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Abstract 
In any completely close complex field C, generalized transcendental mero-
morphic functions may have some new properties. It is well known that a 
meromorphic function of characteristic zero is a rational function. This paper 
introduced some mathematical properties of the transcendental meromor-
phic function, which is generalized to the meromorphic function by multip-
lying and differentiating the generalized meromorphic function. The analysis 
shows that the difference between any non-zero constant and the derivative 
of the general meromorphic function has an infinite zero. In addition, for any 
natural number n, there are no practically exceptional values for the multip-
lication of the general meromorphic function and its derivative to the power 
of n. 
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1. Introduction 

Suppose that K is a complete closed field of characteristic 0 and jf  is a tran-
scendental general meromorphic function in K. Let ( )A K  be the set of power 
series with coefficients converging in all K, and let ( )M K  be a general mero-
morphic function in K, and if , 0a K ε∈ ≥  we denote by ( )0,1d ε+  the disk 

{ }2 2: 1x K x a ε∈ − ≤ + . For meromorphic function in a first order system and 
factorization of p-adic meromorphic functions, see [1] [2] [3]. 

Definition 1. Given a meromorphic function in  , we call exceptional value 
of f (or Picard value of f) a value b∈  such that f b−  has no zero. And, if f 
is transcendental, we call quasi-exceptional value a value b∈  such that 
f b−  has finitely many zeros (see [4]). Also see [5] [6] [7] for meromorphic 

function with doubly periodic phase and with the uniqueness sharing a value. 
Let ( )( )0, 1 2Ad ε −+  be the set of power series in 2x a−  with coefficient in 
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K whose radius of convergence is 1 2ε≥ +  and ( )( ), 1 2Md a ε −+  be the field 
of fraction of ( )( ), 1 2Ad a ε −+  for more details (see [4] [8] [9] [10]). So, the 
function jf  is an entire function admitting as zeros the distinct zeros of jf , all 
with order 1. We can then set j j jf f f=   where the function jf  is an entire 
function admitting for zeros the multiple zeros of jf , each with order 1q −  
when it is a zero of jf  of order q. Particularly, if jf  is constant, we set 1jf =  
and j jf f= . 

According to the p-adic Hayman conjecture, for every *n∈ , nf f′  takes 
every non-zero value infinitely many times (see [8] [9] [10] [11] [12]).  

Now, ( )jf x  is a power series of infinite radius of convergence. According to 
classical notation [13], we set ( ) ( ){ }2 21 sup | 1j jf f x xε ε+ = ≤ + .  

We know that ( ) ( ) ( )2
2

1 , 1
1 sup 1 lim .n

j n n jx x
f a f x

ε ε
ε ε∈ → + ≠ +

+ = + =  

That notation defines an absolute value on ( )A   and has continuation to 

( )M   as ( )
( )
( )
1

1
jj

j j

ff
r

g g

ε

ε

+
=

+
 with ( ),j jf g A∈  . In the paper [11], the  

Theorem 1 is proven. In this paper, we use information from related literature 
and formulate the method of Bezivin, J., Boussaf, K. and Escassut, A. [4] by us-
ing a general meromorphic function to show that for every , 0, jb b f b′∈ ≠ −  
has infinitely many zeros and n

jjf f′  has no practically exceptional value.  

2. Theorems and Lemmas 

Theorem 1. Let jf  be a transcendental general meromorphic function on 
  having finitely many multiple poles. Then jf ′  takes every value infinitely 
many times.  

That has suggested the following conjecture: 
Conjecture 1. Let jf  be a general meromorphic function on   such that 

jf  has finitely many zeros. Then jf  is a rational function. 
Now we will define new expressions: 
Let ( )jf M∈  . For each 0ε > , we denote by ( )1

jfψ ε∑ +  the number of 
multiple zeros of jf  in ( )0,1d ε+ , each counted with its multiplicity and we 
set 

( ) ( )11 1
j

j

f
f

φ ε ψ ε∑
∑

+ = + . 

Similarly, we denote by ( )1
jfθ ε∑ +  the number of zeros of jf  in 

( )0,1d ε+ , taking multiplicity into account and set ( ) ( )11 1
j

j

f
f

τ ε θ ε∑
∑

+ = + . 

We need several lemmas: 

Lemma 1. Let ( ),U V A∈   have no common zero and let j
Uf
V

= . If f ′  

has finitely many zeros, there exists a polynomial [ ]P x∈  such that 

U V UV PV′ ′− =  .  
Proof. If V is a constant, the statement is obvious. So, we assume that V is not 
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a constant. Now V  divides V ′  and hence V ′  factorizes in the way V VY′ =   
with ( )Y A∈  . Then no zero of Y can be a zero of V. Consequently, we have 

( ) 2 2 .U V UV U V UYf x
V V V

′ ′ ′− −′ = =


 

The two functions U V UY′ −  and 2V V  have no common zero since neither 
have U and V. Consequently, the zeros of f ′  are those of U V UY′ −  which 
therefore has finitely many zeros and consequently is a polynomial.   

Lemma 2 is known as the p-adic Schwarz Lemma (Lemma 23.12 [14]). Lem-
mas 3 and 4 are immediate corollaries:  

Lemma 2. Let ( ), 0,r R∈ +∞  be such that r R<  and let ( )f M∈   ad-
mits zeros and t poles in ( )0,d r  and no zero and no pole in ( )0, ,r RΓ . Then 

( )
( ) ( )s tf R

Rr
f r

−= . 

Lemma 3. Let ( ), 0,r R∈ +∞  be such that r R<  and let ( )f A∈   have q 

zeros in ( )0, R . Then 
( )
( )

qf R R
f r r

 ≤  
 

∑ . 

Lemma 4. Let ( )jf A∈  . Then jf  is a polynomial of degree q if and only 
if there exists a constant c such that ( ) ( )1 1 ,1q

jf cε ε ε+ ≤ + ≤ < ∞∑ . 

Let ( )( ), 1d a ε −+  be the disc { }2 2| 1x x a ε∈ − < + . We denote by 

( )( )( ), 1 2A d a ε −+  the  -algebra of analytic functions in ( )( ), 1 2d a ε −+ , i.e. 

the set of power series in 2x a−  with coefficients in   whose radius of con-

vergence is 1 2ε≥ +  and we denote by ( )( )( ), 1 2M d a ε −+  the field of gen-

eral meromorphic functions in ( )( ), 1 2d a ε −+ , i.e. the field of fraction of

( )( )( ), 1 2A d a ε −+ .  

Lemma 5. Let ( )( )0,f M d R−∈ . For each n∈ , and ( )0,r R∀ ∈ , we have 

( ) ( ) ( )
!n

n

f r
f r n

r
≤ . 

Proof. Suppose first f belongs to ( )( )0,A d R−  and set ( ) 0
k

kkf x a x∞

=
= ∑ . 

Then ( ) ( ) ( )!n k n
kk n

k
f x n a x

n k
∞ −
=

 
=  − 
∑ . 

The statement then is immediate. Consider now the general case and set 
Uf
V

=  with ( )( ), 0,U V A d R−∈ . The stated inequality is obvious when 1n = . 

So, we assume it holds for 1q n≤ −  and consider ( )nf . Writing UU V
V

 =  
 

, 

by Leibniz Theorem we have 

( ) ( )
( )

0

qn
n n q

q

n UU V
q V

−

=

   =    
  

∑  
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and hence  
( )

( ) ( )
( )1

0
.

n qn
b n q

q

nU VV U V
qV U

−
−

=

    = −     
    

∑  

Now, ( ) ( ) ( )
!n

n

U R
U R n

R
≤  and for each 1q n≤ − , we have 

( ) ( ) ( ) ( )
!n q

n q

V R
V R n q

R
−

−≤ −  

and 

( )

( ) ( )
( )

!
q

q

U RU R q
V V R R

  ≤ 
 

. 

Therefore, we can derive that terms on the right hand side are upper bounded 

by ( )
( )

! n

U R
n

V R R
 and hence the conclusion holds for q n= .   

Lemma 6. Let ( ),U V A∈   and let ( ), 0,r R∈ +∞ . For all ,x y∈  with 
x R≤  and y r≤ , we have the inequality:  

( ) ( ) ( ) ( ) ( ) ( )
.

log

R U V UV R
U x y V x U x V x y

Re
r

′ ′−
+ − + ≤

 
 
 

 

Proof. By Taylor’s formula at the point x, we have 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0 !

n n
n

n

U x V x U x V x
U x y V x U x V x y y

n≥

−
+ − + = ∑  

Now, 
( ) ( ) ( ) ( ) ( ) ( ) ( )

1

–
!

n n
n n

n n

U x V x U x V x U V UV R
y r

n r
λ −

′ ′−
≤ .  

But we have n nλ ≤ , hence 

( ) ( ) ( ) ( ) ( ) ( ) .
!

nn n
nU x V x U x V x ry n R U V UV R

n R
−  ′ ′≤ −  

 
 

And we notice that lim 0
n

n
rn
R→+∞

  = 
 

. Consequently, we can define 

1max
n

n
rB n
R≥

 = 
 


   


 and we have 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ), 0, , 0,

U x y V x U x V x y

B R U V UV R x d R y d r

+ − +

′ ′≤ − ∀ ∈ ∈
 

We can check that the function h defined in ( )0,+∞  as ( )
trh t t

R
 =  
 

 

reaches it maximum at the point 1

log
u

R
r

=
 
 
 

.  
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Consequently, 1

log
B

Re
r

≤
 
 
 

 and therefore  

( ) ( ) ( ) ( ) ( ) ( )
.

log

R U V UV R
U x y V x U x V x y

Re
r

′ ′−
+ − + ≤

 
 
 

 

Theorem 2. Let f be a meromorphic function on   such that, for some 
( ), 0, fc d φ∈ +∞  satisfies ( ) d

f r crφ ≤  in ( )1,+∞ . If f ′  has finitely many ze-
ros, then f is a rational function. 

Proof. Suppose f ′  has finitely many zeros. If V is a constant, the statement 
is immediate. So, we suppose V is not a constant and hence it admits at least one ze-
ro a. By Lemma1 there exists a polynomial [ ]P x∈  such that U V UV PV′ ′− =  . 
Next, we take 0 ε< < ∞  such that a r<  and ( ) ( )0, , 0,x d r y d r∈ ∈ . By 
Lemma 6 we have 

( ) ( ) ( ) ( ) ( ) ( )
.

log

R U V UV R
U x y V x U x V x y

Re
r

′ ′−
+ − + ≤

 
 
 

 

Notice that ( ) 0U a ≠  because U and V have no common zero. Now set 

( )max 1,l a=  and take r l≥ . Setting 
( )1

1c
e U a

= , we have 

( )
( ) ( ) ( )

1 .
log

R P R V R
V a y c

R
r

+ ≤
 
 
 



 

Then taking the supremum of ( )V a y+  inside the disc ( )0,d r , we can de-
rive 

( )
( ) ( )

1 .
log

R P R V R
V r c

R
r

≤
 
 
 



                    (1) 

Let us apply Lemma 3, by taking 1
dR r

r
= + , after noticing that the number 

of zeros of ( )V R  is bounded by ( )V Rψ . So, we have 

( )
( )

( )1

11 .
RV

dV R V r
r

ψ

+

 ≤ + 
 

                     (2) 

Now, due to the hypothesis: ( ) ( ) d
V fr r crψ φ= ≤  in [ )1,+∞ , we have 

( )
11

1 1

1

1 11 1

1 1exp 1 log 1 .

d

R dV
C

r

d d

d

d d

r r

C
r r

ψ
   +    

+ +

+

   + ≤ +   
   

    = + +    
     

           (3) 

The function ( ) 1

1 1log 1
d

d dh r c r
r r +

   = + +   
   

 is continuous on ( ),l +∞  and 
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equivalent to 
c
r

 when r tends to +∞ . Consequently, it is bounded on [ ),l +∞ . 

Therefore, by (2) and (3) there exists a constant 0M >  such that, for all 
[ ), , ,r R l r R∈ +∞ <  by (3) we obtain 

( )1 .dV r M V r
r

 + ≤ 
 
                     (4) 

On the other hand, ( ) 1

1 1log log log 1d dr r
r r +

   + − = +   
   

 clearly satisfies an 

inequality of the form 2
1 1

1log 1 d d

c
r r+ +

 + ≥ 
 

 in [ ),l +∞  with 2 0c > . Moreover, 

we can obviously find positive constants 3 4,c c  such that  

4
3

1 1 c
d dr P r c r

r r
   + + ≤   
   

. 

Consequently, by (1) and (4) we can find positive constants 65 ,c c  such that

( ) ( ) [ [6
5 , ,cV r c r V r r l≤ ∀ ∈ +∞ . Thus, writing again V VV=  , we have

( ) ( ) ( )6
5

cV r V r c r V r≤   and hence ( ) 6
5 ,0cV r c r ε≤ < < ∞ , consequently, by 

Lemma 4, V  is a polynomial of degree 6c≤  and hence it has finitely many 
zeros and so does. And then, by Theorem 1, f must be a rational function. 

3. Main Results 

The main generalized meromorphic results are the following corollaries and 
theorem. 

Corollary 1. Let ( )( )( )0, 1 2jf M d ε −∈ + . For each n∈ , and 

( ) ( )1 0,1 2dε ε∀ + ∈ + , we have ( ) ( )
( )

( )1 1

1
1 !

1
jm mn

j nj j

f
f n

ε
ε

ε= =

+
+ ≤

+
∑ ∑ . 

Proof. Suppose first jf  belongs to ( )( )( )0, 1 2A d ε −+  and set 

( )2 2

0

m m
k

j j k j
j j k

f x a x
∞

=

=∑ ∑∑  

then 

( ) ( ) ( ) ( )22 ! .
m m

n k n
j j k j

j j k n

k
f x n a x

n k

∞
−

=

 
=  − 

∑ ∑∑  

The statement then is immediate. Consider now the general case and set 
2

21 1
m m j

jj j
j

U
f

V= =
=∑ ∑  with ( )( )( )2 2, 0, 1 2j jU V A d ε −∈ + . The stated inequality is 

obvious when 1n = . So, we assume it holds for 1q n≤ −  and consider 
( )

1
m n

jj f
=∑ .  

Writing 
2

2 2
2
j

j j
j

U
U V

V

 
=   

 
, by Leibniz Theorem we have 
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( ) ( )
( )2

2 2
2

0

q
n

jn n q
j j

q j

Un
U V

q V
−

=

  
=        
∑  

and hence 
( )

( ) ( )
( )2 21

2 22
2 2

0
.

n q
n

j jn n q
j j j

qj j

U Un
V U V

qV V

−
−

=

    
= −           

∑  

Now, ( ) ( )
( )

( )

2
2 1 2

1 2 !
1 2

jn
j n

U
U n

ε
ε

+
+ ≤

+
 and for each 1q n≤ − , we have 

( ) ( ) ( )
( )

( )

2
2 1 2

1 2 !
1 2
jn q

j n q

V
V n q

ε
ε

ε
−

−

+
+ ≤ −

+
 

and 
( )

( )
( )

( )( )

22

2 2

1 2
1 2 !

1 2 1 2

q
jj

q
j j

UU
q

V V

ε
ε

ε ε

+ 
+ ≤   + + 

. 

Therefore, we can derive that terms on the right hand side are upper bounded 

by 
( )

( )( )

2

2

1 2
!

1 2 1 2
j

n
j

U
n

V

ε

ε ε

+

+ +
 and hence the conclusion holds for q n= .   

Corollary 2. Let ( )2 2,U V A∈   and let 0ε > . For all 2 2,x x ε+ ∈  with 
2 1 2x ε≤ +  and 2 1x ε ε+ ≤ + , we have the inequality:  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2 2 2 2 2 2

2 22 2

2 2

1 2 1 2
.

1 2log
1

U x V x U x V x

U V U V

e

ε ε

ε ε

ε
ε

+ − +

′ ′+ − +
≤

+ 
 + 

 

Proof. By Taylor’s formula at the point 2x , we have 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2 2 2 2 2

2 22 2 2 2 2
2

0

2 2

2 .
!

n n
n

n

U x V x U x V x

U x V x U x V x
x

n

ε ε

ε
≥

+ − +

−
= +∑

 

Now, 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( )

2 22 2 2 2 2 2
2

2 22 2

1

2
!

– 1 2
1

1 2

n n
n

n
n n

U x V x U x V x
x

n

U V U V

ε

ε
λ ε

ε −

−
+

′ ′ +
≤ +

+

. 

But we have n nλ ≤ , hence 

( ) ( )
( )

( )( ) ( ) ( ) ( )

2
2 2

2
0

2 22 2 2 12 1 2 .
1 2

q
n

jn n q
j j

q j

n

Un
U V

q V

n x U V U V εε ε
ε

−

=

  
=        

+ ′ ′≤ + − +  + 

∑
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And we notice that 1lim 0
1 2

n

n n ε
ε→+∞

+  = + 
. Consequently, we can define 

1
1max

1 2

n

nB n ε
ε≥

+ =
 
  


 +  
 and we have 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 2 2 2 2 2

2 22 2

2 2

1 2 1 2 ,

U x V x U x V x

B U V U V

ε ε

ε ε

+ − +

′ ′≤ + − +
 

( ) ( ) ( )2 20,1 2 , 2 0,1 .x d x dε ε ε∀ ∈ + + ∈ +  

We can check that the function h defined in ( )0,+∞  as 

( ) ( )
( )1

1 2

l

h l l
εεε ε

ε

++ + = +  + 
 

reaches it maximum at the point 
1

1 2log
1

u
ε
ε

=
+
+

.  

Consequently, 1
1 2log
1

B
e ε

ε

≤
+ 

 + 

 and therefore  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2 2 2 2 2 2

2 22

2 2

1 2 1 2
.

1 2log
1

U x V x U x V x

U U V

e

ε ε

ε ε

ε
ε

+ − +

′ ′+ − +
≤

+ 
 + 

   

Theorem 3. Let jf  be a general meromorphic function on   such that, for 

some 0ε ≥ , 
jfφ∑  satisfies ( )( )( )( )21 1

j

l
f l εφ ε ε ε +

∑ + + +  in ( )1,+∞ . If jf ′  

has finitely many zeros, then jf  is a rational function. 

Proof. Suppose jf ′  has finitely many zeros. If 2V  is a constant, the statement 

is immediate. So, we suppose 2V  is not a constant and hence it admits at least 
one zero 𝑎𝑎. By Lemma 4, there exists a polynomial 2P x ∈    such that 

( ) ( ) ( )22 22 2U V U V P V′ ′− =  . Next, we take 0 ε< < ∞  such that 1a ε< +  

and ( )( ) ( )( )2 20, 1 , 0, 1x d y dε ε∈ + ∈ + . By Lemma 6 we have 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2 2 2 2 2 2 2 2

2 22 21 2 1 2
.

1 2log
1

U x y V x U x V x y

U V U V

e

ε ε

ε
ε

+ − +

′ ′+ − +
≤

+ 
 + 

 

Notice that ( )2 0U a ≠  because 2U  and 2V  have no common zero. Now 

set ( )max 1,l a=  and take 0ε ≥ . Setting 
( )1 2

1c
e U a

= , we have 
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( )
( ) ( ) ( ) ( )

2

2 2
1

1 2 1 2 1 2
.

1 2log
1

P V
V a y c

ε ε ε

ε
ε

+ + +
+ ≤

+ 
 + 



 

Then taking the supremum of ( )2 2V a y+  inside the disc ( )( )0, 1d ε+ , we 
can derive 

( )
( ) ( ) ( ) ( )

2

2
1

1 2 1 2 1 2
1 .

1 2log
1

P V
V c

ε ε ε
ε

ε
ε

+ + +
+ ≤

+ 
 + 



           (5) 

Let us apply Lemma 3, by taking ( )( )21 1l εε ε ++ = , after noticing that the 
number of zeros of ( )2 1 2V ε+  is bounded by ( )2 1 2

V
ψ ε+ . So, we have 

 ( ) ( )
( )

( )

( ) ( )
2 1 2

2 2
1 2 1 1 .

1

V

lV V
ψ ε

εε ε
ε

+
 
 + ≤ + +
 + 

            (6) 

Now, due to the hypothesis: ( ) ( ) ( )( )( )
2

21 1 1
j

l
fV

l εψ ε φ ε ε ε +

∑+ = + ≤ + +  in 
[ )1,+∞ , we have 

( )

( )

( )

( ) ( )
( )

( )

( ) ( )
( )

( )

( )

2

2 11 2
1

2

1

1 1
1 1

exp 1 log 1 .
1 1

l

lV
l l

l l

l

l ll

ε
εψ ε ε ε
ε

ε

ε

ε ε
ε ε

ε εε ε
ε ε

+

−

    + + + +  +   

+

− −

   
   + ≤ +
   + +   

    
    = + + + +
    + +     

      (7) 

The function ( ) ( )( )( )

( )
21 1 2 log 1

1
l

lh l dε εε ε ε
ε

+  
 + = + + +
 + 

 is continuous 

on ( )0,+∞  and equivalent to 
1
l ε

ε
+
+

 when ( )1 ε+  tends to +∞ . Conse-

quently, it is bounded on [ ),l +∞ . Therefore, by (5) and (6) there exists a con-
stant 0M >  such that, for all 0 ε< < ∞  by (6) we obtain 

( ) ( )
( )

( ) ( )
2 2

11 1 .
1 lV M Vεε ε

ε −+ + +
+

                (8) 

On the other hand, ( )
( )

( )
( )1log 1 log 1 log 1

1 1l l

ε εε ε
ε ε−

   
   + + − + = +
   + +   

 

clearly satisfies an inequality of the form 
( ) ( )

2
1log 1

1 1l l

c εε
ε ε −

 
 + ≥
 + + 

 in 

[ ),l +∞  with 2 0c > . Moreover, we can obviously find positive constants 3 4,c c  
such that 

( )
( )

( )
( )

( ) 4
31 11 1 1 .

1 1
c

l lP cε εε ε ε
ε ε− −

   
   + + + + +
   + +   

 

Consequently, by (5) and (6) we can find positive constants 5 6,c c  such that 
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( ) ( ) ( )62 2
51 1 1 ,0 .cV c Vε ε ε ε+ ≤ + + < < ∞  

Thus, writing again ( ) ( )222V V V=  , we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )62 22
51 1 1 1cV V c Vε ε ε ε+ + ≤ + +   and hence  

( ) ( ) 6
2

51 ,0cV c rε ε+ ≤ < < ∞ , consequently, by Lemma 4, ( )2
V  is a polynomi-

al of degree 6c≤  and hence it has finitely many zeros and so does. And then, by 
Theorem 1, jf  must be a rational function.   

Corollary 3. Let jf  be a general meromorphic function on  . Suppose that 
there exist 0ε > , such that ( ) ( )( )1 1 , 0

j

d
f lτ ε ε ε ε∑ + ≤ + + ∀ > . 

If n
jjf f b′ −  has finitely many zeros for some b∈ , with n∈  then jf  

is a rational function.   
Proof. Suppose jf  is transcendental. Due to hypothesis, 1

j
nf +  satisfies 

( ) ( ) ( )( )( )

1 1

1 2
1 11 1 1 1 , 0

n n
j jf f

c n εθ ε τ ε ε ε
+ +

+

∑ ∑

+ = + ≤ + + ∀ >   

hence by Theorem 3, n
jjf f′  has no practically exceptional value.   

Corollary 4. Let jf  be a transcendental general meromorphic function on 
  such that, for some ( ), 2 0,l lε ε+ + ∈ +∞ , we have  

( ) ( )( )( )1 1 l
f l εθ ε ε ε +
′ + ≤ + +  in [ )1,+∞ . Then for every b∈ , b∈ , 

jf b′ −  has infinitely many zeros. 
Proof. Suppose jf ′  admits a practically exceptional value *b∈ . 

Then jf ′  is of the form P
h

 with 2P x∈     and h a transcendental entire 

function.  

Consequently there exists 0S >  such that ( )
( ) ( )
1

, 1
1

P
b S

h
ε

ε
ε

+
< ∀ + >

+
 and 

hence ( ) ( )1 , 1jf b Sε ε′ + = ∀ + > . Then by Lemma 3, the numbers of zeros and 

poles of jf ′  in disks ( )0,d r  are equal when ( )1 Sε+ > . So, there exists S S′  

such that for every ( )1 Sε ′+ >  we have 

( ) ( )1 1 .
j jf fτ ε θ ε′ ′∑ ∑+ = +                  (9) 

On the other hand, of course we have ( ) ( )1 1
j jf fτ ε τ ε′∑ ∑+ < + , hence by (9) 

and by hypothesis of corollary 4, we have ( ) ( )( )21 1
j

l
f

ετ ε ε +

∑ + < + . Therefore by 
Theorem 2, jf ′  has no practically exceptional value, a contradiction.   
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