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Abstract 
The purpose of the research is to assign a formally exact elliptic complex of 
length two to the Cauchy-Riemann Operator. The Neumann problem for 
this complex in a bounded domain with smooth boundary in 2  will be 
studied, helping therefore to solve a usual boundary value problem for the 
Cauchy-Riemann operator. 
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1. Introduction 

Most first order linear differential operators of geometric origin are Dirac oper-
ators. Dirac operators on Riemannian manifolds are of fundamental importance 
in differential geometry. A ( )k× -matrix D of first order scalar differential op-
erators with constant coefficients in n  is said to be a Dirac type operator, if 

kD D E∗ = − ∆ , where kE  is the identity ( )k k× -matrix, ∆  the (non-positive) 
Laplace operator in n , and D∗  is the formal adjoint of D. As usual, we de-
note by ( )( )1 Dσ ξ  the principal symbol of D. The rank of this matrix is equal 
to k for all { }\ 0nξ ∈ . It follows that every Dirac type operator is overdeter-
mined elliptic. For k= , such operators are called elliptic in the classical lite-
rature. 

In this paper, we firstly restrict our discussion to a boundary value problem 
related to the Cauchy-Riemann operator, which is a Dirac type operator. A sim-
ilar work has been done by [1] for the Fueter-operator, but using a cohomolo-
gy-method. When studying a boundary value problem, we usually look for con-
ditions which guarantee that the solution exists, is unique and depends conti-
nuously on the problem data. Let 2  be a domain with smooth boun-
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dary. Given functions 2:f →   and 2
1,0 :u ∂ →  , find a solution u to 

( )= ,Du f x u  in  , whose first component coincides with 1,0u  on the boun-
dary of  , and where D is the Cauchy-Riemann operator. 

It is important to point out that no attempt has been made here to develop 
any general theory. The Atiyah-Patodi-Singer index theorem drew mathemati-
cians’ attention to the so-called spectral boundary conditions for Dirac opera-
tors, thus highlighting an idea of Calderón (1963). For an excellent exposition of 
spectral elliptic boundary problems for Dirac operators, we refer to [2]. 

The scheme of the article can be declined in the following way: In Section 2, 
we show that boundary value problem related to the Cauchy-Riemann operator 
in the plane satisfies the Lopatinskii condition. The paragraph Section 3 is de-
voted to proving a necessary condition to the existence of a solution to our 
problem being our main result. To this end, finding a compatible complex to 

( ),Du f x u=  in   and 1 1,0u u=  on the boundary of   will be highlighted 
in Section 4. Before coming to some generalisations in Section 6, the corres-
ponding Hodge theory to our problem will be handled in Section 5. 

2. A Classical Problem 

Suppose   is a bounded domain with smooth boundary in the complex plane 
 . Identifying   with 2  under the complex structure 1 2z x ix= + , we con-
sider the inhomogeneous system 

1 1 2 2 1

2 1 1 2 2

,u u f
u u f

∂ − ∂ =
∂ + ∂ =

                       (2.1) 

for an unknown function 1 2u u iu= +  in  , satisfying the boundary condition 

1 1,0 ,u u∂ =                          (2.2) 

where 1 2f f if= +  and 1,0u  are prescribed functions in   and on ∂ , re-
spectively. Note that (2.1) just amounts to the inhomogeneous Cauchy-Riemann 
system in the plane. 

When assuming ( )1sf H −∈   and ( )1 2
1,0

su H −∈ ∂  and looking for a so-
lution ( )su H∈  , one easily verifies that this boundary value problem is 
Fredholm for each s∈ . Since the Fredholm property is actually equivalent to 
the ellipticity, we may deduce that the problem (2.1), (2.2) fulfills the Lopatinskii 
condition. However, these arguments are opposite to what the Lopatinskii con-
dition is aimed at. We present a direct proof. 

Theorem 2.1. The boundary value problem (2.1), (2.2) satisfies the Lopatins-
kii condition. 

Proof. The Lopatinskii condition is local, and so it suffices to verify it in a 
small neighbourhood of any point 0x ∈∂ . Since the boundary of   is 
smooth, there is a conformal mapping of ( )0 ,B x ε  , with 0ε >  small 
enough, to the upper half-plane { }2

2: 0x x∈ ≥ , such that the curve 
( )0 ,B x ε ∂   is mapped into the 1x -axis, which is due to the Riemann theo-

rem. Moreover, the Cauchy-Riemann system survives under conformal map-
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pings. Hence, we can assume without restriction of generality that   is the 
upper half-plane. For each fixed 2 0x ≥ , we apply the Fourier transformation in 

1x  to both Equation (2.1) and boundary condition (2.2). This gives 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 2 2 2 1 2 1 1 2

2 1 1 2 1 2 1 2 2 1 2

ˆˆ ˆ, , , ,
ˆˆ ˆ, , ,

i u x u x f x

u x i u x f x

ξ ξ ξ ξ

ξ ξ ξ ξ

− ∂ =

∂ + =
             (2.3) 

for all 2 0x >  as well as an initial condition ( ) ( )1 1 1,0 1ˆ ˆ,0u uξ ξ= , the “hat” 
meaning Fourier transformation in 1x . From this we read off the boundary 
symbol of our problem, namely 

( )( ) ( )
( )2

0

2
1 1 0

,

, : ,xσ ξ
≥

∂ ≥⋅ → ⊕

 

 




              (2.4) 

where ( )2
0 ,≥   is the space of all rapidly decreasing functions on the 

half-axis { }2 2: 0x x∈ ≥  with values in 2 , and 

( )( ) ( )
2

1 1
1

,
0

v Av
x v

v
σ ξ∂

∂ − 
⋅ =  

 
                  (2.5) 

with 1

1

0
0
i

A
i

ξ
ξ

− 
=  
 

. 

The Lopatinskii condition just amounts to saying that (2.4) is a bijective map-
ping for all { }1 \ 0ξ ∈ . There is no loss of generality in assuming that 1 0ξ > . 
The general solution of the homogeneous system 2 0v Av∂ − =  for 2 0x >  
with initial condition ( )1 1,00v v=  has the form 

( ) ( ) ( )
( ) ( ) ( )

1 2 1,0 1 2 2 1 2

2 2 1,0 1 2 2 1 2

cosh sinh ,

sinh cosh ,

v x v x ic x

v x iv x c x

ξ ξ

ξ ξ

= −

= +
             (2.6) 

2c  being an arbitrary constant. If we require a solution in ( )2
0 ,≥  , we 

have the only choice for the constant 2c , namely 2 1,0c iv= − . This proves the 
injectivity of (2.4). 

To show that (2.4) is surjective for 1 0ξ > , we fix ( )2
0 ,g ≥∈   . An easy 

computation shows that 

( ) ( )

( ) ( )
( ) ( ) ( )

( )
( )

2

2 1,0 1 2

1 2 1 2

0
1 2 1 2

1 2
2

1 2

1
exp

cosh sinh
d

sinh cosh

sinh
cosh

x

v x v x
i

x i x
g

i x x

i x
c

x

ξ

ξ ϑ ξ ϑ
ϑ ϑ

ξ ϑ ξ ϑ

ξ
ξ

 
= −  − 

 − − − 
+  − − 

− 
+  

 

∫      (2.7) 

is a general solution to the system 2v Av g∂ − =  for 2 0x >  with initial data 
( )1 1,00v v= . This solution is parametrised by a constant 2c  and it fails to belong 

to ( )2
0 ,≥   for an arbitrary choice of 2c . However, there is a unique con-

stant 2c  for which it is the case. Indeed, the sum of the last two terms on the 
right-hand side of (2.7) is 
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( ) ( ) ( )( ) ( )( )
( )( ) ( ) ( )( ) ( )( )

2

2

1 2 1 2 2 1 20

1 2 1 2 2 1 20

1 exp d exp
12

1 exp d exp ,
12

x

x

i
x ig g c x

i
x ig g c x

ξ ϑ ϑ ϑ ϑ ξ

ξ ϑ ϑ ϑ ϑ ξ

− 
− + +  

 
 

+ − − − + + −  
 

∫

∫
 

as is easy to verify. Choose 2c  in such a way that the first term would vanish at 
infinity, i.e. 

( ) ( ) ( )( )2 1 1 20
exp d .c ig gξ ϑ ϑ ϑ ϑ

∞
= − − +∫              (2.8) 

Then it becomes 

( ) ( ) ( )( )
2

1 2 1 2
1 exp d ,

12 x

i
x ig gξ ϑ ϑ ϑ ϑ

∞ − 
− − +  

 
∫

 

which is a rapidly decreasing function of 2 0x ≥∈ . Since the second term is ra-
pidly decreasing, the surjectivity follows.                                

The proof of Theorem 2.1 shows that the verification of the Lopatinskii condi-
tion is actually as hard as the construction of a parametrix to the boundary value 
problem. 

3. Existence of Solution 

Let D be the Cauchy-Riemann operator with constant coefficients in 2 , thus 
satisfying 2D D E∗ = − ∆ . 

Suppose   is a bounded domain with smooth boundary in 2  and f a 
given function on   with values in 2  of Sobolev class ( )1 2,sH −  , s be-
ing a natural number. We will write ( )sH   for ( )2,sH   if no confusion 
can arise. Consider the inhomogeneous nonlinear Dirac type equation 

( ),Du f x u=  for an unknown function ( )2,su H∈  . 
The operator D is elliptic, and so all generalised solutions of ( ),Du f x u=  

are in fact locally in the space ( )2,sH  . We interpret a solution u as a col-
umn of Sobolev functions on  , i.e. 

1

2

,
u

u
u
 

=  
   

where 1u  is a function on   with real values and 2u  takes its values in  . 
The determination of a solution u of ( ),Du f x u=  by means of its “scalar” 

component ( )1
su H∈   is a problem going back to the classical result of the 

reconstruction of a holomorphic function from its real part. It is studied in [3], 
cf. Section 1.2.5. We strengthen this problem in the following way. Let 

( )1
1,0

2su H −∈ ∂  be a prescribed function on the boundary of  . Find a solu-
tion u to ( ),Du f x u=  in  , such that 1 1,0u u=  on ∂ . 

We first find a necessary condition for the solvability of this problem. For 
convenience of reference we designate it as 

( )
1 1,0

, in ,
on ,

Du f x u
u u

=

= ∂




                     (3.1) 
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cf. (2.1), (2.2). Note that in one dimension (3.1) is precisely the Cauchy prob-
lem for the Dirac type equation ( ),Du f x u= . 

Write ( )1 2,D D D= , where 1D  is the first column of the matrix D and 2D  
the complementary-matrix of D. Since 

( )1 1 1 1 2
1 2 2

2 2 1 2 2

, ,
D D D D D

D D D D E
D D D D D

∗ ∗ ∗
∗

∗ ∗ ∗

   
= = = − ∆   
     

it follows that 

1 1 1 2

2 1 2 2

, 0,

0, .

D D D D

D D D D

∗ ∗

∗ ∗

= −∆ =

= = −∆
                    (3.2) 

The first and the last equalities of (3.2) imply that both 1D  and 2D  are Di-
rac type operators. 

Lemma 3.1. For a function ( )su H∈   to be a solution of (3.1) it is neces-
sary that 1u  satisfy 

( )1 1

1 1,0

, in ,
on .

u D f x u
u u

∗−∆ =

= ∂




                   (3.3) 

Proof. The equality ( ),Du f x u=  is obviously equivalent to the equality 
( )1 1 2 2 ,D u D u f x u+ =  in  . Applying the operator 1D∗  to both sides of the 

latter equality, we obtain, by (3.2), 

( ) ( )1 1 1 1 1 2 2 1, , ,D D u D f x u D D u D f x u∗ ∗ ∗ ∗= − =  

and this is precisely the assertion of the lemma. 
Hence, 1u  should be a solution of the Dirichlet problem (3.3) in   with 

given data 1D f∗  and 1,0u . Since the Dirichlet problem is uniquely solvable, we 
will assume from now on that the function ( )1

su H∈   is determined from 
(3.3). We are thus left with the task of finding the remaining components 2u  of 
u, namely to solving ( )2 2 1 1,D u f x u D u= −  in the domain of  . 

To this end, we consider in Section 4 the elliptic complex related to our 
Cauchy-Riemann operator 

4. A Compatibility Complex 

Let us state our lemma. 
Lemma 4.1. The differential operators *

2D  and 1D  fit together to form an 
elliptic complex over   

( ) ( ) ( )2 10 0.D DC C C
∗∞ ∞ ∞→ → → →             (4.1) 

Proof. The Laplacian 0∆  of (4.1) at step 0 is elliptic, for 
0

2 2D D E∗∆ = = − ∆  

according to (3.2). 
Since D is a square matrix of scalar differential operators with constant coeffi-

cients, we deduce that 
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( ) 1
1 2 1 1 2 2

2

, .
D

E DD D D D D D D
D

∗
∗ ∗ ∗

∗

 
− ∆ = = = + 

   
Hence it follows that the Laplacian 1

1 1 2 2D D D D∗ ∗∆ = +  of complex (4.1) at 
step 1 is elliptic. 

Finally, the Laplacian 2∆  of (4.1) at step 2 is elliptic, for 
2

1 1D D∗∆ = = −∆  
by (3.2).                                                          

5. Hodge Theory 

The Hodge theory is a very important technical tool for solving partial differen-
tial equations, in particular for solving Neumann problems. 

In this section, we define two very important spaces before considering a 
“weak version” of the Neumann problem for our elliptic complex (6.2), namely 

( ) ( ) ( ) ( ){ }1
1: 0 onN u n u n D u∞ ∗= ∈ = = ∂  

 
and 

( ) ( ) ( ){ }1
1 2: 0 on and 0 inH u n u D u D u∞ ∗ ∗= ∈ = ∂ = =   

 
The spaces ( )1N   and ( )1H   are called Neumann and Harmonic spac-

es, respectively. 
By ( )n u  and ( )1n D∗  are meant the Cauchy data of u on ∂ , with respect 

to the differential operators 2D∗ , and 1D , respectively, cf. Section 3.2.2 in [3]. 
Moreover, we precise that for all ( )u C∞∈  , ( ) 0n u =  ⇔   
( )( )( )1

2 0D uσ ν
∗

=  on ∂ , and ( )1 0n D u∗ =  ⇔  ( )( )( )1
1 0D uσ ν =  on 

∂ , where ( )xν  is the outward normal vector of the boundary of   at a 
point x∈∂ . 

The Neumann problem for complex (6.2) on the manifold   in the C∞  
setting consists in the following: 

(NP): Let be ( ),f x u  in ( )C∞  . Find a ( )1u N∈   to ( )1 ,u f x u∆ =  
(Solvability): We say that the Neumann problem related to our complex is 

solvable at step-1, if: 
(1) ( )1H   is of finite dimension 
(2) The equation ( )1 ,u f x u∆ =  has a solution ( )1u N∈   for each  
( ) ( ),f x u C∞∈   with ( )1f H⊥   
It is a well known result that Neumann problems are solvable for certain 

classes of manifolds  , namely for manifolds which are strictly pseudoconvex 
with respect to the considered complex. 

We now state the Hodge theory theorem related to our complex 
Theorem 5.1. Let   be a strict pseudoconvex domain. There exist conti-

nuous operator ( ) ( )1:H C H∞ →   and ( ) ( )1:N C N∞ →   such that 
(1) 2 2 1 1f Hf D D Nf D D Nf∗ ∗= + +  for each ( )f C∞∈   

(2) If ( )f C∞∈   and 1 0D f∗ = , then 1 0D Nf∗ =  
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Proof. cf. [4] 
In Section 3, we were left with the task of finding the remaining components 

2u  of u, namely to solving 

( )2 2 1 1,D u f x u D u= −                     (5.1) 

in the domain of  . 
We now derive a sufficient condition for the solvability of (5.1) 
Theorem 5.2. For Equation (5.1) to be solvable, it is sufficient that 

( ) ( ) ( )( )1, , d 0f h t u n h s
∂

− =∫   
for each ( )1h H∈  , where ( )t u  and ( )n h  are called the Dirichlet and 
Neumann data, respectively, cf. [5], and ds is the surface measure. 

Proof. Using the Green formula cf. Section 3.2.2 in [5], we obtain that for 
( )1h H∈   

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 1 1 1, , d 0 , , , d 0f h t u n h s f h u D h t u n h s∗

∂ ∂
− = ⇔ − − =∫ ∫ 

 

Setting ( ) 1 1,F f x u D u= − , and from the Hodge theory, we readily get that 
0HF =  allowing to choose 2u  as 2 2u D NF∗= .                        

6. Some Generalisations 

Let D be a general Dirac operator in n  given by a ( )k k× -matrix. Write 

( ),D A C=  
where A is the first column of the matrix D and C the complementary 

( )( )1k k× − -matrix of scalar differential operators. 
Since 

( ), ,k
A A A A CD D A C E
C C A C C

∗ ∗ ∗
∗

∗ ∗ ∗

   
= = = − ∆   
     

it follows that 

1

, 0,

0, .k

A A A C
C A C C E

∗ ∗

∗ ∗
−

= −∆ =

= = − ∆
                   (6.1) 

We are now in a position to state the generalised lemma which is one of our 
results. 

Lemma 6.1. The differential operators A and C fit together to form an elliptic 
complex over   

( ) ( ) ( )10 , , 0.Ak C kC C C
∗∞ − ∞ ∞→ →→ →           (6.2) 

Proof. The Laplacian 0∆  of (6.2) at step 0 is elliptic, for 
0

1kC C E∗
−∆ = = − ∆  

according to (6.1). 
Since D is a square matrix of scalar differential operators with constant coeffi-

cients, we deduce that 
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( ), .
A

E DD A C AA CC
C

∗
∗ ∗ ∗

∗

 
− ∆ = = = + 

 


 
Hence it follows that the Laplacian 1 AA CC∗ ∗∆ = +  of complex (6.2) at step 

1 is elliptic. 
Finally, the Laplacian 2∆  of (6.2) at step 2 is elliptic, for 

2 A A∗∆ = = −∆  
by (6.1).                                                          

7. Conclusion 

In this paper, we proposed a method solving a nonregular boundary value prob-
lem for the Cauchy-Riemann operator in 2 . Nonregular in the sense, that only 
the component 1u  is given on the whole boundary of our domain. We even 
proposed an exolicit solution to our problem. The next work will be to build an 
explicit formula for the Laplacian of (6.2) allowing us to construct a fundamental 
solution of convolution type for the complex (6.2). It is precisely a homotopy 
formula for the complex (6.2). 
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