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Abstract 
We know Pascal’s triangle and planer graphs. They are mutually connected 
with each other. For any positive integer n, φ(n) is an even number. But it is 
not true for all even number, we could find some numbers which would not 
be the value of any φ(n). The Sum of two odd numbers is one even number. 
Gold Bach stated “Every even integer greater than 2 can be written as the sum 
of two primes”. Other than two, all prime numbers are odd numbers. So we 
can write, every even integer greater than 2 as the sum of two primes. Ger-
man mathematician Simon Jacob (d. 1564) noted that consecutive Fibonacci 
numbers converge to the golden ratio. We could find the series which is gen-
erated by one and inverse the golden ratio. Also we can note consecutive gol-
den ratio numbers converge to the golden ratio. Lothar Collatz stated integers 
converge to one. It is also known as 3k + 1 problem. Tao redefined Collatz 
conjecture as 3k − 1 problem. We could not prove it directly but one parallel 
proof will prove this conjecture. 
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1. Introduction 

In the west, Pascal’s triangle appears for the first time in the Arithmetic of Jor-
danus de Nemore (13th century). The binomial coefficients were calculated by 
Gersonides in the early 14th century, using the multiplicative formula for them. 
Petrus Apianus (1495-1552) published the full triangle on the frontispiece of his 
book on business calculations in 1527. Michael Stifel published a portion of the 
triangle (from the second to the middle column in each row) in 1544, describing 
it as a table of figurate numbers. In Italy, Pascal’s triangle is referred to as Tar-
taglia’s triangle, named for the Italian algebraist Niccolò Fontana Tartaglia 
(1500-1577), who published six rows of the triangle in 1556. Gerolamo Cardano, 
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also, published the triangle as well as the additive and multiplicative rules for 
constructing it in 1570. Pascal’s Traité du triangle arithmétique (Treatise on 
Arithmetical Triangle) was published in 1655. In this, Pascal collected several 
results then known about the triangle, and employed them to solve problems in 
probability theory. The triangle was later named after Pascal by Pierre Raymond 
de Montmort (1708) who called it “Table de M. Pascal pour les combinaisons” 
(French: Table of Mr. Pascal for combinations) and Abraham de Moivre (1730) 
who called it “Triangulum Arithmeticum PASCALIANUM” (Latin: Pascal’s Arith-
metic Triangle), which became the modern Western name. 

Euler’s formula states that if a finite, connected, a planar graph is drawn in the 
plane without any edge intersections, and v is the number of vertices, e is the 
number of edges and f is the number of faces (regions bounded by edges, in-
cluding the outer, infinitely large region). 

Then as an illustration, in the butterfly graph given above, v = 5, e = 6 and f = 
3. In general, if the property holds for all planar graphs of f faces, any change to 
the graph that creates an additional face while keeping the graph planar would 
keep v − e + f an invariant. Since the property holds for all graphs with f = 2, by 
mathematical induction it holds for all cases. Euler’s formula can also be proved 
as follows: if the graph isn’t a tree, then remove an edge that completes a cycle. 
This lowers both e and f by one, leaving v − e + f constant. Repeat until the re-
maining graph is a tree; trees have v = e + 1 and f = 1, yielding v − e + f = 2, i.e., 
the Euler characteristic is 2. 

In a finite, connected, simple, planar graph, any face (except possibly the outer 
one) is bounded by at least three edges and every edge touches at most two faces; 
using Euler’s formula, one can then show that these graphs are sparse in the 
sense that if v ≥ 3. 

Leonhard Euler introduced the function in 1763. However, he did not at that 
time choose any specific symbol to denote it. In a 1784 publication, Euler studied 
the function further, choosing the Greek letter π to denote it: he wrote πD for 
“the multitude of numbers less than D, and which have no common divisor with 
it”. This definition varies from the current definition for the totient function at 
D = 1 but is otherwise the same. The now-standard notation φ(A) comes from 
Gauss’s 1801 treatise Disquisitiones Arithmeticae, although Gauss didn’t use pa-
rentheses around the argument and wrote φA. Thus, it is often called Euler’s phi 
function or simply the phi function. 

In 1879, J. J. Sylvester coined the term totient for this function, so it is also re-
ferred to as Euler’s totient function, the Euler totient, or Euler’s totient. Jordan’s 
totient is a generalization of Euler’s. 

The cototient of n is defined as n − φ(n). It counts the number of positive in-
tegers less than or equal to n that have at least one prime factor in common with 
n. 

On 7 June 1742, the German mathematician Christian Goldbach wrote a letter 
to Leonhard Euler (letter XLIII), in which he proposed the following conjecture: 

Every integer that can be written as the sum of two primes can also be written 

https://doi.org/10.4236/apm.2021.114019


B. P. Rangasamy 
 

 

DOI: 10.4236/apm.2021.114019 298 Advances in Pure Mathematics 
 

as the sum of as many primes as one wishes, until all terms are units. 
Goldbach was following the now-abandoned convention of considering 1 to 

be a prime number, so that a sum of units would indeed be a sum of primes. He 
then proposed a second conjecture in the margin of his letter, which is easily 
seen to imply the first: 

Every integer greater than 2 can be written as the sum of three primes. 
Euler replied in a letter dated 30 June 1742 and reminded Goldbach of an ear-

lier conversation they had had (“…so Ew vormals mit mir communicirt haben…”), 
in which Goldbach had remarked that the first of those two conjectures would 
follow from the statement. 

Every positive even integer can be written as the sum of two primes. 
This is in fact equivalent to his second, marginal conjecture. In the letter dated 

30 June 1742, Euler stated: 

“Dass … ein jeder numerus par eine summa duorum primorum sey, halte 
ich für ein ganz gewisses theorema, ungeachtet ich dasselbe nicht demonstriren 
kann.” (“That … every even integer is a sum of two primes, I regard as a com-
pletely certain theorem, although I cannot prove it.”) 

Each of the three conjectures above has a natural analog in terms of the mod-
ern definition of a prime, under which 1 is excluded. A modern version of the 
first conjecture is: 

Every integer that can be written as the sum of two primes can also be written 
as the sum of as many primes as one wishes, until either all terms are two (if the 
integer is even) or one term is three and all other terms are two (if the integer is 
odd). 

A modern version of the marginal conjecture is: 
Every integer greater than 5 can be written as the sum of three primes. 
And a modern version of Goldbach’s older conjecture of which Euler reminded 

him is: 
Every even integer greater than 2 can be written as the sum of two primes. 
German mathematician Simon Jacob (d. 1564) noted that consecutive Fibo-

nacci numbers converge to the golden ratio; this was rediscovered by Johannes 
Kepler in 1608. The first known decimal approximation of the (inverse) golden 
ratio was stated as “about 0.6180340” in 1597 by Michael Maestlin of the Uni-
versity of Tübingen in a letter to Kepler, his former student. The same year, 
Kepler wrote to Maestlin of the Kepler triangle, which combines the golden ratio 
with the Pythagorean theorem.  

Kepler said of these: geometry has two great treasures: one is the theorem of 
Pythagoras, the other the division of a line into extreme and mean ratio. The 
first we may compare to a mass of gold, the second we may call a piece of pre-
cious jewelry. 

The Collatz conjecture is a conjecture in mathematics that concerns a se-
quence defined as follows: start with any positive integer n. Then each term is 
obtained from the previous term as follows: if the previous term is even, the next 
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term is one-half of the previous term. If the previous term is odd, the next term 
is 3 times the previous term plus 1. The conjecture is that no matter what value 
of n, the sequence will always reach 1. 

The conjecture is named after Lothar Collatz, who introduced the idea in 
1937, two years after receiving his doctorate. It is also known as the 3n + 1 
problem, the 3n + 1 conjecture, the Ulam conjecture (after Stanisław Ulam), 
Kakutani’s problem (after Shizuo Kakutani), the Thwaites conjecture (after 
Sir Bryan Thwaites), Hasse’s algorithm (after Helmut Hasse), or the Syracuse 
problem. The sequence of numbers involved is sometimes referred to as the 
hailstone sequence or hailstone numbers (because the values are usually sub-
ject to multiple descents and ascents like hailstones in a cloud), or as wondr-
ous numbers. 

Paul Erdős said about the Collatz conjecture: “Mathematics may not be ready 
for such problems.” He also offered $500 for its solution. Jeffrey Lagarias stated 
in 2010 that the Collatz conjecture “is an extraordinarily difficult problem, com-
pletely out of reach of present-day mathematics.” 

I obtained a history of mathematical concepts and basic concepts of various 
conjectures from the following references [1]-[9]. 

In this paper, let us see the generalization of Euler’s planer graph formula by 
Pascal’s triangle. Then we find some numbers which would not be the value of 
any φ(n). After that, we see, how six numbers only being the distance between 
any two consecutive twin prime pair and why the length is always two. Further 
we see the Division between two even numbers, and what we get a quotient. Is it 
odd or even? Then, let us show proof of Gold Bach conjecture by some ideologi-
cal proofs. Then, let us generate a Fibanacci’s series like series and find its con-
verge. Finally, let us introduce Matrix square concept then show which would be 
the parallel proof for Collatz conjecture and Collatz-Tao conjecture. 

2. Vertices and Edges on Graph 

We know, in planer graph, an edge draws between two vertices. How will we 
draw an edge on isometric (cubical box) volume? So let us define edge on vari-
ous “n” dimensional volumes. 

An edge means, a certain line connecting all vertices without pause. 
A certain line connecting three vertices in three dimensional boxes is called an 

edge of cubic graph. 
 

 
 

Or 
 

 
 

A certain line connecting four vertices in four dimensional boxes is called an 
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edge of tesseractic graph. 
 

 
 

Or 
 

 
 

By this way we can define, a certain line connecting “n” vertices (nth polygon-
al) in nth dimensional box is called an edge of nth cubic graph. In below, 

1) Figure 1 is the calculation of how many vertices, edges, faces, etc. on a line 
graph. 

2) Figure 2 is the calculation of how many vertices, edges, faces, etc. on a 
planer graph. 

3) Figure 3 is the calculation of how many vertices, edges, faces, etc. on a cu-
bic graph. 

4) Figure 4 is the calculation of how many vertices, edges, faces, etc. on a tes-
seractic graph. 

From the above Definitions We Concluded That 

1) Line is the edge on planer graphs 
2) Triangle is the edge of cubic graphs 
3) Square is the edge of tessaractic graphs 
4) By this way, nth polynomial is the edge of nth cubic graph. 
For two dimensional graphs, one dimensional line is edge. For three dimen-

sional graphs, two dimensional lines are edge! But we never draw a two dimen-
sional line as edge. So only we use a triangle as the edge of cubic graphs. Because 
a triangle is the minimal closed shape of two dimensional figures. 

For tessactic graph, we use square as the edge. 
Tetrahedron is also cubic shape but no one connect all vertices continuously. 
No one construct a polyhedron lesser than four vertices and or six edges. 

Suppose p be a polyhedron with n vertexes then by a single dipped drawing 
(without taking hand) we may not connect all vertexes by edges. The maximum 
number of undrawable edges are (n−2)/2, for even number of vertexes and 
(n−3)/2, for odd number of vertexes.  

Generally above three vertices, no one connect all vertices without pause in 
polyhedrons. 

We know binomial element has two variants. Let us use binomial expansion 
for planner graphs. If x = 1 means, graph on line; If x = 2 means, graph on plane; 
If x = 3 means, graph on isometric. 

3. Invariants of x-Elements n-Dimensional Cube 

From the above triangles, we concluded that 
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Figure 1. Graph on a Line: x = 1. 

 

 
Figure 2. Graph on a Plane. i.e. x = 2. 

 

 
Figure 3. Graph on an Isometric. i.e. x = 3. 

 

 
Figure 4. Graph on a Tessaract Cube. i.e. x = 4. 

Sum of odd column elements of 
0

n
i

i
i

a x
=
∑  − sum of even column elements of

( )
0

1
n ni

i
i

a x x
=

= −∑  

i.e. ( )
0 0

1
n n ni i

i i
O i E i

a x a x x
= =

− = −∑∑ ∑∑ ,                (1) 

where is x isgraphing domain. 
At x = 1 : 1, 0, 0, 0...  = 0n; 

https://doi.org/10.4236/apm.2021.114019


B. P. Rangasamy 
 

 

DOI: 10.4236/apm.2021.114019 302 Advances in Pure Mathematics 
 

At x = 2 : 1, 1, 1, 1...  = 1n; 
At x = 3 : 1, 2, 4, 8...  = 2n; 
At x = 4 : 1, 3, 9, 27...  = 3n; 
…………………………………… 
…………………………………… 

If we left 
0
n 
 
 

 elements in 
0 0

n n
i i

i i
O i E i

a x a x
= =

−∑∑ ∑∑  then                  (2) 

At x = 1 : 0, 1, −1, 1, −1, 1... 
At x = 2 : 0, 2, 0, 2, 0, 2... 
At x = 3 : 0, 3, 3, 9, 15, 33... 
At x = 4 : 0, 4, 8, 28, 80, 244... 
…………………………………… 
…………………………………… 
Comparing (1) and (2) we concluded that 
On odd rows: 

Sum of odd column elements − a sum of even column elements = difference + 1 
(3) 

On even rows: 

Sum of odd column elements – a sum of even column elements = difference – 1 
(4) 

Generalized Euler’s Theorem for Planar Graph 

Preposition 2: Let G be a connected planar graph (2 joints) without 
0
n 
 
 

 ele-

ments then, 
For odd-dimensional k cubes: 
Sum of odd column elements − a sum of even column elements = 2  (5) 

For even-dimensional k cubes: 
Sum of odd column elements − a sum of even column elements = 0  (6) 

Ex 1: Let we consider 3 dimensional cube, which is a planner graph, and has 8 
vertices, 12 edges and 1 face, then from Figure 2 plane graph, in 4th row, we have 
C1 = 8, C2 = 12,C3 = 6, because of theorem we omitted C4 = 1. 

Now V − E + F = 8 − 12 + 6 = 14 − 12 = 2. 

Preposition 3: Let K be n-dimensional cube with 
0
n 
 
 

 elements then 

Sum of odd column elements – sum of even column elements = (x − 1)n     (7) 

where “x” is a graphing domain. 

4. Facts 1 

1) For any n > 2, we get φ[x] is always an even number. 

2) [ ]
2
EEϕ ≤  is always even number, where E is an even number. 
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3) We never find a number n I∈ , which gives ( )2 1 6 |x x I+ ∈  numbers when 
we find φ[n]. 

38 30 |x x I+ ∈  also not be the values for φ[n]. 
i.e. 38 68 98 158 188 248 278 308 338 398 428 458 488 518 548

 578 608 638 668 698 728 758 788 818 … 
In above numbers some numbers like 38 + 30 × 3 = 38 + 90 = 128, 368 … 

would be value of φ[n], even though their digit sum would be 2 and 8. 
114, 318, 298, would not be a value of φ[n], contrarily their digit sum values 

are 3, 1 … 
If digit sum 2, 5 and 8 numbers mostly would not be the value of φ[n]. 

Twin Primes 

(5, 7), (11, 13), (17, 19), (29, 31), (41, 43),(59, 61) … twin primes. In which first 
element of bracket is lower twin prime and last element of bracket is upper twin 
prime. 

We can generate twin prime by (6x − 1, 6x + 1). 
In above formula we get odd composite number also. Let we call such num-

bers as supporter primes. 
(6x − 1, 6x + 1) for x = 1, 2 … we get (5, 7), (11, 13), (17, 19), (23, 25), (29, 31), 

(35, 37), (41, 43), (51, 53), (59, 61)… 
Where 25, 35, 51 … are called prime supporter of twin prime numbers. 
Why the pair (6x − 1, 6x + 1) givestw in primes? 
Let we jump to Euler’s totient function! 
We have already seen that there are so many numbers which are not the value 

for Euler’s totient function ever! 
General formula of such numbers is: 2 (6x + 1) 

i.e. [ ] ( )2 6 1n xϕ ≠ +                       (8) 

We know totient value of prime number is prime number − 1. 
i.e. [ ] 1p pϕ = −  

Generally for any p and the certain value of any x, we can write above formula 
as  

[ ] ( )2 6 1p xϕ = −                         (9) 

Let we see some value of 2 (6x − 1), for x = 1, 2, 3 … we get 

[ ]11 10 2 5ϕ = = ×  
[ ]23 22 2 11ϕ = = ×  
[ ]47 46 2 23ϕ = = ×  
[ ]59 58 2 29ϕ = = ×  

[ ]83 82 2 41ϕ = = × ... in this calculation “2” is the multiplier 

and 5, 11, 23, 29, 47 … are lower twin primes and factors of primes totient val-
ues.                                                            (10) 
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Let we see some value of 2 (6x + 1) + 1, for x = 1, 2, 3 … we get 
14 1 15 3 5+ = = ×  
26 1 27 3 9+ = = ×  
38 1 39 3 13+ = = ×  
50 1 51 3 17+ = = ×  
62 1 63 3 21+ = = ×  
74 1 75 3 25+ = = × ... in this calculation “3” is the multiplier and 
14, 26, 50, 62, 74 … are negated totient values.               (11) 

In the above calculations, 2 and 3 are plays important role. Twin primes are 
given by (6x − 1, 6x + 1), we could say 6x − 1 ≡ 6x + 5 mod 6. Two and three 
are additive factors of five and multiplicative factors of six and also difference of 
(3, 2) = 1. 

Length metric of the (6x − 1, 6x + 1) is always two. 

i.e. ( )6 1 6 1 6 1 6 1 2x x x x+ − − = + − + = . 

So the only distance of twin primes is always two. 
So we concluded that generators of twin primes are constructed by 1, 2, 3, 5, 

and 6. So only we say the pair (6x − 1, 6x + 1) givestwin primes. 
Preposition 4: Let x ≥ 2 be the integer then [ ] 1xϕ ϕ ϕ ϕ    =   

. i.e. 
[ ] 1n xϕ = . (15) 

Where n is the totient order of x. 
Proof: Let x be any number then [ ]x xϕ> . 
Let we take [ ] 1x xϕ =  then [ ]1 1x xϕ>  
By this way, we can obtain the totatives, [ ] [ ] [ ] [ ]1 2 2 1x x xϕ ϕ ϕ ϕ> > > > =  

 
Ex 2: 
1) Let x = 693 then [ ]693 693 360ϕ> =  

[ ] [ ]2360 360 96 693ϕ ϕ> = =  

[ ] [ ]396 96 32 693ϕ ϕ> = =  

[ ] [ ]432 32 16 693ϕ ϕ> = =  

[ ] [ ]516 16 8 693ϕ ϕ> = =  

[ ] [ ]68 8 4 693ϕ ϕ> = =  
[ ] [ ]74 4 2 693ϕ ϕ> = =  
[ ] [ ]82 2 1 693ϕ ϕ> = =  

Totient order of 693 is 8. 

5. Facts 2 
1) If ( )GCD ,a b k=  then ( )GCD ,n n na b k= , where k, and n Z∈ .     (12) 

2) If ( )GCD ,a b k=  and ;a bc d
k k
= =  then 
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( )GCD ,n n na b k=  and ;
n n

n n
n n

a bc d
k k

= = , where c, d, k, and n Z∈ .     (13) 

3) We can generalize above as If ( )1 2 3GCD , , , , ia a a a k=  and  

31 2
1 2 3, , , , i

i
a aa ab b b b

k k k k
= = = =  then ( )1 2 3GCD , , , ,n n n n n

ia a a a k=
 and 

31 2
1 2 3, , , ,

n nn n
n n n ni

in n n n

a aa ab b b b
k k k k

= = = = , where i, k and n Z∈ .              (14) 

4) If 1 2 3 ip p p p  are distinct primes, then 1 2 3
a b c

ip p p pα≠ ≠ ≠ ≠ . 
5) We can write any composite number as the product of prime numbers. i.e. 

1 2 3
a b cc p p p=   

Preposition5: Let a, b, c are composite positive integers and a + b =c, also 
( )GCD , ,k a b c=  then x + y = z is relatively prime with each other, where 

; ;a b cx y z
k k k

= = = . 

Proof: 
Let a, b, c are composite positive integers and a + b =c, also ( )GCD , ,k a b c=  

then we can write a + b =c as xk yk zk+ = . 
If ( )1 2 3GCD , , , , 1ia a a a = , we multiply each element of  

( )1 2 3GCD , , , , 1ia a a a =  with k, we get ( )1 2 3GCD , , , , ika ka ka ka k= , which 
means all the relatively prime numbers changed into composite number of k. 

So we divide, xk yk zk+ =  by k. 

Hence we get x y z+ =                                         (15) 

Preposition6: Let a, b, a + b are composite positive integers with GCD k, then 

we can find ( )
1

1

nnn n n i i

i

n
a b a b a b

i

−
−

=

 
+ = + −  

 
∑  with GCD kn. 

If we divide ( )
1

1

nnn n n i i

i

n
a b a b a b

i

−
−

=

 
+ = + −  

 
∑  by kn, we get x + y = z with 

GCD 1, 

Where ;
n n

n n

a bx y
k k

= =  and 

1

1

n
n n i i

n n
i

n n

n
c a b

i a bz
k k

−
−

=

 
−   + = =
∑

. 

6. Definition: Residue Factors 

Let A be a dividend, its factors are abcd and B be a divisor, its factors are abc 
then the residue factor of A ÷ B is d. 

If d is even then the residue factor is even, else it is odd. i.e. 
If ( )0 mod 2d ≡ , d is even; 
If ( )1 mod 2d ≡ , d is odd.                                        (16) 

Ex 3: 
1) Let A =48 and B = 16 then factors of A = 24 × 3 and factors of B = 24 then 

residue factor 
4

4

2 3 3
2
×

= = . The residue factor is odd. 
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2) Let A = 210 and B = 14, then 
factors of A = 2 × 3 × 5 × 7 and Factors of B = 2 × 7 then residue factor 
2 3 5 7 3 5 15

2 7
× × ×

= = × =
×

. The residue factor is odd. 

3) Let A = 48 and A = 24, then 

factors of A = 24 × 3 and Factors of B = 23 × 3 then residue factor 
4

3

2 3 2
2 3
×

= =
×

. 

The residue factor is even. 
Division 
O ÷ O = O or d; 
E ÷ O = E or d; 
E ÷ O ≠ O because we never get E ≠ O2; 
E ÷ E = O if the residue factor is odd or d; 
E ÷ E = E if residue factor is even or d, where d is decimal value. ■ 

7. Gold Bach Conjecture 

Every even integer greater than two can be expressed as the sum of two prime 
numbers. 

Proof: 
We know 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 7 + 3, 12 = 7 + 5, 14 = 7 + 

7, 16 = 5 + 11 but is it true for all even numbers? So, we try to prove every even 
integer greater than two can be expressed as the sum of two prime numbers by 
some ideological concepts. We know the fact four only expressed by the sum of 
two even prime. In other words, no even integer greater than four can be ex-
pressed by the sum of two even prime. But it can be expressed by two odd prime. 

Let E be an even number and O1 and O2 are odd numbers. 

We can express E as sum of two odd numbers. i.e. 1 2E O O= + .         (17) 

Using the above facts, we can say all odd prime numbers are the members of 
odd numbers, i.e. p O⊂ . 

Every prime number can be expressed as the sum of an odd number and even 
number. Also, we can express the prime number as the difference of an odd 
number and even number. 

i.e. i i io e p O+ = ∈  and j j jo e p O− = ∈ . 

where ,i j I∈  

i.e. 1 1 1 1o e p O+ = ∈  and 2 2 2 2o e p O− = ∈ .            (18) 

Hence, we can express 

( ) ( ) ( )( )1 2 1 1 2 2 1 2E O O o e o e p p= + = + + − = + .          (19) 

More precisely, we can express above as, 

( ) ( ) ( )( )1 2 1 1 2 2 1 2E O O o e o e p p= + = + + + = +
 

( ) ( ) ( )( )1 2 1 1 2 2 1 2E O O o e o e p p= + = − + − = +
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( ) ( ) ( )( )1 2 1 2 1 2E O O o e o e p p= + = + + − = +            (20) 

Ex 4: 
Let 94, we can express 94 = 63 + 41 = 25 + 69 = 37 + 57 = … for instance, 
1) Let 63 and 41, its sum is 94. 94 is an even number. Four ended number. The 

possibility of summation is 1 + 3, 5 + 9, and 7 + 7. 63 and 41 are odd numbers, 
but 63 is a composite number, and 41 is a prime number. We need one prime 
number instead of 63. We know prime number 61 is near to 63. But 61 + 2 is 63, 
so we subtract two from 63. Now we get 61. To balance equality of sum, we 
should add the same 2 with 41. Now we get 43 and 43 is a prime. Also, we get 1 
and 3 combinations. So we can express 94 = (63 − 2) + (41 + 2) = 61 + 43. 

2) Let 25 and 69, its sum is 94. 94 is an even number. Four ended number. The 
possibility of summation is 1 + 3, 5 + 9, and 7 + 7. 25 and 69 are odd numbers 
but both are composite numbers; we need two prime numbers instead of 25 and 
69. We know the prime number {…17, 19, 23, 29, 31, 37…} is near to 25. Also 
{…57, 61, 67, 71, 73 …} is near to 69. Select: 

If e = 2 then 

( ) ( ) ( )( )94 25 69 25 2 69 2 23 71= + = − + + = + , 

e = 2 opts for this way of summation. 

But ( ) ( ) ( )( )94 25 69 25 2 69 2 27 67= + = + + − = + , 

e = 2 is not suited for this way of summation. 
If e = 6 then ( ) ( ) ( )( )94 25 69 25 6 69 6 19 75= + = − + + = + , e = 6 is not suited 

for this. 
If e = 6 then ( ) ( ) ( )( )94 25 69 25 6 69 6 31 64= + = + + − = + , e = 6 is not suited 

for this. 
If e = 8 then ( ) ( ) ( )( )94 25 69 25 8 69 8 33 61= + = + + − = + , e = 8 is not suited 

for this. 
If e = 8 then ( ) ( ) ( )( )94 25 69 25 8 69 8 17 77= + = − + + = + , e = 8 is not suited 

for this. 
…………………………………………………………………. 
If e = 16 then 

( ) ( ) ( )( )94 25 69 25 16 69 16 9 85= + = − + + = + , 

e = 16 is not suited for this way of summation. 

But, ( ) ( ) ( )( )94 25 69 25 16 69 16 41 53= + = + + − = + , 

e = 16 opts for this way of summation. 
From above, we concluded until we expressed the sum of two prime numbers 

equal to an even number, we repeatedly do the above. 
Theorem 1: Every even integer can be expressed as the difference of two 

prime numbers. 
Proof: 
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We know 2 = 5 − 3, and difference of all twin primes; 4 = 7 − 3, 11 − 7, 17 − 
13, 23 − 19…; 6 = 11 − 5, 17 − 11, 23 − 17, 29 − 23, 37 − 31 …; 8 = 11 − 3, 13 − 5, 
19 − 11 …; 10 = 13 − 3, 17 − 7, 23 − 13 …; ... but is it true for all even numbers? 
So, we try to prove every even integer can be expressed as the difference of two 
prime numbers by some ideological concepts. 

Let E be an even number and O1 and O2 are odd numbers. 

We can express E as difference of two odd numbers. i.e. 1 2E O O= − .    (21) 

Using the above facts, we can say all odd prime numbers are the members of 
odd numbers. i.e. p O⊂ . 

We know every prime number can be expressed as the sum of an odd number 
and even number. Also, we can express the prime number as the difference of an 
odd number and even number. 

i.e. 1 1 1 1o e p O+ = ∈  and 2 2 2 2o e p O− = ∈ .                       (22) 

Hence, we can express ( ) ( ) ( )( )1 2 1 1 2 2 1 2E O O o e o e p p= − = + − − = − .    (23) 

More precisely, we can express above as, 

( ) ( ) ( )( )1 2 1 1 2 2 1 2E O O o e o e p p= − = + − + = −  

( ) ( ) ( )( )1 2 1 1 2 2 1 2E O O o e o e p p= − = − − − = −
 

( ) ( ) ( )( )1 2 1 2 1 2E O O o e o e p p= − = + − − = −  

8. Fibonacci Series 

1  1 2 3 5 8   13  21 34 55 89 
144 233 377 610 987 1597   2584 … 
Various golden ratios of any two numbers of Fibonacci series: 

( )
( )1 1

1
1 2 1

2 1 2n n n n r

n n n n r

f f f f
f f f f

ϕ ϕ ϕ+ − −

− − − +

= = = = = = = − −

 

( )
( )1 1

2
1 2 3 2

1 3 1 2n n n n r

n n n n r

f f f f
f f f f

ϕ ϕ ϕ+ − −

− − − − +

+ = −= = = = = = −

 

( )
( )1 1

3
2 3 4 3

1 2 5 2 2n n n n r

n n n n r

f f f f
f f f f

ϕ ϕ ϕ+ − −

− − − − +

= = = = = + = −= −

 

( )
( )1 1

4
3 4 5 4

2 3  8 3 2n n n n r

n n n n r

f f f f
f f f f

ϕ ϕ ϕ+ − −

− − − − +

= = = = = + = −= −

 
  

( )

1 1
1

1 2 1

n n n n r
k

n k n k n k n r k

f f f f
f f f f

ϕ + − −
+

− − − − − − + +

= = = = =            (24) 

( )1 3 1 2k k k kf f f fϕ ϕ+ + += + = − −                  (25) 

Φ1 = 1.6180; Φ2 = 2.6180; Φ3 = 4.236; Φ4 = 6.854; Φ5 = 11.09; … 
0.6180, 1, 1.6180, 2.6180, 4.2366, 6.854, 11.09, … 
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Where 0.618 and 1 are the generators of the golden ratio Fibonacci series. 
In this series also, we can get golden ratio. 

i.e. 1 1.6180n

n

+Φ
=

Φ
                      (26) 

and 
1

0.6180n

n+

Φ
=

Φ
                      (27) 

9. Let We See Some Matrix Squares 

1) 4 × 4 Even Matrix Square 
 

 
 

2) 5 × 5 Odd Matrix Square 
 

 
 

Let we walk on above matrix square, conditions are: 
1) Our walking direction should be horizontally or vertically not diagonally. 

i.e. if we choose random place “m” on 5 × 5 matrix square, we may go through 
leftward direction “l” or rightward direction “n” or upward direction “h” or 
downward direction “r”. should not go through left upper diagonal “g”, left low-
er diagonal “q”, right upper diagonal “i”, and right lower diagonal “s”. 

2) We should not return from the way once again which we went. 
3) Randomly go any direction. 

9.1. Walking on Even × Even Matrix Square 

Theorem 2: If we start our walking from any box randomly on E × E matrix 
square, then we could return to our starting box once again. 

Proof: 
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Let “E” be an even number, so we can construct E × E matrix square. 
Now we start our walking at any arbitrary box in matrix square. That box 

would be one of the boxes of least even matrix square. That box has two direc-
tions if it would be a vertex, three directions if it would be a box on any sides and 
four directions if it would be an inner box. 

Since E × E matrix square has even E2 boxes. 
If E2 divided by 4, then E divided by 2. 
So we can divide even E2 boxes by four boxes. 
We get 

( )
2

0 mod 4
4

E
≡ .                       (28) 

This shows, E2 boxes fully divided by four. 
We can easily walk through four boxes which are given by 2 × 2 matrix 

square. From any point to that same point in 2 × 2 matrix square we could com-
plete full walk. 

So, we take 2 × 2 matrix square instead of E × E matrix square. Because 2 × 2 
matrix square only full fills E × E matrix square. 

It is enough to walk completely on E × E matrix square. 
Ex5: 
1) If E = 6 we get 62 matrix square, i.e. 36 boxes, 36 = 9 × 4 boxes. 
2) If E = 8 we get 82 matrix square, i.e. 64 boxes, 64 = 16 × 4 boxes. 
Walking on Odd x Oddmatrix square 
Theorem 3: If we start our walking from any box randomly on O x O matrix 

square, then we never return to our starting box once again. 

Proof: O × O matrix square never gives ( )
2

0 mod 4
4

O
≡ ; 

so, we never complete our walk. 

9.2. Solution for Complete Walking on  
O × O Matrix Square 

Let we see some O × O matrix square. 
 

 
 

Odd 1 × 1 matrix square 
 

 
 

Odd 3 × 3 matrix square 
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Odd 5 × 5 matrix square 
Here after we call, odd 1 × 1 matrix square as first odd matrix square, odd 3 × 

3 matrix square as second odd matrix square, odd 5 × 5 matrix square as third 
odd matrix square. 

Let we slightly modify odd 1 × 1 matrix square as, even 2 × 2 matrix. 
 

 
 

Let we slightly modify odd 3 × 3 matrix square as, even 4 × 4 matrix. 
 

 
 

Let we slightly modify odd 5 × 5 matrix square as, even 6 × 6 matrix. 
 

 
 

From the above we concluded, 

( ) ( )22 21 3 4;9 7 16;25 11 36; ; 3 1 2 1 .O k k O E+ = + = + = + + + − = + =    (29) 

where 3k + 1 is Collatz variant, E is even number, O is odd number, k is kth ma-
trix square, and (k − 2) is my variant for matrix square of Collatz sum, also  

1
2

Ok +
= .                         (30) 

Ex 6: Let 63 be a prime number, then 63 1 64 32
2 2

k +
= = = ; 

( ) [ ]2 263 3 32 1 32 2 3969 97 30 3969 127 4096 64+ × + + − = + + = + = =   . 

Since 64 × 64 is a 32th even matrix square. 
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( )
264 0 mod 4

4
≡ . So we can easily complete our walking form starting box to 

starting box. 

9.3. Walking on E × E Matrix Square, Walking on O × O Matrix 
Square and above Results Shows How COLLATZ Conjecture 
Works 

( ) ( )
2

0 mod 4 0 mod 2
4 2

E E
≡ → ≡ ;                (31) 

if 2 |
2

tE t I= ∈  then we get 1 22 2 2 4 2 1t t t− −→ → → → → → . 

Else if 1 1| ,
2
E mo m o I= ∈  then we do 

( )

( )

1
11

1 1

0 mod 2
2

2 1 mod 2 3 1

mo Emo

o E

 → =≡ 
 → + →

                 (32) 

So, we get 

if 1

2
E  is 2 |t t I∈  then we get 1 22 2 2 4 2 1t t t− −→ → → → → → . 

Else if 2
2 2| ,

2
E no n o I= ∈  then we do 

( )

( )

2
22

2 2

0 mod 2
2

2 1 mod 2 3 1

no Eno

o E

 → =≡ 
 → + →  

Do the above again and again, 
finally, 1 2 4 2 1E E E→ → → → → → . 

But if ( )
2

1 1mod 4 3 1
4

O o O E≡ → + →  then 

( ) ( )
2

1 10 mod 4 0 mod 2
4 2

E E
≡ → ≡ ; 

if 1 2 |
2

tE t I= ∈  then we get 1 22 2 2 4 2 1t t t− −→ → → → → → . 

Else if 1
1 1| ,

2
E mo m o I= ∈  then we do 

( )

( )

1
21

1 2

0 mod 2
2

2 1 mod 2 3 1

mo Emo

o E

 → =≡ 
 → + →  

So, we get 

if 2 2 |
2

tE t I= ∈  then we get 1 22 2 2 4 2 1t t t− −→ → → → → → . 

Else if 2
2 2| ,

2
E no n o I= ∈  then we do 
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( )

( )

2
22

2 2

0 mod 2
2

2 1 mod 2 3 1

no Eno

o E

 → =≡ 
 → + →  

Do the above again and again, 
finally, 1 2 4 2 1E E E→ → → → → → . 

Ex 7: Let 79 be an odd number then 79 1 40
2

k +
= = ; 

79 × 79 is 40th odd matrix square. 

( )
279 1 mod 4 3 79 1 238

4
⇒ ≡ → × + =

 

( )238 0 mod 2 238 2 119
2

⇒ ≡ → = ×
 

79 238 119 358 179 538 269 808 404 202 101
304 152 76 38 19 58 29 88 44 22 11 34
17 52 26 26 13 40 20 10 5 16 8 4 2 1.

⇒ → → → → → → → → → →
→ → → → → → → → → → → →
→ → → → → → → → → → → → → →  
Finally we attained 1. Since 1 is a starting number of all natural numbers. We 

once again returned to 1. 
But our matrix square formulaeasily confirms the above calculation. 

( ) ( )
( )

22 2

2

2

My matrix square formula for Collatz sum

3 1 2 1

79 3 40 1 40 2

6241 121 38 6400 80

O k k O E= + + + − = + =  
= + × + + −  
= + + = =  

( )
280 0 mod 4

4
⇒ ≡ , it shows 79 converged to 1. And 80 × 80 is the 40th even 

matrix square. 
In this proof we omit 1 × 1 square matrix as the first odd matrix. We consider 

3 × 3 square matrix as the first odd matrix square, 5 × 5 square matrix as the 
second odd matrix square, 7 × 7 square matrix as the third odd matrix square... 

Let we slightly modify odd 3 × 3 matrix square as, even 2 × 2 matrix. 
 

 
Let we slightly modify odd 5 × 5 matrix square as, even 4 × 4 matrix. 
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From the above we concluded, 

( ) ( ) ( )22 21 3 4;9 5 4;25 9 16; ; 3 1 2 1 .O k k O E− − = − = − = − − + + = − =    (33) 

Where 3k − 1 is Tao variant, E is even number, O is odd number, k is kth matrix 
square, and (k + 2) is my variant for matrix square of Tao sum, also  

1
2

Ok −
= .                         (34) 

9.4. Walking on E × E matrix Square, Walking on O × O Matrix 
Square and above Results Shows How COLLATZ-TAO  
Conjecture Works 

( ) ( )
2

0 mod 4 0 mod 2
4 2

E E
≡ → ≡ ; 

if 2 |
2

tE t I= ∈  then we get 1 22 2 2 4 2 1t t t− −→ → → → → → . 

Else if 1 1| ,
2
E mo m o I= ∈  then we do 

( )

( )

1
11

1 1

0 mod 2
2

2 1 mod 2 3 1

mo Emo

o E

 → =≡ 
 → − →  

So, we get if 1

2
E  is 2 |t t I∈  then we get  

1 22 2 2 4 2 1t t t− −→ → → → → → . 

Else if 2
2 2| ,

2
E no n o I= ∈  then we do 

2
22

2 2

0mod 2
2

2 1mod 2 3 1

no Eno

o E

 → =≡ 
 → − →  

Do the above again and again, 
finally, 1 2 4 2 1E E E→ → → → → → . 

But if ( )
2

1 1mod 4 3 1
4

O o O E≡ → − →  then 

( ) ( )
2

1 10 mod 4 0 mod 2
4 2

E E
≡ → ≡

 

If 1 2 |
2

tE t I= ∈  then we get 1 22 2 2 4 2 1t t t− −→ → → → → → . 

Else if 1
1 1| ,

2
E mo m o I= ∈  then we do 

( )

( )

1
21

1 2

0 mod 2
2

2 1 mod 2 3 1

mo Emo

o E

 → =≡ 
 → − →  

So, we get 

if 2 2 |
2

tE t I= ∈  then we get 1 22 2 2 4 2 1t t t− −→ → → → → → . 
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Else if 2
2 2| ,

2
E no n o I= ∈  then we do 

( )

( )

2
22

2 2

0 mod 2
2

2 1 mod 2 3 1

no Eno

o E

 → =≡ 
 → − →  

Do the above again and again, 
finally, 1 2 4 2 1O E E→ → → → → → . 

Ex 8: Let 79 be an odd number then 79 1 39
2

k −
= = ; 

79 × 79 is 39th odd matrix square. Since in this sum we omitted 1 × 1 as a first 

odd matrix square. ( )
279 1 mod 4 3 79 1 236

4
⇒ ≡ → × − =  

( )236 0 mod 2 236 2 118
2

⇒ ≡ → = ×
 

79 236 118 59 176 88 44 22
11 32 16 8 4 2 1.

⇒ → → → → → → →
→ → → → → → →  

Finally we attained 1. Since 1 is a starting number of all natural numbers. We 
once again returned to 1. 

But our matrix square formula easily confirms the above calculation. 

( ) ( )
( )

22 2

2

2

My matrix square formula for Tao sum

3 1 2 1

79 3 39 1 40 2

6241 116 41 6084 78

O k k O E= − − + + = − =  
= − × − + +  
= − − = =  

( )
278 0 mod 4

4
⇒ ≡ , 

it shows 79 converged to 1. And 78 x 78 is the 39th even matrix square. 

10. Conclusions 

1) Plane is a two dimensional volume, Binomial expression has two elements. 
This is the reason, we could generalize Euler’s formula V – E + F = 2 for planer 
graphs by Binomial expressions. Similarly, we can say, an edge draws between 
two vertices in planer graphs, so only two is acted as the multiplicative factor of 
binomial expression. 

2) Generally we concluded that, number of vertices is act as the multiplicative 
factor of binomial expression in nth cubic graphs. 

3) There are so many numbers that would not be the value of any φ(n). 
4) Pair of twin prime is 6x − 1 and 6x + 1. So only six numbers being existed 

between any two consecutive twin prime pairs and d (6x − 1, 6x + 1) = 2. 
5) Other than two all prime numbers are proper sub-set of odd numbers. We 

already know the sum of any two odd numbers is an even number. So we con-
cluded that, every even integer greater than 2 can be written as the sum of two 
primes. 
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6) Every even integer can be written as the difference between two primes. 
7) All the Fibonacci series like series converged to the golden ratio, even the 

series elements are golden ratio elements. 
8) We concluded matrix square concept is parallel proof for Collatz conjecture 

and Collatz-Tao conjecture. 
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