is one ( ]1, νµ  that was just 
completed with all the SFNs inside”. Our problem at this point becomes too dif-

https://doi.org/10.4236/apm.2021.115036


P. C. Papadopoulos 
 

 

DOI: 10.4236/apm.2021.115036 568 Advances in Pure Mathematics 
 

ficult, because (as we said in Chapter 6) to we answer these dark questions it 
needs to we have all the useful necessary information which is hidden deep in-
side the set ( )1 2CI , , , ,SFN N G f f .  

As we saw in previous Chapter 5, we bypassed this hurdle by proving the key 
relationship (1) using a new idea of “potential of events” that we defined. Be-
cause as we already explained in Chapters 2, 4 this potential of events draws all 
the hidden “information of positions” from a distribution of events e, o just like 
it is projected on any position m (of a natural number) on the axis Ax(N). And 
since we proved in Chapter 5 that the “infinite distribution of e, o is appeared as 
‘H-T type’ from any position m = μ”, then, by definition this will be H-T, be-
cause this proposition (which we proved for every natural number μ) is the defi-
nition of H-T, that is, the definition of the relation (1).  

We proved that the distribution of primes in N is really impartial. 

8. Results  

Α) We assumed initially that the infinite multitude distribution of events e, o 
on the νµ  has dependence from the positions νµ  of SFNs and continuing by 
using the potential of events we have proven that this is not happening, in other 
words we have shown that this distribution is one of the infinite possible ones of 
the H-T type. The case that remains is that this dependence from the positions 
does not exist. But in this case by definition the distribution will be of H-T type. 
Therefore the distribution of e, o on SFNs in any case is of H-T type. This last 
conclusion, as known, means that the Riemann Hypothesis is true, that is to say, 
that is the RH from a hypothesis becomes theorem [1]. However, this conclusion 
proves, as we have proven above in Chapter 7, that the distribution of prime 
numbers on the axis N is an “impartial logarithmic dilution” [1] [9] thing that 
secures absolutely the solution of the “twin’s problem” of articles [6] [7] that in-
itially based there in another concept: [7], PDF Chapter 3, pages 548, 562-568, 
578, 579 etc.  

Β) In the Chapter 3 we gave also applications of probabilities with the poten-
tial of events, of general interest (such as e.g. in the Financial and Technical 
problems). In such applications that have finite number of events there can be 
done experimental checks of verification. But in the Chapters 2, 4 we have 
proven for our problem the useful proposition: “this method of ‘Potential of 
Events’ constitutes the definition of probabilities of a set with elements competi-
tive events on any position m of the distribution, in a way so that this definition 
to transports computationally the information from all the distribution of every 
event onto the m”. 

9. Discussion 

Quantum computers are today maybe the best proof that an event can co-exist 
before its realization (quantum measurement) in a hyperspace, the Multiverse, 
along with all its other competitive events in the vector ψ, [10]. Therefore, like 
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that, the Multiverse is defined in the future of the observer. On the other hand, 
even though we do not possess yet experimental proof, it is difficult to assume 
that if another competitive event occurred, instead of that that already has oc-
curred, the known material universe will had been “collapsed” or will be disap-
peared.  

Look like the Multiverse exists also in the past of the observer, as a mental 
pool of information. How large “large” though is it? The Gödel theorem makes 
very possible that all this information to be infinite. It is an important question 
that we referred in the end of Introduction.  

But in this way already we have defined the Multiverse as the set of all infor-
mation which exists, let to say, as a kind of perception of felt but also and mental 
entities. E.g. possible histories of connected events, possible physical laws, inde-
pendent mathematical theorems, ideas etc. 

In the study of this article (as we said in Introduction) among other things we 
showed that the total distribution of e, o over νµ  will be H-T with infinite in-
formation until infinity. But this also means that any other finite distribution of 
H-T type will exist inside this infinite distribution of H-T, thing that can be 
proven by using the basic law of probabilities. That is to say, this distribution 
encloses infinite information (in bits) and it includes any finite code which is 
translated into the binary system. Therefore inside this infinitesimal H-T distri-
bution is coded infinite information from an ideal world that can compose infi-
nite forms, one of which is also our observed universe of matter and energy. The 
proofs in this paper show that this is the case. We also do not know whether the 
physical laws of the universe allow to an ideal coin the production of the above 
infinite H-T distribution after infinite theoretical tosses. Because if the informa-
tion of the universe is finite, based on this finite information in the universe, this 
infinite distribution can repeat finite its parts so that it finally do not include in-
finite information in these infinite tosses. But the proposition that we have 
shown that “The distribution of e, o events on the Ax(N) is infinite and also H-T” 
certainly leads in infinite information of distribution, because this includes the 
set of all the infinite ideal H-T results from tosses of an ideal coin. On the other 
hand, the natural numbers seem to be a map of the objective reality in the hu-
man mind, a paradox mirror where the Multiverse is mirrored, and not just a 
human conception independent from the objective reality of the deep nature. 
Therefore we have valid indications that the infinite multitude of distribution 
H-T reflects the Multiverse, an infinite land that is inhabited by mental entities 
of infinite independent logical propositions or theorems [11] by infinite infor-
mation (in bits), a horrible memory of mental numbers that encloses the infinite 
relations of their differentiation and of their coexistence together, Pythagoras’ 
dream.  
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Appendix 

For a complete picture of the above study we will give a brief description [1] for 
the proof that the relation (1) mentioned in the Introduction, as we said implies 
the Riemann hypothesis (RH). By this chance we will abstractly correlate the 
function ζ with the probability of finding the zeros in every area of set Ν. The 
approximate relation of the 6.7 of the distribution of prime numbers into the in-
tervals νδ  can be assumed that is corrected with the introduction of a trigono-
metric factor of their statistical variance into the νδ , that equivalently will be 
written in complex form n n nk x iy= + . Putting also ( )n n n nz A iB F k= − = , with 
F a function of the complex number nk , the relation of this corrected probabil-
ity in the nδ  will be written equivalently:  

( )
( ) ( )( )1 1 1

1 11 1 1
n n n

n n nn
z A iB

k
p n

q q qν ν ν
ν ν ν

= = = −

   
  = − = − = − 
       

∏ ∏ ∏  

And symbolizing , ,s z a A b B∞ ∞ ∞= = =  we get for the limit for n →∞ : 
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( )
( )

( ) ( )

( ) ( )lnln

11

ee 11
ibib q

a ap
sq

ν ν

νν
ν

µ ν
ζ ν

⋅⋅
∞ ∞

==

 
 ∞ = − = =


⋅


∑∏         (66) 

where ( )µ ν  is the known Möbius function [12].  
Let remember also a theorem that refers to the pair of the integral of a de-

creasing function ( )f x  of positive values and of a corresponding series ( )f ν  
of positive terms [13]:  

( )
1x

f x
∞

=
= ∞∫  is equivalent to ( )1 fν ν∞

=
= ∞∑          (67) 

And the well known relation for complex numbers: 

1 1
N Nz zν νν ν= =

≤∑ ∑                        (68) 

But for the Mertens function is known that:  

( ) ( ) ( )1 2
1

NM N O Nν µ ν
=

= = ⇒∑  

( ) ( ){ }10 : Type Distr , H-T RHSFG N f = ⇒            (69) 

The relation ( ) ( )1 2M N O N= , [1] will be valid when exist 0N R∈  so that: 

( ) 01 ,N N N Nν µ ν
=

< ∀ >∑                    (70) 

Symbolizing the average of ( )xµ  with ( )xµ , for the continuing spec-
trum of natural numbers that is appropriate to represent a very large multitude 
of natural numbers, we will have for the elementary step of the transformation:  

( ) ( ) ( )x d M xµ ν µ→ =    , 

thus the (70) will be transformed as: 
There is  

( ) ( )1 2
0 0: d d d 2 , 1x R M x x x x x x < = ∀ > >    ∈        (71) 

On the basis of the above, the function ( ) 0sζ ≠  in (66) will be equivalent 
to: 

( )1 sζ ≠ ∞                          (72) 

The symbol “≠” states simply that the measure of the function converges. 
Now for the checking of the zeros of the function ζ, from (66) using the theo-

rem (67) for continues spectrum of numbers, we conclude that the (72) has as 
sufficient condition the complex below proposition (73).  

For the composition of the below propositions (73) we will put:  
( ) 0M x x j∆ =   , 0j N∈ , ( )1j jx x M x+ = + ∆    , 0 1x = , 1,2,3,j =   and we 

will transform in that way the first integral into a series, so that for the inequali-
ties we can later use the relation (68) with the relation ( )lne 1ib x = .  

Then, we will transform the series again into an integral, so that we can use 
the (71). This complex proposition (73), that as we said is a sufficient condition 
for the (72) [i.e. (73)⟹(72)] is the following: 

“There is 0x R∈  so that 0 1x x∀ > > : 
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→∞ →∞ =

→∞ →∞ =

∞ ∞
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  
= ∆            

 
< ∆     

 
 

= ∆    
 

  = <

=

∑∫

∑

∑

∫ ∫

1 21 2 ax x
∞

+=
≠ ∞∫

”  (73) 

Calculating the last integral of (73) it comes that the (73), therefore also the 
(72), has as sufficient condition the relation: 

( )

( )

1 2

lim
1 2

a

x
x

a

−

→∞ ≠ ∞
−

                       (74) 

Because x > 1 the (74) for ( )1 2 0a− <  obviously is valid. Therefore there 
are no non-trivial zeros of the function ζ with real part greater than 1/2. Howev-
er due to the known relation:  

( ) ( ) ( ) ( )1 1
1 1 ! 2 sin

2
s s s

s s sζ ζ − − − π 
− = − π  

 
, we easily conclude that if the 

function ζ of Riemann does not have as zero the 1s a ib= +  it implies that the ζ 
will not have as (trivial) zero also the other complex value  

( )2 1 21 1s s a ib a ib= − = − − = − . We observe that because the ζ haven’t zero the 
s1 with 1 2a >  we conclude that the ζ can’t have also as zero the s2 with 

2 1 1 2a a= − < . Therefore there will also not exist zeros of the function ζ with 
real part smaller or greater than 1/2. On the other hand however we know that 
there are infinite non-trivial zeros of the function ζ of Riemann. Therefore all the 
non-trivial zeros of the function ζ necessarily will have real part equal to 1/2, 
thing that is the truth of the RH. We conclude that the relation (1), that we have 
proven and that implies the distribution H-T of the events e, o on the SFN , it 
implies that ultimately the RH is true.  
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