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Abstract 
Scattering theory plays the main role in the study of manifolds and the Lapla-
cian spectrum. In this article, we process justifying the continuous Laplacian 
spectrum 

ig∆  and 
ih∆  on a complete Riemannian manifold. ( ), iM g  is 

categorized by the use of bounded curvature of the metric. In particular, the 
covariant derivative is limitedly considered as an application in the geodesic 
distance from a fixed point. 
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1. Introduction 

A great number of researchers referred to the connection between, time-dependent, 
time-independent, Laplacian, manifold, wave operators, matrices, Riemannian 
metric, and Schrödinger equation linked to the theory of scattering. 

For example, Itoa, K. and Skibsted, E. in [1] included time-dependent scatter-
ing theory along with allowed range perturbation and scattering by obstacles. 
The “independent” and “dependent” scattering by particles has been studied in 
appropriate single-particle, and examples of independent scattering are de-
scribed by Michael I. Mishchenko, see [2]. The scattering theory for the Lapla-
cian on symmetric spaces of a non-compact type in the frame work of Ag-
mon-Hörmander has been updated by Koichi Kaizuka in [3]. Thierry Cazenave 
and Ivan Naumk in [4] modified scattering for the critical nonlinear Schrödinger 
equation. The exhibited conditions under which the stationary wave operators 
and the strong wave operators exist and coincide have been discussed by R. Tie-
dra de Aldecoa [5]. The scattering matrices for dissipative quantum system and 
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Neumann maps have been studied by many authors see [6] [7]. Subsequently, 
Rainer Hempel, Olaf Post, and Ricardo Weder [8] obtained the existence and 
completeness of the wave operators for perturbations of the Riemannian metric 
for the Laplacian on a complete manifold of dimension. 

In this paper, we follow the exact reviews and approaches of Werner Muller 
and Corm Salomonsen in [9] with a slight change. The current study contributes 
to the expansion of the knowledge in this field by addressing the scattering 
theory for the Laplacian spectrum (

ig∆  and 
ih∆ ) on the manifold with 

bounded curvature comparison dynamics. 
Definition 1. Let [ ): 0,β ∞ →   be a positive, continuous, non-increasing 

function. Then β  is called a function of moderate decay, if it satisfies the fol-
lowing condition: 

(i) ) ( )1,supx x xβ∈ ∞
< ∞ ; 

(ii) ( ) ( ) ( )0 : , , 1C x y C x y x yβ ββ β β∃ > + ≥ ≥                        (1) 

Further β  is called of sub-exponential decay if for any 0c > , ( )ecx xβ →∞ . 
As x →∞ . 

Definition 2. Let β  be a function of moderate decay. Two metrics 
,g h M∈  are said to be β -equivalent up to order k if There exist q M∈  and 

0C >  such that for all x M∈  we have ( ) ( )( )1 ,k
ggg h x C d x qβ− ≤ +  holds. 

In this case, we write ~kg hβ . 
Definition 3. Let 0s > . For 0s ε> ≥  let ( ) { }, ;K M g sε ∈ ∞  be the 

smallest number such that there exists a sequence { } 1i i
x ∞

=
 such that  

( ){ } ( )3sup # , ;S i
x M

i x B x K M g sε ε+
∈

∈ ∈ ≤  Further, let  
( ) ( )0, ; , ;K M g s K M g s=  put 

( ), ; 1.k M g s =  
Definition 4. Let ( ),M g  be a complete. Then ( ) ( )2: cC M L M∞∆ →  is es-

sentially self-adjoint and function ( )Δf  can be defined by the spectral theo-

rem for unbounded self-adjoint operators by ( ) ( ) ( )0
Δ df f E λλ

∞
= ∫ , where  

( )dE λ  is the projection spectral measure associated with Δ . Let ( )1f L∈   be 
even and let ( ) ( ) ( )ˆ cos df f x x xλ λ

∞

−∞
= ∫ . Then ( )Δf  can also be defined by 

( ) ( ) ( )1Δ cos Δ d .
2

f f λ λ λ
∞

−∞
=

π ∫
                 (2) 

Eichhorn, Proposition 2.1 in [10] has shown that M can be endowed with a 
canonical topology given by a metrizable uniform structure. For a given Rieman-
nian metric ig  on M, denote by ig∇  the Levi-Civita connection 2.5 in [11] of g 
and by 0 g  the norm induced by g in the fibers of ( ), 0

q
p q TM T M ⊗

≥⊕ ⊗  . Let 
h be any other Riemannian metric on M. For 0k ≥  set  

( )

( )( ) ( ) ( ) ( )
1

1
1 0 , ,

i

k
i ii g

jk g g h
i ii jg

g h x

g h x x x M

∞

=

∞ −

= =

−

 = − + ∇ ∇ −∇ ∈ 
 

∑
∑ ∑

       (3) 
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and ( ) ( )( )1 1sup
i i

k k
i i i ii ig g

x M
g h g h x∞ ∞

= =
∈

− = −∑ ∑ . Recall that two metrics ,i ig h  

are said to be quasi-isometric if there exist 1 2, 0C C >  such that 

( ) ( ) ( )1 21g i giC x h x C x∞

=
≤ ≤∑ , for all x M∈             (4) 

in the sense of positive definite quadratic forms. We shall write ~i ig h  for qu-
asi-isometric metrics ig  and ih . If g and h are quasi-isometric, then (4) im-
plies that for all , 0p q ≥ , there exist , , 0P q p qA B >  such that for every tensor 
field T on M of bidegree ( ),p q  we have 

( ) ( ) ( ), ,1 ,
ip q p qi h gA T x T x B T x x M∞

=
≤ ≤ ∈∑            (5) 

2. Theorems and Lemmas 

Lemma 1. Let β  be of moderate decay. Then there exist a constants 0C >  
and 0c >  such that,  

( ) [ )e , 1,cxx C xβ −≥ ∈ ∞                      (6) 

Lemma 2. Let ,g h CM∈  be quasi-isometric. For every 0k ≥ , there exists a 
polynomial ( )1, ,k kP X X  depending on the quasi-isometry constants, with 
nonnegative coefficients and vanishing constant term, such that 

( )

( ) ( ) ( ) ( ) ( )
1

, , , ,

k
h

kg h g g h
k g g g

g h x

P g h x x x x M
−

−

 
≤ − ∇ −∇ ∇ ∇ −∇ ∈ 

 


 
Proof. From (4) follows that ( ) ( )3h hg h x C g h x− ≤ −  and 

( ) ( )4 ,g h g h
h g

x C x x M∇ −∇ ≤ ∇ −∇ ∈ .              (7) 

This is as important as the first two terms in (3) and deals with the question 
for 0,1k = . Now we shall proceed by induction. Let 2k ≥  and suppose that 
the lemma holds for 1l k≤ − . For each, 0p ≤  we have 

( ) ( ) ( ) ( ) ( )( ) ( )1 1p p ph h g g h h g h g h h g− −
∇ ∇ −∇ = ∇ ∇ ∇ −∇ + ∇ −∇ ∇ ∇ −∇   (8) 

Let p k≤  using (7), (6) and the hypothesis, we can estimate the point wise h 
norm the second term on the right-hand side of (8) in desired way deal with the 
first term. We use the formula 

( ) ( ) ( )
( )( ) ( )( ) ( ) ( ) ( )( )( ) ( )1 1 1

.

p lg h h g

p l p lg h h g g h g h h g+ − −

∇ ∇ ∇ −∇

= ∇ ∇ ∇ −∇ + ∇ ∇ −∇ ∇ ∇ −∇
 

Applying the Leibniz rule, we get 

( ) ( )( )( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )

1

1

0

p lg h g h h g

g

p i p i lg h g g h h g

g gi

x

C x x

−

− −

=

∇ ∇ −∇ ∇ ∇ −∇

≤ ∇ ∇ −∇ ⋅ ∇ ∇ ∇ −∇∑
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for some 0C >  and all x M∈ .Inserting (8) and iterating these formulas re-
duces everything to the induction hypothesis. 

Lemma 3. Let β  be a function of moderate decay. Then for all , ,x y q M∈ , 
we have 

( )( ) ( )( )
( )( ) ( )( )

1 , 11 ,
1 , 1 ,

d x q
C d x y

d y q C d x yβ
β

β
β

β β

+
+ ≤ ≤

+ +
        (9) 

Moreover, for every q M′∈  there exists a constant 0C > , depending only 
on q and q′  such that 

( )( ) ( )( ) ( )( )1 1 , 1 , 1 ,C d x q d x q d x qβ β β− ′ ′+ ≤ + ≤ + . 

Lemma 4. There exists a constant 0C >  depend only on K such that 

( ) ( ) ( ) ( )1 ,en n K d x pi x Ci p − −≥                    (10) 

for all ,x p M∈ . 
Lemma 5. For ( )0r i x≤  ,  

( )

( )( )
( )1 1

2 2

00 0

2 sin 2 sind d
Γ Γ

2 2

n nn n
r r

r
t K h Kt VOL B x t

n nK K

− −
   π π

≤ ≤               
   

∫ ∫  

We note that the inequality on the right-hand side holds for all r∈ . In 

particular ( )( ) ( )( )1
0 0 e n Kr

rVol B x −=  as r →∞ . 

It is also important to know the maximal possible decay of the injectivity ra-
dius. 

Lemma 6. ( ), ;k M g sε  finite for all s ε> . Moreover, there exist constants 

, 0C c > , which depend only on K, such that for 2s
K

επ
> + , we have 

( ), ; ecsk M g s Cε ≤ . 
Lemma 7. Let 1k ≥  be even. Assume that M has bounded curvature of order 

k. Let 0k >  be such that ( )2
0sup k l

x M l R x k∈ =
∇ ≤∑ , there exist constants 

( )0 0 0r r k= >  and ( ) 0C C k= >  such that for all 0x M∈  and  

( ){ }0 0min ,ir r r x≤   one has ( )( ) ( )( )2 2
0 01 1K k

r ri i
i ii iW B x H B xu C u∞ ∞

= =
≤∑ ∑  for all 

( )( )0 0ii ru C B x∞∈ . 

Lemma 8. Let k ∈  be even. Suppose that ( ), iM g  has bounded curva-
ture of order 2k Let : Mβ +→   be a function of moderate decay. Then there 
exists a canonical bounded inclusions ( ) ( )~ 2kn

k kH M W M
τ

ββ − →  and  
( ) ( )~2kn

k kH M W Mβ βτ
→  

Proof. By Theorem (2.6) in [9] in M there exist a covering 
( )

( )1
2

ik
ii x

B xτ
∞

=∑


 

of M by balls and a constant 0C >  such that 

( ) ( )1: ii ii x
x M x x B x C

τ

∞

=

 ∀ ∈ ∈ ≤ 
 

∑


               (11) 

Let ( )Cϕ ∞∈   go be such that 1ϕ =  on [ ]0,1  and 0ϕ =  on [ )2,∞  for 
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x M∈  and 1 j k≤ ≤ , we define 

( )
( )
( ) ( ) ( )

1,
1

,
2 , ;

0, otherwise.

k
jk

x
jj x

j

d x y
y B x

y x τϕ
ϕ τ=

=

  
∈   =   




∑∑ 



 
then ( ), 01

k
j xj C Mϕ ∞

=
∈∑ . Let ( )kf H M∈ . Using Lemma 6, it follows that 

( )( ),
k

j x xf H B xτϕ ∈


. Then by Lemma 7, we get ( )( ),
k

j x xf W B xτϕ ∈


 and by 

the Leibniz rule there is 0C >  such that 

( ) ( ) ( ) ( ), ,1 0 ,k jj p j p
k x k xj p g gg

f y C y f y y Mϕ ϕ −
= =
∇ ≤ ∇ ⋅ ∇ ∈∑ ∑ . 

By estimating the supremum-norm of the derivatives of ,k xϕ  and using 
Lemma 7, we get 

( )
( ) ( )

( )
( ) ( )

1

1

, 1,
12

1,
12

kk k p
k

k k p
k

k

k x k xWW Wx p

k
p

k xH Hx p

k
f C f B x C x f

p

k
C f B x C x f

p

τ

τ

ϕ ϕ

τ ϕ

−
−

−
−

−
=

−
−

=

   ′≤ +       
   ′′≤ +       

∑

∑



 
By induction, this yields 

( )
( )
( ) ( )

1
, 1,

12

k k pki
k

k
K P

k x i k xH WW x p

k
f C x f B x C x f

pτϕ τ τ ϕ −
−

− −
−

=

   ′≤ +       
∑

   (12) 

Let kf Hβ∈ . By Lemma 7, (11) and (12) we get 

( ) ( ) ( )

( ) ( )
( )( )( )

1 1
2 2

, ,
1 1

1
2

1

k k ki i

k
xxi

k
i k x i i k xW W H

i i

k
i i H

i

f C x f x C x f

C x x f

β

βτ

β ϕ τ β ϕ

β τ

∞ ∞

= =

∞
−

=

≤ ≤

≤

∑ ∑

∑





 

By (10) there exists 1 0C >  such that ( ) ( ) 1
k kn

ix x Cτ τ− ≤   for all i∈  and 

( ) ( )
i ixx B xτ∈ . This implies ( ) ( )

( ) ( )( ) 2

1
2

21 k k
ix kni

k
i ii H B x Hx x f C f

τ βτ

β τ
−

∞ −
=

≤∑


 . 

Assume that ( ),M g  is complete. Then ( ) ( )2
0: C M L M∞∆ →  is essentially 

self-ad joint and function ( )Δf  can be defined by the spectral theorem for 

unbounded self-ad joint operators by ( ) ( )
0

Δ df f Eλλ
∞

= ∫ , where dEλ  is  

the projection spectral measure associate with Δ . Let ( )1f L∈   be even 
and let ( ) ( ) ( )cos df f x x xλ λ

∞

−∞
= ∫ , then ( )Δf  can also be defined by 

( ) ( ) ( )1Δ cos Δ d
2

f f λ λ λ
∞

−∞
=

π ∫
                (13) 

This representation has been used in [12] to study the kernel of ( )Δf  we 
will used (13) to study ( )Δf  as operator in weighted 2L -spaces. To this end 
we need to study ( )cos Δλ  as operator in ( )2L Mβ  given 0s > , let 

( ), ;K M g s  be the constant introduced in Definition (1.3). 
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Theorem 1. Assume that ( ),M g  has bounded curvature. Let β  be a func-
tion of moderate decay. Then ( )cos Δλ  extends to a bounded operator in 

( )2L Mβ  for all s∈  and there exist , 0C c > , such that 

( ) 2 2,
cos Δ e , .c s

L L
s C s

β β

≤ ∈                  (14) 

Moreover ( ) ( ) ( )2 2cos Δ :s L M L Mβ β→  is strongly continuous in S. 
Proof. Let 0s >  Choose a sequence { } 1k k

X M∞

=
⊂  which minimizes. 

( ), ;iM g sκ . For k ∈  let kP  denote the multiplication by the characteristic 

function of ( ) ( )1

0
\ k

s k s ii
B x B x−

=
. Then each kP  is an orthogonal projection in 

( )2L M  and ( )2L Mβ  respectively. Moreover the projections satisfy 0k kP P ′ =  

for k k ′≠  and 1 1kk P∞

=
=∑  where the series is strongly convergent. Obviously 

the image of kP  consists of functions with support in ( )s kB x . Now recall that 

( )cos Δτ  has unit propagation speed [13], i.e., ( ) ( )sup cos Δ sp B xττ δ ⊂  

for all x M∈  and τ ∈ . Let ( )2f L M∈ . Then it follows that  

( ) ( )2sup cos Δ k s kp s P f B x⊂  and  

( ) ( )( )( ) ( )
3 2sup cos Δ 1

s k s kB xp s f M B xχ− ⊂ −  Hence 

( ) ( ) ( )
( ) ( )

2

1

1

cos Δ cos Δ ,cos Δ

cos Δ ,cos Δ

kk

kk

s f s P f s f

s P f s

β β

∞

=

∞

=

=

=

∑

∑
        (15) 

Now observe that the norm of ( )Δs  as an operation in ( )2L M  is 
bounded by 1. This implies 

( ) ( ) ( )( )
( )

( ) ( )2 23 3
3

cos Δ ,cos Δ sup
s k s k

s k
k kB x B xL Ly B x

s P f s f y P f fχ β χ
∈

⋅≤
 

To estimate the right-hand side, we write  

( )
( ) ( )2 2

3

2 21 1sup
1 4s k

k kL L
y B x

y P f C P f
s βββ

β
−

∈
≤

+
 

Since the support of kP f  is contained in ( )s kB x  we can use (9) to estimate 

the right-hand side. This gives 
( )

( ) ( )2 2

3

2 21 1sup
1 4s k

k kL L
y B x

y P f C P f
s βββ

β
−

∈
≤

+
. A 

similar inequality holds with respect to ( ) 23sB k L
x fχ  putting the estimations 

together, we get 

( ) ( ) ( )( ) ( ) ( )2 23 3

1 1cos Δ ,cos Δ
1 6s k s kk kB x B xL L

s P f s f C P f f
S β β

βχ χ
β

−≤
+  

Now recall that by Lemma 6, we have ( ), ;M g sκ < ∞ . Hence together with 
(14) and (15) we obtain 

( ) ( ) ( ) ( ) ( ) 222 3

12 2 21 1 2

1

1 1cos Δ , ,
1 6 1 6s kB x LLL k

s f C f f C M g s f
s s βββ

β ββ
χ κ

β β

∞
− −

=

≤ ≤
+ +∑  
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Recall that by (1) we have ( ) ( )( ) 1
1 , ,x C d x p x Mβ

−
≤ + ∈ . Therefore, 

( ) ( )2 2L M L Mβ⊂ , and ( )2L M  is a dense subspace of ( )2L Mβ . This implies 
that ( )cos Δs  extends to a bounded operator in ( )2L Mβ . Moreover by (7) 
and Lemma 6, it follows that there exist constants , 0C c >  such that  

( ) [ )
2 2

2

,
cos e , 0,cs

L L
s C s

β β

∆ ≤ ∈ ∞ . Since ( ) ( )cos Δ cos Δs s− =  this extends 

to all s∈  such that holds. The strong continuity is a consequence of the lo-
cal bound of the norm and the strong continuity on the dense subspace 

( ) ( ) ( )2 2cos Δs L M L Mβ− ⊆ . Using Theorem 1, we can study ( )Δf  as an 

operator in ( )2L Mβ  given 0c ≥ , let ( ) ( ) ( ){ }d1 : ecc f L f λλλ <∞
∞

−∞
′ = ∈ ∫   . 

Lemma 9. Let β  a function of moderate decay. If λ  and λ  satisfy con-
ditions (b) of Corollary 4.3 in [9] then 

( ) ( ) ( )( )12 2Δ .H M L Mβ βλ −= −
 

Proof. First: note that ( )0C M∞  is dense in ( )2L Mβ . Indeed ( )0C M∞  is 
dense in ( )2L M  and ( )2L M  is dense in ( )2L Mβ . Let  

( ) ( )1 2
1 Δ ,i iif g g L Mβλ −∞

=
= − ∈∑ . Then there exists a sequence  

{ } ( )0i i
C Mϕ ∞

∈
⊂  which converges to 1 ii g∞

=∑  in ( )2L Mβ  and ( ) 1
iλ ϕ−∆ −  

converges to f in ( )2L M . Let ( )0L Mϕ ∞∈ . Then 

( ) ( )1 1, lim , lim , ,i i i if g fϕ λ ϕ ϕ λ λ ϕ ϕ λ ϕ− −
→∞ →∞∆ = ∆ − ∆ = + ∆ − = + . 

Thus ( ) ( )2
1 iif g f L Mβλ∞

=
∆ = + ∈∑  and hence ( )2f L Mβ∈  now suppose 

that ( )2f L Mβ∈  and set ( )g fλ= ∆ − . Then ( )2g L Mβ∈  and we need to show 
that ( ) 1

1 iif gλ −∞

=
= ∆ −∑ . Let ( )0C Mϕ ∞∈ . By definition of ( ) 1

1 ii gλ −∞

=
∆ −∑ , 

there exists a sequence { } ( )2
ig L M
∈

⊂


 such that ( ) 1
igλ −∆ −  converges to 

( ) 1 gλ −∆ −  in ( )2L Mβ  as i →∞ . Using this fact, we get 

( ) ( ) ( ) ( )1 11
1 1 1, , , .i i i ii i ig g fλ ϕ λ ϕ λ λ ϕ

− −−∞ ∞ ∞

= = =
∆ − = ∆ − = ∆ − ∆ −∑ ∑ ∑  (16) 

Now, observe that ( ) 1
1 iiλ ϕ− ∞

=
∆ − ∑  belongs to ( )2H M . By Lemma (3.1) in 

[9] there exists a sequence ( )1 ii Mϕ∞

=
⊂∑  which converges to ( ) 1

λ
−

∆ −  in 
( )2H M . Thus 

( ) ( ) ( )

( )

1

1

1

, lim ,

, , .

i ii

ii

f f

f f

λ λ ϕ λ ϕ

λ ϕ ϕ

− ∞
→∞ =

∞

=

∆ − ∆ − = ∆ −

= ∆ − =

∑

∑  

Together with (16) this implies that ( ) 1
igλ −∆ − . 

Lemma 10. Let β  be of moderate decay. Assume that ~k
i ig hβ  then the 

Sobolev spaces ( );k
iW M gξ  and ( );k

iW M hξ  are equivalent. 
Proof. First note that by Lemma 1.7 in [9] the metrics g and h are qua-

si-isometric. This implies that ( )2 ; iL M gξ  and ( )2 ; iL M hξ  are equivalent. So 
the statement of the lemma holds for 0k = . Let ( )f C M∞∈  and k ∈  by 
induction we will prove that for l k≤  there exists 1 0C >  such that for 
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0,a b∈ , a b l+ = ,  

( ) ( ) ( ) ( )
( )

( ) ( )0 , .i i

i

a b ia bg h g
l i

xh
f x C f x x M+

=
∇ ∇ ≤ ∇ ∈∑        (17) 

Let 1l = . Since on functions the connections equal, (17) follows from qua-
si-isometry of g and ih . Next suppose that (17) holds for 1 l k≤ < . To establish 
(17) for 1l + , we proceed by induction with respect to a. Let 0,a b∈  with 

1a b l+ = + . We may assume that 1a l< + . Using 

( ) ( ) ( ) ( )( )( ) ( )( ) ( )( )1 1 1

1 1
,i i i i i i i i

a b a b a bg h g h g h g h

i i
f f f

∞ ∞ − + −

= =

∇ ∇ = ∇ ∇ −∇ ∇ + ∇ ∇∑ ∑
 

and ~kg hβ , it follows that (17) holds for 1l + . Especially, putting 0a =  we 
get 

( ) ( ) ( ) ( )1 0 , , .i

ii

l ilh g
li i

gh
f x C f x x M l k∞

= =
∇ ≤ ∇ ∈ ≤∑ ∑        (18) 

Suppose that ( ) ( );k
if C M W M gξ

∞∈   then (18) implies that  

( ) ( );k
if C M W M hξ

∞∈   and ( ) ( ); ;k k
i iW M h W M gf C f

ξ ξ
≤ . 

By Lemma (3.1) in [9] ( ) ( );k
iC M W M gξ

∞
  is dense in ( );k

iW M gξ . 
Therefore this inequality holds for all ( ), if C M g∞∈ . By symmetry, a similar 
inequality holds with the roles of ig  and ih  inter-changed. This concludes the 
proof. 

Next we compare the Sobolev spaces ( )2 ;k
iH M gξ  and ( )2 ;k

iH M hξ . Let 
ig∆  

denote the Laplace operator with respect to the metric g. Recall, that 

( )*1 1
i i

i

g g
gi i

∞ ∞

= =
∆ = ∇ ∇∑ ∑ , and that the formal ad joint ( )*ig∇  of ( )ig∇  is 

given by ( ) ( )* 1 igg Tr g −∇ = − ∇ . Where ( )*1 1
i i

i

g g
gi i

∞ ∞

= =
∆ = ∇ ∇∑ ∑  is the iso-

morphism induced by the metric and *:Tr T M TM⊗ →   denotes 

( )*1 1
i i

i

g g
gi i

∞ ∞

= =
∆ = ∇ ∇∑ ∑  contraction. Since contraction commutes with cova-

riant differentiation and 1 0ig
ig −∇ = , we get the well-known formula  

( )1 2Tr g −∆ = − ∇ . This can be iterated. For ( )*
1

k

k T Mω ω
⊗

⊗ ⊗ ∈  define 

( ) ( )1 1
1 1 1 1:j k j j j kg gω ω ω ω ω ω ω− −

− +⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗   , and let ( )1
.i j jTr g −  

denote, ( )1
jg −  followed by the contraction of the ith and jth component using. 

That contraction commutes with covariant differentiation and 1 0ig
ig −∇ = , we 

get 

( ) ( ) ( )( )21 1
1,2 2 2 1,2 21 .

kkk g
g k k kTr g Tr g− −

−∆ = − ∇           (19) 

In more traditional notation this mean ( )
1 1 2 21 ;, ,1

i k kk

kk
g i i i i i ii if f∆ = − ∑





. For 

short notation we will write ( )( ) ( ) ( )1 1 1
1,2 2 2 1,2 2:

k

k k kTr g Tr g Tr g
⊗− − −

−=  . 

Lemma 11. Assume that 2~ k
ig β β . Then for each ,0 2l l k≤ ≤  and 
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,0 2j j l≤ ≤ , there exist section ( )( )*, ,
jg h

jl jl C Hom T Mξ ξ
⊗∞∈   such that 

( ) ( ) ( )2 2 2
0 0 0

j jk l ll l g g h h
g h jl jll j jξ ξ

= = =
−∆ = ∇ ∇∆ =∑ ∑ ∑   and there exists 0C <  

such that for 0 p l≤ ≤ , ( ) ( ) ( )2
0

pl g g
jlj x C xξ β

=
 ∇ ≤ 
 ∑ ,  

( ) ( ) ( )2
0

pl h h
jlj

h
x C xξ β

=
 ∇ ≤ 
 

∑ , x M∈ . 

Lemma 12. Assume that β  is a function of moderate decay and there exist 
real numbers ,a b  such that 

(i) 1b ≥ , and 2a b+ = ,  

(ii) ( )13
b

L Mβ ∈ ,  

(iii) ( ) ( )23
a

n n L Mβ τ − + ∞∈ . 

Let M β  be the operator of multiplication by β . Then the operator all 

2 ep t
nM Mτ β

∆−
− ∆  is a trace-class operator for β ∈  and t in a compact inter-

val, the trace-class norm is bounded. 

3. Main Results 

The main verification results are the following corollaries and lemma. 
Corollary 1. Let , 0K λ >  be given. There exists ( )0 0 , 0r r K λ= >  and 

( ) 0C C λ= >  such that for all 0ir r≤ , ( ), ,m
ip ll r Kε λ∈  and 0 ir

x B∈ . 

( ) ( ) ( )221 1m ir ri iri

n n
i u ii iW B L BL B

u C P u
= =

 ≤ + 
 

∑ ∑  for all ( )01 1 i

n n
i ri iu C B∞

= =
∈∑ ∑ . 

Proof. Let 1 0ir≥ >  and let ( ), ,m
iP ll r Kε λ∈ . Put ( )0 0mP a Dα

αα =
= ∑ .By 

lemma 17.1.2 in [14] there exists 1 0C >  which depends only on λ  such that 
for all ( )01 i

n
i ri u C B∞

=
∈∑ : 

( ) ( ) ( )( )2 201 1m
r r ri i i

n n
i i ii iW B L B L Bu C P u u

= =
≤ +∑ ∑ .          (20) 

Now ( )0 01 1 1
n n n

i i ii i ipu P u P P u
= = =

= + −∑ ∑ ∑ . Thus  

( ) ( ) ( ) ( ) ( )2 2201 1m
r r rri i ii

n n
i i i ii iW B L B L BL B

u C Pu P P u u
= =

 ≤ + − + 
 

∑ ∑ . Next observe 

that 

( ) ( ) ( )( ) ( )0
1 1 1

0
n n n

i i i
i i m i m

P P u a x a D u a x D uα α
α α α

α α= = = = <

− = − +∑ ∑ ∑ ∑ ∑
 

Hence by lemma 17.1.2 in [14]: 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )( )

2

1 1

1

01

1 1

1

ri

m O m
r r r ri i i i

m m
r ri i

n
ii L B

n n
i i ii m i mC B W B C B W B

n
i i ii W B W B

P P u

r a u a u

K r u u

α αα α −

−

=

= = = <

=

−

≤ +

≤ +

∑
∑ ∑ ∑ ∑
∑

  (21) 

By the Poincare inequality there exists 2 0C >  which is independent of 

1 1n
ii r

=
≤∑  such that for all ( )01 1 i

n n
i ri iu C B∞

= =
∈∑ ∑ :  

https://doi.org/10.4236/apm.2020.1011040


M. Y. Youssif, E. E. E. Dalam 
 

 

DOI: 10.4236/apm.2020.1011040 654 Advances in Pure Mathematics 
 

( ) ( )1 21 1m m
r ri i

n n
i i ii iW B W Bu rC u−= =

≤∑ ∑ . Using this inequality, it's follows from (21) 

that ( ) ( ) ( ) ( )201 1 m
rr ii

n n
i i ii i W BL B

P P u rC K u
= =

− ≤∑ ∑ . Together with (20) we get 

( )( ) ( ) ( ) ( )( )2 21
1

1 m
r r ri i i

n
n

i i i ii W B L B L B
i

rCC K u C Pu u
=

=

− ≤ +∑ ∑
 

Set 
( )0

1min 1,
2

r
CC K

  =  
  

 then it follows that for all 01
n

ii r r
=

≤∑  and 

( ) ( ) ( ) ( )( )2 20
1 1 1 1

: 2 .mi r r ri i i

n n n n

i r i i iW B L B L B
i i i i

u C B u C Pu u∞

= = = =

∈ ≤ +∑ ∑ ∑ ∑
 

Corollary 2. Assume ( ), iM g  has bounded curvature and let β  be func-
tions of moderate decay. Then there exists a constant ( ), ,iC C M g β=  such 
that for all functions ( )if c′∈ , the operator ( )Δif  extends to abounded 
operator in ( )2L Mβ . Moreover, there exists a constant ( )1 1 , , 0iC C M g β= >   

such that ( ) 12 2
.e

11 1,

ˆ
c

n n
ii i LL L

f C f
β β

= =
∆ ≤∑ ∑  for all if  as above. If ( ), ;iM g sκ  

is at most sub-exponentially increasing, then ( ), ; 0ic M g β >  can be chosen ar-
bitrarily. 

Proof. By Theorem 1, there exist constants , 0C c > , depending on 

( ), ,iM g β  such that ( ) 2 2

.

,
cos ec

L L
C

β β

∆ ≤ , for all s∈ . Let ( )2L Mϕ ∈  

using (15), it follows that ( ) 12
.e

1 1
ˆ

2 c

n n
j ij i LL

Cf f
β

ϕ
= =

∆ ≤
π

∑ ∑ . Since  

( ) ( )2 2L M L Mβ= , it follows from (2) that ( )Δf  extends to a bounded oper-

ator in ( )2L Mβ . The last statement is obvious. 

Corollary 3. Let β  be a function of moderate decay. Assume that there exist 
real numbers ,a b  such that: 

(i) 2a b+ = ,  
(ii) ( )1b L Mβ ∈ ,  

(iii) 
( ) ( )

1 1
2

n nat L Mβ
− + ∞∈ . 

Let M β  the operator of multiplication by β . Then for every 0p∈  the 

operator ( )1 e gi
i

tn p
giM β

− ∆

=
∆∑  is Hilbert-Schmidt. For ( )1e

n
iit g=− ∑  in a compact 

interval in +  the Hilbert-Schmidt norm is bounded. 

Proof. We have 
1 1
2 2e e ep t pM Mβ β

−
− ∆ ∆− ∆   

∆ = ∆    
  

. Note that the operator 

norm of 
1
2eP − ∆

∆  is bounded on compact subsets of + . Hence we assume that 

0p = . Lemma 11, (i) implies that ( )2e b
t I L M

β
− ∆ ∈ . Let ( )e ,t x y− ∆  be the ker-

nel e t− ∆  then ( ) ( )2 1, e e , d dgitnt b
iM ML

I x x y y xβ − ∆− ∆
=

= ∏∫ ∫ . The integral con-

verges since ( )e , 0t x y− ∆ ≥  we get 
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( ) ( )

( ) ( )( )
( ) ( ) ( ) ( )

( )
( )

( ) ( ) ( )( )( )

( ) 2

2

1

2
2

1

,
1 1

1
2

1 .

e , d d

e , d d

sup e , e , d d

sup e 1 d

e 1

gi

gi

gg ji

b

n
t

M M
i

n
t

M M
i

n n tta b
z w M M M

i i

n n
a b t

z M M

t
L

x x y y x

x x y y x

z z w x x y y x

C z t z x x x

C
β

β

β

β β

β β

− ∆

=

− ∆

=

− ∆− ∆
∈

= =

+
− − ∆

∈

− ∆

=

≤

≤

≤

∏∫ ∫

∏∫ ∫

∏ ∏∫ ∫

∫

 
This proves the corollary. 
Lemma 13. Let β  be a function of moderate decay, satisfying the conditions 

of Lemma 11. Let ,i ig h  be two complete metrics on M such that 2~i ig hβ . Let 

ig∆  and 
ih∆  be the Laplacians of ig  and ih , respectively. Then  

( )1 e gi
i i

t
g hi

− ∆∞

=
∆ − ∆∑  and ( )1e gi

i i

t
g hi

− ∆∞

=
∆ − ∆∑  are trace class operators, and 

the trace norm is uniformly bounded for τ  in a compact subset of ( )0,∞ . 

Proof. We decompose e giτ− ∆  as 1 1
3 3

2
1e e e gig gi i

t
t

i M Mτ

β β
−

−
∆− ∆ − ∆∞

=

   
= ⋅      

   
∑ . By 

Lemma 11, the second factor is a Hilbert-Schmidt operator and it suffices to 

show that ( ) 1
3

e g
i i

t
g h M

β
−

− ∆∆ − ∆  is Hilbert-Schmidt and that the Hil-

bert-Schmidt norm is bounded for t in a compact interval, using Lemmas 8, and 
Lemmas 10, it follows that the Hilbert-Schmidt norm can be estimated by 

( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1
3

2
2

2
2 4

2 1
3

2

1 2

212
23

0

21
3

0

21
3

1
0

211
2 3

2
0 2

1

2
0

e

e , d d

e ., d

e ., d

. . e ., d

e

g
i i

gi

i

gi

gi

n
t

g

g
n i

t
g h

i

i tg
M M

i g

t

M
i W

t

M
i H

tn q
gM

q

tq
gi

q

M

C x y y x x y

C y y y

C y y y

C t y y y

C M M M

β

β

β

β
β

β β

β

β

β β

−

−

− −

∞
− ∆

=

−
− ∆

=

−∞
∆

=

∞
∆

=

−
− ∆−

=

− ∆

=

 
 ∆ − ∆
 
 

≤ ∇

=

≤

≤ ∆

= ∆

∑

∑∫ ∫

∑∫

∑∫

∑ ∫

∑




2

2

d .
M

y∫
 

By Lemma 13, the right-hand side is finite and bounded for t in a compact in-

terval of +  prove that ( )1e gi
i i

t
g hi

− ∆∞

=
∆ − ∆∑  is a trace class operator, it suf-

fices to establish it for its adjoint ( )( )*

1 ei gi
i i

g t
g hi

− ∆∞

=
∆ − ∆∑  with respect to t. By 
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(19) and (18) we have  

( ) ( ) ( ) ( ) ( ) ( )
2* * * * **

01 11 211 1
i i i i

i i

g g g g ggg g g g
g hi i ξ ξ ξ∞ ∞

= =

  ∆ ∆ = + ∇ + ∇    
∑ ∑    using 

(14) and (16), it follows that there exists ( )( )** j

j C Hom T Mη ∞  ∈  
 

  such that 

( )( ) ( )( )* 2

0 1 21 1
i i i

i i

g g g
g hi i η η η∞ ∞

= =
∆ − ∆ = + ∇ + ∇∑ ∑    and these sections satisfy 

( ) ( )1 , 0 2, .
i

ji g
x C x j x Mη β∞

=
≤ ≤ ≤ ∈∑              (22) 

By principle we have 

( ) ( ) ( )( )
( ) ( ) ( ) ( )

Δ Δ Δ Δ

0
1 1

Δ Δ Δ Δ2
1 0

2

e e e Δ Δ e d

e Δ Δ e d e Δ Δ e d

g h g hi i i i
i i

g h g hi i i i
i i i i

tt t s t s
h g

i i

t ts t s s t s
th g h gi

s

s s

∞ ∞
− − − − −

= =

− − − − − −∞

=

− = −

 
= − + − 

 

∑ ∑ ∫

∑ ∫ ∫
  (23) 

Using (22) and (23) we can proceed as above and prove that  

( )( )*

1 ei gi
i i

g t
g hi

− ∆∞

=
∆ − ∆∑  is a trace class operator. 
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