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Abstract 
In this note, we provide an effective proof of the fundamental structure theo-
rem of finitely generated modules over a principal ideal domain, from which 
we find the minimality of decomposition for a finitely generated module over 
a principal ideal domain. 
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1. Introduction 

In the late 1920s, influenced by the mathematics trend at that time, axiom of li-
near algebra has been formed. At the same time, German algebraist Emmy 
Noether was the first to realize the potential of the concept of module. Further-
more, the concept of module builds a bridge between the representation theory 
of finite groups and the theory of algebraic structures. The module concept 
communicates these two independent and parallel development theories in al-
gebra, and gradually becomes a powerful and important tool in modern algebra. 
Module theory plays an important role in many algebraic research fields. The 
classification in algebra is often a topic, that is, portraying all possible different 
types of algebraic structures. As one kind of algebraic structure, the classification 
of finitely generated modules over R is the central issues of module theory or 
ring theory. Regarding the classification of R-module, the R-module is a linear 
space when R is a domain. It is know that the necessary and sufficient condition 
for linear space isomorphism is that the two spaces have the same dimension 
which has been completely classified. When it comes to a general ring R, the 
R-module is a linear space defined over the ring R macroscopically. However, 
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the specific classification work is difficult. For the case where R is the principal 
ideal domain (PID for short), the Main Fundamental Theorem for finitely gen-
erated modules has complete the classification of the finitely generated R-module. 
The proof of the Main Fundamental Theorem can be found with classic methods 
from [1] [2] [3]. 

This article is based on the concept of “natural generation”, and pays full at-
tention to the replacement of domain to ring. Based on the natural transfer of 
knowledge, the note will use the language of matrix to prove this basic theorem 
again. The purpose is to prove this classic theorem with more concise knowledge 
information. The language description and processing methods in this article are 
consistent with the linear transformation language in advanced mathematics. As 
a result, it is more conducive to learners to learn and use the Main Fundamental 
Theorem over the principal ideal domain D. 

This note will provide a brief self-contained proof process. And this paper is 
mainly completed according to the following ideas. The basic concepts and 
symbols of the basic module and ring theory will be given for the further work at 
first. Then use properties of the ideal of D to introduce a special matrix A over D 
and give an important property of such matrix. Subsequently, combine the tool 
of D-matrix A with the minimum decomposition of D-modules M. Main Fun-
damental Theorem will be obtained by using contradiction. As a result of the 
proof, it is not difficult to conclude that there is a unique minimal one among all 
decompositions of a finitely generated module M over D. 

2. Preliminaries 

First of all, some basic definitions will be used in this paper. Throughout this 
note, let R be an arbitrary ring and denote D as a principal ideal domain (PID) 
especially. M is a (left) module over a ring R. And there are some foundations of 
module and ring theory needed. 

1) M is said to be a direct sum of sub-R modules A and B if M A B= +  and 
0A B = . Then A and B are called direct summands, and denote that 

M A B= ⊕ . 
In the case M A B= ⊕ , every x M∈  can be uniquely written as x a b= +  

with ,a A b B∈ ∈ . 
2) For a given element x in M, ( )ann x  is the set { }| 0d R dx R∈ = ∈ . 
It is well known that ( )ann x  is an ideal of R, and then call ( )ann x  the an-

nilator of x. 
3) For non-negative integers ( )2 2, 0a b a b+ ≠ , ( ),gcd a b  represent the 

greatest common divisor of a and b. 
As is known, there exist an integer pair , ,u v  such that ( ),gcd a b ua vb= + . 
In the next discussion, M is a D-module. Let us recall the main fundamental 

theorem as mentioned in [1] [2]. 
Theorem 2.1. If M is a finitely generated module over D, the following two 

results hold: 
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i) M is a direct sum of cyclic modules: 1 2 sM Dx Dx Dx= ⊕ ⊕ ⊕  such that 

iannx  satisfy 

2 1 .sannx annx annx D⊆ ⊆ ⊆ ≠                (2.1) 

ii) Let 1 2 1 2s tM Dx Dx Dx Dy Dy Dy= ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕  , where 

2 1sannx annx annx D⊆ ⊆ ⊆ ≠                 (2.2) 

and 

2 1 .tanny anny anny D⊆ ⊆ ⊆ ≠                (2.3) 

Then s t=  and k kannx anny=  for 1 k s≤ ≤ . 
Before giving our proof, we need some preparations. 
Lemma 2.2. There exists a unique decomposition 1 2

1 2
l

ld up p pαα α=   for any 
nonzero d D∈ , where u is a unit, ip  are different prime elements of D and 

iα ∈  for 1,2, ,i l=  . 
Compared to the definition of the set of lengths of elements in monoid in [4], 

the definition of length of d D∈  can be given certainly since Lemma 2.2. 
Next give the length ( )l d  of d D∈ . 
Definition 2.3. For each element d in D, call  

( )
1 2

1 2
1

0, is a unit

, l
l

i l
i

d
l d

d up p pαα αα
=


=  =
∑ 

 the length of d. 

In addition, let ( )0l = +∞  for convention. 
Consequently, the length ( )l d  of d is well-defined for any elements in D. 

And the following proposition is the key to re-prove the Theorem 2.1. 
Proposition 2.4. Suppose that 1 2, , , na a a  are coprime elements in D, then 

there exists an n n× -matrix 1 2 1n na a a a
A

B
− 

=  
 



 such that det 1A = . 

Proof. Now we use induction on n to verify this proposition. 
Let 2n = , we have ( )1 2, 1, ia a a D= ∈ . Consequently, there are two elements 

1 2,b b D∈  such that 1 1 2 2 1a b a b− = . Choose the matrix 

1 2
1

2 1

.
a a

A
b b
 

=  
 

                       (2.4) 

It is obvious that 1det 1A = . 
Now suppose that the statement is right for the case 1n − . In general case, 

firstly, let ( )1 2 1, , , na a a d− = , it is clear that 0d ≠ . By inductive hypothesis, 
there exists a ( ) ( )1 1n n− × − -matrix 

11 2

2,1 2,2 2, 12

1,1 1,2 1, 1

n

n

n n n n

aa a
d d d

b b bA

b b b

−

−

− − − −

 
 
 
 =
 
 
 
 





  



                (2.5) 

such that 2det 1A = . 
Thanks to ( ), 1nd a = , we have 1npd qa− = , where ,p q D∈ . We construct 
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( ) ( ) ( )

1 2 1

2,1 2,2 2, 1

1,1 1,2 1, 1

1 2 1

0

.
0

1 1 1

n n

n

n n n n
n n n

n

a a a a
b b b

A
b b b

qa qa qa
p

d d d

−

−

− − − −

−

 
 
 
 

=  
 
 − − −  
 





   





        (2.6) 

It is easy to see that det 1A = , which implies the statement is right in the case 
of n. Thus, this proposition has been verified. 

Remark 2.5. More generally, let ( )m nP M D×∈ , m n≤  such that the m-rank 

determinant factors of P are 1, then there exists a matrix 
P 

 ∗ 
. 

3. Proof of the Main Fundamental Theorem 

Now we turn to give the self-contained proof of Theorem 2.1. The work will be 
achieved by contradiction on the consideration of the minimal decomposition of 
D-module M. 

The proof of Theorem 2.1. Firstly, we check the existence. If 0M =  is tri-
vial, it is clear. For any nontrivial module 

1 2 .nM Dw Dw Dw= + + +                   (3.1) 

Since D is a PID, there exists ic D∈  such that the ideals ( )i iannw c=  for 
1,2, ,i n=  . Without loss of generality, we can assume that each ic  is not a 

unit. If not, then we have 0iDw = . On the other hand, we also assume that 
, 1, 2, ,iannw D i n≠ =  . Using the definition of length, we can assume  

( ) ( ) ( )1 2 nl c l c l c≤ ≤ ≤  after reordering. 
Using the above notations, corresponding to any decomposition of  

1 2 nM Dw Dw Dw= + + + , there exists an 1n + -tuple array  
( ) ( ) ( )( )1 2, , , , nn l c l c l c . Let   be the set of all arrays, corresponding to all 

decompositions of M. 
Clearly,   is a totally ordered set under the lexicographical order. There ex-

ists a minimal element in   with respect to the lexicographical order. We de-
note by ( ) ( ) ( )( )1 2, , , , ss l d l d l d  the minimal element of  , corresponding 
to the decomposition of M as follows: 

2 2 sM Dx Dx Dx= + + +                    (3.2) 

such that ( )i iannx d=  and ( ) ( ) ( )1 2 sl d l d l d≤ ≤ ≤ . 
Now we try to use the minimality to check the existence and the uniqueness of 

the fundamental structure theorem of M. In fact, for the above minimal decom-
position, we have that 

1i iannx annx+ ⊆                         (3.3) 

for 1, , 1i s= − . 
If not, there exist some i such that 1i iannx annx+  , namely, 1i id d +  for 

some 1 1i s≤ ≤ − . Let i be the minimal index, then 
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( )1, 0.i igcd d d c+ = ≠                     (3.4) 

It is clear that ( ) ( ) ( ) ( )1,i il c l d l c l d +< < . 
Using Lemma 2.2, there exists a matrix 1A  with 1det 1A =  as follows, 

1
1 .i id d

A +′ ′ 
=  ∗ ∗ 

                      (3.5) 

Now we construct two elements ix′  and 1ix +′  as follows: 

1

1 1

,i ii i

i i

x xd d
x x

+

+ +

′ ′ ′    
=    ′ ∗ ∗    

                  (3.6) 

thanks to 1A  is invertible, hence we have 

2 2 1 1 2 .i i i i sM Dx Dx Dx Dx Dx Dx Dx− + +′ ′= + + + + + + + +       (3.7) 

Here we denote ( )iannx a′ = . It is easy to see that ( )c a∈ , consequently, 

( ) ( ) ( )1 ,il a l c l d +≤ <                     (3.8) 

which is a contradiction to the minimality. 
Next, we want to check that 

1 2 .sM Dx Dx Dx= ⊕ ⊕ ⊕                   (3.9) 

Otherwise, let us consider the following sequence of submodules: 

1 1 2

1 1 2 1

;

.m m

M Dx Dx

M Dx Dx Dx− −

= ⊕


 = ⊕ ⊕ ⊕





              (3.10) 

Without loss of generality, we suppose that 1 2 mDx Dx Dx⊕ ⊕ ⊕  is not true 
for the least m. So we can find a nonzero element 1m m m ma x M Dx−∈  , more 
precisely, there exist nonzero elements 1 1, , ma a D− ∈  and  

1 1 1 1 1m m ma x a x M− − −+ + ∈  such that 

1 1 1 1 0.m m m ma x a x a x− −+ + + =                 (3.11) 

Let ( )1, , md gcd a a=  , it is clear that 0d ≠ . And 

( )1, , 1,mgcd a a′ ′ =                     (3.12) 

where 1
i ia a d −′ = . 

It is a consequence of Lemma 2.2 that there exists an m m× -matrix B with 
det 1B = , 

1 2 1 .
  

m ma a a a
B

C
−′ ′ ′ ′ 

=  
 



                (3.13) 

Similarly, since B is invertible, we can construct new generators 1, , mx x′ ′
  of 

M, which can replace the original generators 1, , mx x  as follows, 

1 1
1 2 1 .

  
m m

m m

x x
a a a a

C
x x

−

′   
′ ′ ′ ′    =         ′   



 
             (3.14) 

Note that 1 1 1 m mx a x a x′ ′ ′= + + , suppose that ( )1annx d′ ′=  for some d D′∈ . 
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On the other hand, we have 1 0dx′ =  for (3.11). Immediately, we have |d d′ . If 
d d′ = , then 0m ma x = , which is impossible. Hence ( ) ( )l d l d′ < , which is a 
contradiction for the minimality of the decomposition of M. 

So far we are left to check the uniqueness. If there exist two decompositions 

1 2 1 2 ,s tM Dx Dx Dx Dy Dy Dy= ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕         (3.15) 

such that 

2 1sannx annx annx D⊆ ⊆ ⊆ ≠                (3.16) 

and 

2 1 .tanny anny anny D⊆ ⊆ ⊆ ≠                (3.17) 

Let us denote that ( ) ( ),i i j jannx d anny e= =  for some ,i jd e D∈ . Since 
{ }1 2, , , sx x x  and { }1 2, , , ty y y  are both generators sets of M, they can be 
D-represented by each other, i.e., there exist ( ) ( ),st tsP M D Q M D∈ ∈  such 
that 

1 1 1 1

2 2 2 2,    .st ts

s t t s

x y y x
x y y x

P Q

x y y x

       
       
       = =
       
       
       

   

              (3.18) 

It can be immediately gotten that 

1 1

2 2 .

s s

x x
x x

PQ

x x

   
   
   =
   
   
   

 

                     (3.19) 

Hence, ( )1 sPQ I mod d= , which implies that s t≤ . Similarly, we can get 
t s≤ . That is s t= . 

Thanks to ( )i iannx d= , we have the following two decompositions of direct 
sum of modules, 

( ) ( ) ( ) ( )1 1 1 .i i i i i i sd M D d x D d x D d y D d y−= ⊕ ⊕ = ⊕ ⊕      (3.20) 

From the above process, the numbers of the direct summand of the two de-
compositions are the same, which forces i iannx anny=  for 1 i s≤ ≤ . So far, we 
have completed the proof of the fundamental structure theorem for a finitely 
generated module over PID. 

  
It is easy to see that the minimality plays an important role in the above proof, 

which reveals the following remark. 
Remark 3.1. There exists an unique minimal decomposition for all finitely gen-

erated modules over PID. 

4. Conclusion 

This brief investigated the Main Fundamental Theorem with a new proof me-
thod. The present research was based on the classic proofs of [2] and [1], and 
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improved readers’ understanding of the Main Fundamental Theorem. Indeed, 
the property that any finitely generated module over PID has an unique minimal 
decomposition should be focused. It is hoped that our work can be extended to 
the study under the Dedeking domain (DD for short) that is similar to PID in 
some algebraic features, or more general king. 
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